Com

A company of SIM Tech

SIM900 Embedded AT®
Application Note V1.01

Smart Machine Smart Decision

General Notes

SIMCom offers this information as a service to its customers, to support application and
engineering efforts that use the products designed by SIMCom. The information provided is based
upon requirements specifically provided to SIMCom by the customers. SIMCom has not
undertaken any independent search for additional relevant information, including any information
that may be in the customer’s possession. Furthermore, system validation of this product designed
by SIMCom within a larger electronic system remains the responsibility of the customer or the
customer’s system integrator. All specifications supplied herein are subject to change.

Copyright

This document contains proprietary technical information which is the property of SIMCom
Limited., copying of this document and giving it to others and the using or communication of the
contents thereof, are forbidden without express authority. Offenders are liable to the payment of
damages. All rights reserved in the event of grant of a patent or the registration of a utility model
or design. All specification supplied herein are subject to change without notice at any time.

Copyright © Shanghai SIMCom Wireless Solutions Ltd. 2011

SIM900_Embedded AT®_Application Note_V1.01 2 2011.12.30

5 gas:
_ FH
-ImCom Smart Machine Smart Decision
Contents
RV £ 1o 4] (o] SRRSO 7
Lo INEPOTUCTION ...ttt bbbttt bbb 8
11 PUIDOSE ...ttt bbbt bbbt bt bbbt he e ae e b e e 8
1.2 COUING SEYIE 1.ttt ettt et st e reere et steereeneetenrenre s 8
1.3 RETEIENCES ...ttt bbbttt r e 8
1.4 Gl10SSaryS000L7L00LA3 ..ottt ettt ettt se ettt eeeresnene e e 8
15 ADDIEVIATIONS ... 9
P I 1T g 4[] o USRS 10
2.1 SOFIWAre AFCRITECTUNE.viiiicice e 10
211 SOftware Organization.........ccocveveriieieeiere e 10
2.1.2 Resource supplied bY SIMCOM.......c.cccoviiiiiniienise e 11
2.1.3 Software Supplied by SIMCOMccocoiiiiiiiiiesir e 11
2.2 Minimum Embedded Application COE.........cccueiiiiiiieieiineseee e e 11
2.3 LT 01007 ISR 12
2.4 Embedded AT IMEMOIY FESOUITESeeveverierreeriesieseesseeiestestesseessestessessesssessessessessseses 12
B BV ENT bbb bbbttt 12
3.1 EVENT TP ittt ettt bbbttt bbb 12
311 FIEVENTTYPE ..ottt sttt ens 12
3.1.2 EVENT_INTR Lottt e 13
3.13 EVENT_KEY oottt 13
3.14 EVENT_UARTDATA . ..ottt 13
3.15 EVENT_MODEMDATA ..ottt 13
3.16 EVENT_TIMER ..ot 14
3.1.7 EVENT_SERIALSTATUS ..o 14
3.18 EVENT_SOCKET ..ottt 14
3.1.9 e 001 0] - SR 14
3.2 EVENT DAceeiitiiiiieiesietestee ettt sttt 15
321 EVENIDALA.eeviiiiieee s 15
3.22 TIMER _EV T .ottt 15
3.23 KEY BV T ettt 16
3.24 UARTDATA_EVT .ottt 16
3.25 MODEMDATA_EVT L.ttt e 17
3.26 INTR _EV T ettt 18
3.2.7 SERIALSTATUS EVT ..ottt 18
3.2.8 SOCKETEVENT_EVT ..ottt 19
3.2.9 EXAIMPIES ...ttt 19
A APL e bbb bbb bbbt 21
4.1 DALA TYPES. ettt ettt e sre e 21
4.2 SYSIEM AP 21

SIM900_Embedded AT® _Application Note_VV1.01 3 2011.12.30

Smart Machine Smart Decision

421 AL 02GEIEVENTcotiiiieiietee e 21
4.2.2 ebdatd _0LGEtMEMOIY.......ccoiiieiieiee sttt 22
4.2.3 ebdatd 02FreeMEMOIYcciiviiiieiecece e 23
424 EDAALA OBRESELecviieeeee e s 23
4.2.5 ebdatd OAWALKICKcovveiiiiiieee e 23
4.2.6 ebdatd 05POWEIDOWNc.coviiviiiieiece ettt 23
4.2.7 eatl_09UpdateEMBEeddedADcv et 24
4.2.8 ebdat6_17DisablePOWerOffKEY........covvviiiiiiiisee e 24
429 ebdat6_18EnablePowerOffKeY........ccoovviiiiiiiii e 24
4.3 FLASH APttt ettt s et ne et 24
4.3.1 ebdat3 05FIaShGEILENcciiviiiicicccce e 25
4.3.2 ebdat3 0BFIashDEIEtecccciiieeic e 25
4.3.3 ebdat3_07FIashGetFIeeSIZe.covviiiiiei e 25
434 ebdat3 03FIashWIIteData..........cccoveiiiiiiiec e 26
4.35 ebdat3 04FlashReadData...........ccccccveiieiieiiiiiie et 26
4.3.6 ebdat3 08FIashFileREAdcccoviiiiiiicc e 27
4.3.7 ebdat3_09FIashFIlEWIILEcccoiveiiiie i 27
4.3.8 ebdat3 10FIashFileDelete.......c.ccvevviiiiicicc e 28
4.3.9 ebdat3 11FIashFileGELLENcecviiiiiiecicc e 28
4.4 PEIIPNEIY AP ..ottt sttt aeene e 29
44.1 MOAUIE PINS ...t 29
4411 FIPINNGME ...ttt 29
4.4.01.2 FIPINMOGE.......oiiiiiiieerieieiesee ettt ettt e sn e ene s 30
44.2 Periphery fUNCLIONSccviiiiiice e 30
4421 ebdat6_08pinConfigure TOUNUSE........cccerieiiiririiinine e 30
44272 ebdat_0BQUENYPINIMOUE.ccceieiiiisieiec et 30
4.4.3 PEFIPNEIY-SPli ittt 31
4431 ebdats 01SPICONFIGQUIE......cccciiiieicere e 31
4.4.3.2 ebdats 02SPIWILEBYLEcvecveiiicecece e 33
4433 ebdatS 03SPIREAIBYLEccovviieiciie e 33
4434 ebdats 04SPIWILEBYLES......cccviiiiicecie e 34
444 PEriphery-DiSPIaYcveoviiiirieici sttt 34
4441 ebdat05 11DiSpCONTig.....cccciiiiiiiiiiiiiie e 34
44472 ebdat05_12DispWriteCoOMMANGccoverieiieiierieeee e 35
4.4.4.3 ebdat05 13DiSPWILEDALAcccviviiviirieicie e 36
445 Periphery INTEITUPLc.ooe it 36
4451 ebdatb 13INtSUDSCIIDE.......ccciiiiiiiicece e 36
4.4.6 PEriphery SQUAIE WAVEcccueiriiiirienieiisie ettt sttt 37
4.4.6.1 ebdat6_19SqWaveSUDSCIIDEccovciiiiiiiireiee e 37
4.4.6.2 ebdat6_20SqWaveUnsubscribe ..o 38
4.4.7 Periphery-GPlO ..ot 38
4471 ebdatt_02GPIOSUDSCIIDEcciiiiiciiiriees e e 39
4.4.7.2 ebdatb 05REAUGPIOecviiiicieciecic et 39
4.4.7.3 ebdatb O4AWTIItEGPIOcvveeiiiecie ettt 40

SIM900_Embedded AT® _Application Note_VV1.01 4 2011.12.30

Smart Machine Smart Decision

4438 Periphery-KeYPadccuoiieiiiiiiee e 40
4481 ebdatt _15KeySUDSCIIDE........ccoiiiiiiirerese e 40
4.5 AUAIO APL .ottt te e b beebe e e saesreans 41
45.1 ebdatl0_01PlayContinOUSAUCIO..........cccveiiiiiieceeiece e 41
45.2 ebdat10_02StopContinOUSAUIO.........cecveiiiiiie e 41
453 ebdatl0 _03PIlaySingleAUdIO........cc.coiiviiieiice e 41
454 ebdat10_04PlaySingle AudioFromFile ..o 42
455 AUDIO TRACKS ...ttt st st e b e nbee e 42
4.6 TIMER AP ...ttt e st e e be e e sbaeenrteeaneeas 44
46.1 THMEE SEIUCTUIE ...ttt nes 44
4.6.2 ehdat8 OLSTAMTIMEN ...c.eeiiieieeer e 44
4.6.3 ebdat8 02StOPTIMEN ..o 45
4.6.4 ebdat8 _04SecoNdTOTICKScoiveieiiirieiieise e 45
4.6.5 ebdat8 05MilliseCONATOTICKSccviiviiiieieiiiiecie e 45
4.6.6 ebdat8 03GetRelatiVETIME......ccieieiierieie s 46
4.6.7 ebdat8 0BGEtSYSIEMTIME ...c.viiiieieiicisere e 46
4.6.8 ebdat8_08GetSystemTICKCOUNTE........cccovveiiiiiiesc e 47
4.7 FOM AP ettt sb e sbb e e st e e st e e s nbe e e beeenrbe e e 48
4.7.1 ebdat9 _01SendTOMOUEM.........coieiiiiiiee e 49
4.7.2 ebdat9_02SendTOSErialPOrt.........ccoccviiierereee e 49
4.7.3 ebdat9_03SetModemdataTOFLc.ccoveveiiiiiene e 50
4.74 The ebdat9_04SetUartdataTOFL funCtionccccocvieveneiiineneese e 50
475 ebdat9_05GetSerialPOrtTXSIALUScviereeieisie e 50
4.7.6 ebdatf 23GEtRTSPINLEVEL ..ot e 51
4.7.7 ebdat9_09ChangeMainUartBaudRate............ccccureririrenereenenie e 51
4.7.8 ebdat9_10GetMainUartBaudRateccccocevuiiieiicicieceeecce e 51
4.7.9 ebdat9_11ChangeMainUartDataFormat............c.ccccoveveieeiicneieieeiesece e 52
4.7.10 ebdat9_12GetMainUartDataFOormat............c.ocvvrerieiineneneese e 53
4.7.11 ebdat9_13ChangeMainUartFIowControlccccooooiivieneiiene e 53
4.7.12 ebdat9_14GetMainUartFIowWCONLrol ... 54
4.7.13 ebdat9_15SUBSCHDEURCccoiiiciceec e 54
4.7.14 ebdat9_16UnSUBbSCHIDEURCccoiiiiiiicese e 54
4.7.15 ebdat9 17GEetURCNUMcciii et 55
4.7.16 ebdat9_19Subscribe ATCOMMANGccorveiieiireccse e 55
4.7.17 ebdat9_20Unsubscribe ATCOMMAN..........covovieieiiiie e 56
4.8 DEBUG AP ...ttt sttt saeena e 56
4.8.1 ebdat7_O0OENterDebUugMOde.covcviiiiiiiie e 56
4.8.2 ebdat7 _01DEbUGTIACE.c.ciiiieirecieie ettt ene s 57
4.8.3 ebdat7_02DebugUartSENdccooiiiirenieiiine e e 57
4.9 Standard lBrary APL..........coo e 57
4.9.1 Standard input/output TUNCHIONSc.coveiieicicce e 57
4.9.2 ebdatd_10StrREMOVECRLEFcoiiiiiiiecee e 58
493 ebdatd_11strGetParameterString......ccocuveveerienerieise e 58
494 ebdat6_17DisablePOWerOffKEY........cccviiiiiiiisec e 59

SIM900_Embedded AT® _Application Note_VV1.01 5 2011.12.30

Smart Machine Smart Decision

ebdat6_18EnablePowerOffKeY ..o 59

4.9.6 ebdatd_15EXItOUtOfSIEEPMOUEocvvieeeecece e 59

4.9.7 ebdatd _17EnterSIEEPIMOUEoveveieiiiieee e e 60

410 SOCKET APl ..ottt sttt sttt st b s et 60
4.10.1 ebdatll LOGPISACLIVE ..ot 60

4.10.2 ebdatll 15GPrSDEACLIVEccveieeiieiieieeee e 61

4.10.3 ebdatll 20S0CKEtCONNECT........ceeiviiiiiieceee e 61

4.10.4 ebdatll 25S0CKELCIOSEccvevviieieieciececteec e 62

4.10.5 ebdatll 30S0CKELSENGccociiviiiiiiie e 62

4.10.6 ebdatll 35S0CKERECVYccviiviiiiciccece et 63

4.10.7 ebdatll 45S0CKEtTCPSEIVEISEL......cciivicvieiececte e 64

O R 14 (o] g 00T 1SS 65
4.12 Updating Embedded ApplICAtIONcoooiiiiiieeise e 66

B ATHCRWP ...ttt ettt bbbttt bttt ettt ettt e et e 68
AppendixX A: SIMCOM MOAUIE PINS ...ocviiiiiiciie e et 69
APPENAIX B EXAMPIE ..ot reenes 70

SIM900_Embedded AT®_Application Note_VV1.01 6 2011.12.30

R eomany of S Tech Smart Machine Smart Decision

SIM900_Embedded AT®_Application Note_V1.01 7 2011.12.30

Smart Machine Smart Decision

1. Introduction

1.1 Purpose

Based on ARM926EJ_S core, SIM900 runs at 156 MHz, and has redundant MIPS to run programs
other than telecommunication protocols. Embedded AT is for fully utilizing Sim900 resources,
providing interfaces to move some external MCU functions into itself, so as to save customer’s
cost. The programming idea of Embedded AT is to think from MCU side and to be consistent
with the MCU programming style.

1.2 Coding style

The function name of EMBEDDED AT consists of two parts, one is the file name index part, and
the other is the function number of the file. For example, “ebdat4_01GetMemory”, 4 is the file
name index part, and 01 is the function number of the file. It is very easy for the user or the
SIMCom developers to trace problems this way.

1.3 References

SIM900_ATC_V1.05

1.4 Glossary
Glossary Description
Embedded Software interfaces developed by SIMCom and open to licensed embedded
Application application developers. The APIs include audio API, FCM API, flash API,
API system API, periphery API, STDLIB API, timer API and debug API

Embedded User created application that utilizes Embedded API functions to interact with
Application ~ SIMCom core software, only to run on a SIMCom product

SIMCom The Core system released by SIMCom, which includes the core binary file and

Core System SIMCom library

EVENT Capitalized EVENT notion used in this document represents specified system
EVENT in embedded application. See Chapter 3 EVENT for EVENT
definition

SIM900_Embedded AT® _Application Note_VV1.01 8 2011.12.30

Smart Machine Smart Decision

This document describes the important points to which attention should be paid by the clients
when they design their applications. As SIM900 can be integrated into a wide range of
applications, the application notes are described in great detail.

This document can help user to quickly understand SIM900 interface, specifications, electrical and
mechanical details. With the help of this document and other SIM900 application notes, users can
use SIM900 module to design and set-up mobile applications quickly.

SIM900_Embedded AT®_Application Note_V1.01 9 2011.12.30

) seee
o aeee

5

Smart Machine Smart Decision

2 Description

2.1 Software Architecture

2.1.1 Software Organization

The software architecture of the Embedded AT facility is shown below:

Embedded Application (one binary file)

EVENT_TIMER
EVENT_KEY
EVENT_INTR

Invoke API functions

APIs
eatl_02GetEvent(FIEventBuffe
* .
r “event_p); FLASH | TIMER | Periphery | SPI FCM System
API API API API API API

data
data

CORE SYSTEM (one binary file)

Figure 1: General software architecture

Information flow

When the module passes messages from the core system to the embedded application, the
eatl 02GetEvent function catches EVENT and then alters the embedded application with
categorized EVENT type. This approach allows the embedded application to channel different
incoming data appropriately.

When the module sends messages to the core system, developer simply invokes API functions
tailored for the appropriate purposes, and the rest is taken care of by the API functions, until the
feedback message is received by the application through eatl_02GetEvent.

Message flows in this cyclical fashion, isolating the developer’s application from accessing core
variables and stacks. Through this design, Embedded AT masks and protects the core image from
developer’s application, allows abstract and safe access to the core system.

SIM900_Embedded AT®_Application Note_V1.01 10 2011.12.30

R eomany of S Tech Smart Machine Smart Decision

2.1.2 Resource supplied by SIMCom

Resources supplied by SIMCom are as following:
1M bytes code

1M bytes RAM

1M bytes memory which user can store the data in.
24 GPIOs

10 timers and one tick is equal to 9.23 ms.

1 SPI

1 Display interface

2 PWM

1 debug port

1 UART

System API and standard library API

2.1.3 Software Supplied by SIMCom

The Softwares supplied by SIMCom are as following:

® One set of header files (.h) which define the Embedded API functions
® Source code samples

® SIMCom core software, which is a binary file

® Image downloading tools

2.2 Minimum Embedded Application Code

The following code is an example of the minimum embedded application code.

fl_entry is the main entrance function for embedded application, see next section for details.

SIM900_Embedded AT®_Application Note_VV1.01 11 2011.12.30

50"‘[

e o S Tach Smart Machine Smart Decision

i () ssee

eatl 02GetEvent is a system interface that receives EVENT from core software. See 4.2.1 for
details.

2.3 fl_entry()

fl_entry() is the entrance function of embedded application, it works almost as main() in standard
C application. Embedded application quits upon exiting fl_entry(). Above example uses a while
statement to keep the application alive until the application developer ends it by setting keepGoing
= FALSE;

while (keepGoing == TRUE) /*the while statement to keep embedded application alive*/

2.4 Embedded AT Memory resources

The Embedded software runs within real time kernel task: application developers must work with
pre-defined size, which is 10K bytes, of the customer’s application calling stack. Please note that
the total size of local variables which user defines cannot exceed 10K bytes.

SIMCom Core Software and Embedded Application manage their own RAM areas. Access from
one of these programs to another’s RAM area is prohibited and will cause fatal error.

Global variables, call stack and dynamic memory are all part of the RAM allocated to the
Embedded Application.

3 EVENT

EVENT is wrapped in structure FIEventBuffer, through which the core system communicates with
the embedded applications. Only through eatl 02GetEvent(&flEventBuffer), EVENTs can be
passed from the core system to the embedded applications. Structure FIEventBuffer consists of
two parts. one is the event type, which defines the type of the EVENT, and the other is the event
data.

typedef struct FISignalBufferTag

{
FIEventType eventTyp;

EventData eventData;
}FIEventBuffer;

3.1 EVENT Type

3.1.1 FlEventType

EVENTSs are categorized as following:

SIM900_Embedded AT®_Application Note_V1.01 12 2011.12.30

Smart Machine Smart Decision

typedef enum FIEventTypeTag

{
EVENT_NULL =0,
EVENT_INTR,
EVENT_KEY,
EVENT_UARTDATA,
EVENT_MODEMDATA,
EVENT_TIMER,
EVENT_SERIALSTATUS,
EVENT_SOCKET,
EVENT_MAX = OxFF

}FIEventType;

3.1.2 EVENT_INTR

The event is triggered by an interrupt signal which the embedded application receives from the
core. Interrupt signals are generated by the interrupt pins, for details on the interrupt pins please
refer to Section 4.4 Periphery API. Once a level change occurs on one of the interrupt pins, this
event is received by the embedded application.

3.1.3 EVENT_KEY

The event is triggered when a key status is changed, which is a key press or a key release. By
default there is a predefined keypad of five columns and five rows. When one of the key status
(assume above mentioned pins have not been configured for other uses, for pin configuration refer
to section 4.4) has been changed, the event EVENT_KEY is received by the embedded
application.

3.1.4 EVENT_UARTDATA

The event is triggered when input data from serial port or trace port are received by SIMCom core
firmware.

Important Remark:

In order to receive data from UART port in user’s embedded application,
ebdat9_04SetUartdataToFL(TRUE) has to be set. By default it is set to
ebdat9_04SetUartdataToFL(FALSE), the data received from UART port will be sent directly to
the SIMCom core software. In default mode, embedded application will not receive data from the
UART port and EVENT_UARTDATA will never be triggered.

3.1.5 EVENT_MODEMDATA

The event is triggered when modem data are sent to serial port, for instance, when the serial port

SIM900_Embedded AT®_Application Note_V1.01 13 2011.12.30

enee
seme

il Com
Tech

A compasry of S

) seee

Smart Machine Smart Decision

receives an AT command response.

Important Remarks:

@ The same situation in EVENT_UARTDATA applies here too, the function
ebdat9_03SetModemdataToFL(TRUE) has to be set (default is FALSE) before embedded
application can capture SIMCom core outputs, such as OK or ERROR returned by AT
commands.

® AT+CRWP is the exceptional case, despite of ebdat9 _03SetModemdataToFL setting,
embedded application will always receive it. For more details on AT+CRWP refer to Chapter
5 AT+CRWP.

3.1.6 EVENT_TIMER

The event is triggered when a timer expires. Timer can be stopped before it expires. For more
details on timers, refer to TIMER API section.

3.1.7 EVENT_SERIALSTATUS

The event is triggered when serial port status has been changed, the status can be CTS, DCD, RI
(ringing), DSR, DTR, and RTS.

3.1.8 EVENT_SOCKET

This event will be triggered when using SOCKET API of Embedded AT, including GPRS setup
and release, setting up or closing TCP/UDP, sending or receiving data via TCP/UDP, etc.

3.1.9 Example

The following code skeleton demonstrates how events are captured in embedded applications:

void fl_entry() /*customer entrance*/
{ /* some code here*/
switch(flEventBuffer.eventTyp) /* deal with signal associated to the signal type*/
{
case EVENT_INR:
break;
case EVENT_UARTDATA:
break;
case EVENT_MODEMDATA:
break;
case EVENT_KEY:
break;
case EVENT_TIMER:
break;

SIM900_Embedded AT®_Application Note_V1.01 14 2011.12.30

Smart Machine Smart Decision

3.2 EVENT Data

3.2.1 EventData

Each EVENT type has its corresponding EVENT data.

Note EventData is not like EventType, EventData is a union, and each data type has its own
structure, which will be detailed in the following sections.

322 TIMER_EVT

timer_id: ID of the timer that has expired.
interval: The time elapsed before the timer expired. It is measured in Kernel ticks.

SIM900_Embedded AT® _Application Note_VV1.01 15 2011.12.30

R eomany of S Tech Smart Machine Smart Decision

323 KEY_EVT

key_val: The value of the key that triggers the event.
isPressed: Whether the key is pressed. If it is 0, key is released, otherwise it is pressed.

3.24 UARTDATA_EVT

length: The length of the data being transported.

data: The actual data, which is 255 bytes long maximum.

type: The type of the data, FlUartDataType type, see below for definition of FlUartDataType.
FLUartDataType

3.2.4.1 DATA_SERIAL

Indicate the type of data which are received from serial port.
3.2.4.2 DATA_DEBUG

Indicate the type of data which are received from the trace port.

SIM900_Embedded AT® _Application Note_VV1.01 16 2011.12.30

R eomany of S Tech Smart Machine Smart Decision

3.25 MODEMDATA_EVT

length: The length of the data being transported.

data: The actual data, which is 255 bytes long maximum.

type: The type of the data, FIDataModemType types, see below for definition of
FIModemDataType.

FLModemDataType

atCommandIindex:

When the customer defines an AT command and the AT command is received from the serial port,
the EVENT_MODEMDATA will be triggered. The “atCommandindex” is the AT command index
which is defined by the customer.

3.25.1 MODEM_CMD

AT command data type. Refer to Appendix B.

3.2.5.2 MODEM_DATA

In data mode, this event will be triggered by any data, such as PPP data, CSD data or TCP data.
3.2.5.3 MODEM_CRWP

CRWP data type is the data type used in AT+CRWP command. For more information on +CRWP
command, refer to Chapter 5.

SIM900_Embedded AT®_Application Note_VV1.01 17 2011.12.30

R eomany of S Tech Smart Machine Smart Decision

3.26 INTR_EVT

pinName: Name of the pins on SIMCom modules.
gpioState: The status of the pin, if it is 0, a falling edge or low level interrupt happens. If itis 1, a
rising edge or high level interrupt happens.

3.2.7 SERIALSTATUS_EVT

currentVal: Serial port data. If it is 1, the pin on the serial port is high level. If it is 0, the pin on
the serial port is low level.
sbit: Serial port status

SIM900_Embedded AT®_Application Note_VV1.01 18 2011.12.30

A company of SIM Tech

Smart Machine Smart Decision

3.28 SOCKETEVENT_EVT

type: Different types of socket event.
socketld: Represents different socket connections, it will be set to OXFFFFFFFF when it is
FL_SOCKET_GPRS_ACTIVE and FL_SOCKET_GPRS_DEACTIVE.

bsdResult: Represents different results of socket events, success or failure, or represents data
length of sending and receiving.

3.29 Examples

In this example, timerDemo.timerld is compared with the expired timer’s ID, if timerDemo is
expired, the embedded application will send “the timerDemo is coming!” to the serial port.

SIM900_Embedded AT®_Application Note_VV1.01 19 2011.12.30

5”"
[
I
Sees
=11 Com

A compaen of SM Tech Smart Machine Smart Decision

SIM900_Embedded AT®_Application Note_V1.01 20 2011.12.30

!:EE

Com . .
R compaey of St Tech Smart Machine Smart Decision
4 API

This chapter categorizes API functions and describes their usages, including function prototype,
parameters, and their return values.

4.1 Data Types

File \flinc\fl_typ.h declares all the data types used in SIMCom Embedded AT.

Note: fl_typ.h does not need to be included every time, since it is included in fl_interface.h, and
when the char or byte buffer are defined as global variables, user should use “gu8”, gs8 and
gascii otherwise, abrupt reset may occur.

4.2 System API

File \flinc\fl_interface.h declares system-related APIs. These functions are essential to any
customer applications, he head file needs to be included. User can use these functions to allocate a
memory or to free the memory.

421 eatl 02GetEvent

The eatl 02GetEvent function gets system EVENTSs from the core software. When there is no
event in customer task’s event queue, the task is in the waiting status.

@ Prototype

SIM900_Embedded AT®_Application Note_VV1.01 21 2011.12.30

R eomany of S Tech Smart Machine Smart Decision

® Parameters

event_p: A pointer to a particular FIEventBuffer, refer to Chapter 3 for details.
EVENT for FIEventBuffer structure.

The following code is an example of how to create a signal buffer, and listen to incoming signals
using eatl_02GetEvent function.

4.2.2 ebdat4d_01GetMemory

The ebdat4_01GetMemory function will allocate memory from the memory pool.

Note:

The maximum size of the memory that user can allocate is 8K bytes. If user allocates the
memory with size larger than 8K bytes, it will return NULL which means memory allocation is
failed. It is better to define a global buffer than to allocate a memory, when the size of the buffer
is larger than 100 bytes.

® Prototype

® Parameters
Size: The size of memory which will be allocated.
® Return values

It returns the address of the allocated memory. If it returns NULL, it means that the memory

SIM900_Embedded AT®_Application Note_VV1.01 22 2011.12.30

5

A campany o

) seee
0 asee

Smart Machine Smart Decision

allocation is failed.

4.2.3 ebdat4_02FreeMemory

The ebdat4 02FreeMemory function frees the memory which was allocated earlier. Note that user
cannot free a NULL pointer.

® Prototype

bool ebdat4_02FreeMemory (void *Ptr);

® Parameters
Ptr: The address of the allocated memory
® Return values

TRUE (1): If allocated memory is freed.
FALSE (0): Is returned otherwise.

424 ebdat4d 03Reset

The ebdat4_03Reset function resets the system. If user wants to reset the module, user can use this
function. Use this function cautiously. It is not recommended to use this function generally.

® Prototype

void ebdat4_03Reset(void);

425 ebdatd_04Wdtkick

The ebdat4_04Wdtkick function kicks the watch dog. Call this function cautiously, only call it
when the execution time of customer’s code exceeds watchdog’s reset time.

® Prototype

void ebdat4_04Wdtkick(void);

4.2.6 ebdat4 05PowerDown

The ebdat4_05PowerDown function powers down the system. It has the same effect as the AT
command “AT+CPOWD=1". When the system is powered down successfully, “NORMAL
POWER DOWN?” will be sent to the serial port.

SIM900_Embedded AT®_Application Note_V1.01 23 2011.12.30

5

Co

A compaen of SM Tech Smart Machine Smart Decision

® Prototype

void

ebdat4_05PowerDown(void);

4.2.7 eatl 09UpdateEmbeddedAp

See 4.11 Updating Embedded Application.

4.2.8 ebdat6_17DisablePowerOffKey

The

ebdat6_17DisablePowerOffKey function configures the power key as a normal key. If the

power key is pressed, EVENT_KEY will be triggered, and the value of key_val will be 0x0000. In

defa

ult mode, the power key is enabled.

Prototype

void ebdat6_17DisablePowerOffKey(void);

4.2.9 ebdat6 18EnablePowerOffKey

The

ebdat6_18EnablePowerOffKey function enables the power key. When this function is called,

the power key will be set to power off key. In default mode, the power key is enabled.

Prototype

void ebdat6_18EnablePowerOffKey(void);

4.3

FLASH API

User can use these interfaces to store, read or delete the data in the flash. User can also use these
interfaces to get the data length in the flash and the free size of the flash. In order to use these
interfaces the header file fl_flash.h must be included. The length of the data written in flash cannot
exceed 8K bytes.

Note:

1.

Flash ID number cannot exceed 60000. Before writing the data to the flash, a buffer should
be defined. When the buffer is defined, “gu8” should be used as “gu8
g_writeBuffer[8*1024];”.

If the customer wants to use updated Embedded Application, ebdat3_03FlashWriteData and
ebdat3_04FlashReadData should be used.

SIM900_Embedded AT®_Application Note_V1.01 24 2011.12.30

Smart Machine Smart Decision

4.3.1 ebdat3 05FlashGetLen

Get the length of a specific flash.

® Prototype

s32 ebdat3_05FlashGetLen(ul6 ID,ul6* len);

® Parameters

ID: ID of the flash. The value of ID must be less than 60000, otherwise it will return
FL_RET_ERR_PARAM.
len: The length of the flash area defined by its ID.

® Return values

FL_OK: Get the length successfully.
FL_RET_ERR_PARAM: Incorrect Incorrect parameter.
FL_RET_ERR_FATAL.: If a fatal error occurred.

4.3.2 ebdat3_06FlashDelete

The ebdat3_06FlashDelete function deletes a region of the flash defined by an ID

® Prototype

s32 ebdat3_06FlashDelete(ul6 ID);

® Parameters

ID: The ID of the flash object to be deleted. The value of ID cannot exceed 60000, otherwise it
will return FL_RET_ERR_PARAM.

® Return values

FL_OK: The region of the flash is deleted successfully.
FL_RET_ERR_PARAM: Incorrect parameter.
FL_RET_ERR_FATAL.: If a fatal error occurred.

4.3.3 ebdat3_07FlashGetFreeSize

The ebdat3_07FlashGetFreeSize function gets the free size on the flash which users can allocate.

® Prototype

SIM900_Embedded AT®_Application Note_V1.01 25 2011.12.30

5

A campany o

) seee
0 asee

Smart Machine Smart Decision

s32 ebdat3_07FlashGetFreeSize(u32 *freeSize);

® Parameters
*freeSize: Returns the free size of the flash.
® Return values

FL_OK: On success.
FL_RET_ERR_FATAL.: If a fatal error occurred.

4.3.4 ebdat3_03FlashWriteData

The ebdat3_03FlashWriteData function writes data to a flash object of a given ID. The size of the
flash object is defined in “len” parameter.

® Prototype

s32 ebdat3_03FlashWriteData(ul6 ID, ul6 len, u8 * data);

® Parameters

ID: The ID of the flash object to be written. The value of ID cannot exceed 60000, otherwise it
will return FL_RET_ERR_PARAM.

len: The length of the flash object to be written. It cannot exceed 8K bytes otherwise it will return
FL_RET_ERR_PARAM.

data: The string to be written into the flash object. It should not be NULL otherwise it will return
FL_RET_ERR_PARAM.

® Return values

FL_OK: Write data to flash successfully.
FL_RET_ERR_PARAM: Incorrect parameter.
FL RET_ERR_FATAL.: If a fatal error occurred.

4.35 ebdat3 04FlashReadData

The ebdat3_04FlashReadData function reads data from a specific flash object with a given ID.

® Prototype

s32 ebdat3_04FlashReadData(ul6 ID, ul6 len, u8 * data);

® Parameters

SIM900_Embedded AT®_Application Note_V1.01 26 2011.12.30

Smart Machine Smart Decision

) seee
0 asee

m

ID: The ID of the flash object to be read. It cannot exceed 60000, otherwise
FL_RET_ERR_PARAM will be returned.

len: The length of the flash object to be read. It cannot exceed 8K bytes or the size of the object
user wants to read, otherwise FL_RET_ERR_PARAM will be returned.

data: The data allocated to store the flash object. It should not be NULL, otherwise
FL_RET_ERR_PARAM will be returned.

® Return values

FL_OK: Read data from flash successfully.
FL_RET_ERR_PARAM:Incorrect parameter.
FL_RET_ERR_FATAL.: If a fatal error occurred.

4.3.6 ebdat3 08FlashFileRead

The ebdat3_08FlashFileRead function allows customer to read a file from the file system in the
module. But note that the filename cannot include its path.

® Prototype

s32 ebdat3_08FlashFileRead(ul6 len, u8* data, u8* fileName, ul6 position);

® Parameters

len: the length of the file which will be read to the module.

data: the data of file which will be read to the module.

fileName: the file name which will be read to the module.

position: the position of the file where it starts to read from. It is similar to the seek function.

® Return values

FL_OK: Read a file from flash successfully.
FL_RET_ERR_PARAM: Incorrect parameter.
FL_RET_ERR_FATAL.: If a fatal error occurred.

4.3.7 ebdat3_09FlashFileWrite

The ebdat3_09FlashFileWrite function allows the customer to write a file to the file system in the
module. But note that the file name cannot include its path.

® Prototype

s32 ebdat3_09FlashFileWrite(ul6 len, u8* data, u8* fileName, FIFileOperationMode mode);

SIM900_Embedded AT®_Application Note_V1.01 27 2011.12.30

5

o s ca Smart Machine Smart Decision

) seee
o aeee

® Parameters

len: the length of the file which will be written to the module.

data: the data of the file which will be written to the module.

fileName: the file name which will be written to the module.

mode: the mode which defines how the customer writes a file into module.
FIFileOperationMode

typedef enum FIFileOperationModeTag

{
FL_FILE_FROM_BEGINNING,/*create a new file, the previous one will be deleted.*/

FL_FILE_FROM_END, /*write the data to the end of the previous file.*/
FL_NUM_FILE_OPERATION_MODE
}FIFileOperationMode;

® Return values

FL_OK: write a file into flash successfully.
FL_RET_ERR_PARAM: Incorrect parameter.
FL_RET_ERR_FATAL.: If a fatal error occurred.

4.3.8 ebdat3_10FlashFileDelete

The ebdat3_10FlashFileDelete function allows the customer to delete a file in the file system in
the module. But note that the file name cannot include its path.

® Prototype

s32 ebdat3_10FlashFileDelete(u8* fileName);

® Parameters
fileName: the file name which will be deleted from the module.
® Return values

FL_OK: delete the file in flash successfully.
FL_RET_ERR_PARAM: Incorrect parameter.
FL RET_ERR_FATAL.: If a fatal error occurred.

4.3.9 ebdat3 11FlashFileGetLen

® Prototype

s32 ebdat3_11FlashFileGetLen(u8* fileName,ul6* length);

SIM900_Embedded AT®_Application Note_V1.01 28 2011.12.30

LIES
LEEd
LLEd
e

Com
R eomany of S Tech Smart Machine Smart Decision

@® Parameters

fileName: the file name which will be deleted from the module.
length: return the file length.

® Return values

FL_OK: write data into flash successfully.
FL_RET_ERR_PARAM: Incorrect parameter.
FL_RET_ERR_FATAL.: If a fatal error occurred.

4.4 Periphery API

File fl_Periphery.h must be included before following functions are called. In this part, user can
use these interfaces to control the periphery of the module such as the keypad, gpio, spi, interrupt,
etc..

441 Module Pins

This section describes the pins of SIMCom modules. It includes the reference names used in the
program code, and their operation mode.

441.1 FIPinName

FLPinName lists pin names, and their available operation mode.
For SIM900 see Appendix A:SIM900 FIPinName enum.

SIM900_Embedded AT® _Application Note_VV1.01 29 2011.12.30

5"“
[
Ss--
=il Com

Acompsey of SM Tech Smart Machine Smart Decision

4.4.1.2 FIPinMode

FIPinMode defines the pin mode. Each pin can only be subscribed to one purpose at any given
time. There is no default mode for unused pins.

typedef enum FIPinModeTag

{
FL_PIN_MODE_UNUSED,

FL_PIN_MODE_DEFAULT,
FL_PIN_MODE_MULTI,
FL_PIN_MODE_GPIO,
FL_PIN_MODE_lI2C

} FIPinMode;

4.4.2 Periphery functions

This section describes API functions that deal with general pin mode manipulation.

4.4.21 ebdaté 08pinConfigureToUnused

The ebdat6_08pinConfigureToUnused function unsubscribes the named pins and configures the
pin mode to be FL_PIN_MODE_UNUSED. Before the pin is configured as a GPIQO, this function
must be called first.

® Prototype

s32 ebdat6_08pinConfigureToUnused(FIPinName pinName);

® Parameters

pinName: The name of the pin to be set to FL_PIN_MODE_UNUSED status. Note that
FL_PIN_3 cannot be configured as a GPIO, as it is reserved.

® Return values

FI_OK: Set the pin to FL_PIN_MODE_UNUSED status successfully.
FL_RET_ERR_PARAM: Incorrect parameter
FL_RET_ERR_BAD_STATE: If the pin's status is unexpected

Note:

e It is important to unsubscribe pins from their current usage before assigning them to
another purpose. Otherwise FL_RET_ERR_BAD_STATE will be returned.

o All the keypad pins will be unassigned if one of the pins is unsubscribed.

4.4.2.2 ebdaté_06QueryPinMode

SIM900_Embedded AT®_Application Note_V1.01 30 2011.12.30

5"“
[
Ss--
=il Com

Acompsey of SM Tech Smart Machine Smart Decision

The ebdaté_06QueryPinMode function queries the named pin’s operation mode.

® Prototype

s32 ebdat6_06QueryPinMode(FIPinName pinName,
FIPinMode *pinMode_p,
FIGpioDirection *isOutputDir_p);

® Parameters

pinName: The name of the pin to be queried for its mode.

*pinMode_P: The pointer of the pin’s mode

*isOutputDir_p: The pointer of the pin’s operation direction. If the pin is GPIO, it will return the
direction of the GPIO otherwise it will return FL_GPIO_UNUSED.

For the pin to be operated in Gpio mode it has the following value:

typedef enum FIGpioDirectionTag

{
FL_GPIO_UNUSED=0,

FL_GPIO_INPUT =1,
FL_GPIO_OUTPUT
}FIGpioDirection;
Otherwise the value is FL_GPIO_UNUSED.

® Return values

FL_OK: Query of the pin mode is successful.
FL_RET_ERR_PARAM: Incorrect parameter
FL_RET_ERR_BAD_STATE: If the pin's status is unexpected

4.4.3 Periphery-SPI

Periphery-SPIs are the SPI bus service pins. These pins will be used in the following functions:
For SIM900 and SIM900A, they are FL_PIN_11, FL_PIN_12, FL_PIN_13, and FL_PIN_14.
Note that once these pins are configured as DISP, they cannot be configured as GPIO pins again.
The maximal frequency of SPI clock is 13MHz and the minimal frequency is 50.78125KHz. It
supports both 3-wire and 4-wire modems.

4.4.3.1 ebdat5 01SpiConfigure

The ebdat5 01SpiConfigure function subscribes to SPI bus service and sets eligible pins to be SPI
pins: MISO, MOSI, SCLK and SS. To subscribe to SPI bus, these pins need to be unsubscribed
from their default usage by this function first.

® Prototype

SIM900_Embedded AT®_Application Note_V1.01 31 2011.12.30

Smart Machine Smart Decision

® Parameters

SPI parameter is made up of following parameters.
wireMode:
SSI_3WIRE, for 3-wire mode SPI.
SSI_4WIRE, for 4-wire mode SPI.
For SIM900 and SIM900A:

csPolHigh:
SSI_ACTIVE_LOW, of low polarity
SSI_ACTIVE_HIGH, of high polarity
s_gpio_num:
gpio number used for SPI Chip Select
clkSpeed:
SSI_SYSTEM_DIV_2 [*26/2 Mhz*/
SSI_SYSTEM_DIV_4 [*26/4 Mhz*/
SSI_SYSTEM_DIV_8 [*26/8 Mhz*/

SIM900_Embedded AT®_Application Note_VV1.01 32 2011.12.30

Smart Machine Smart Decision

SSI_SYSTEM_DIV_16 [*26/16 Mhz*/
SSI_SYSTEM_DIV_32 1*26/32 Mhz*/
SSI_SYSTEM_DIV_64 1*26/64 Mhz*/
SSI_SYSTEM_DIV_128 /*26/128Mhz*/
SSI_SYSTEM_DIV_256 [*26/256Mhz*/
SSI_SYSTEM_DIV_512 /*26/512Mhz*/
clkMode :
SSI_FALLING_EDGE, write clock polarity is configured as falling edge
SSI_RISING_EDGE, write clock polarity is configured as rising edge
msbFirst:
SSI_LSBFIRST, to send LSB (least significant bit) data first
SSI_MSBFIRST, to send MSB (most significant bit) data first

® Return values

FL_OK: SPI Interface configuration is successful.
FL_ERROR: SPI Interface configuration is failed.

4.4.3.2 ebdat5_02SpiWriteByte

The ebdat5_02SpiWriteByte function writes one byte to the SPI interface.

® Prototype

s32 ebdats_02SpiWriteByte(u8 data);
® Parameters
data: Byte to transfer
® Return values

FL_OK: Write byte successfully.
FL_ERROR: Write byte failed.

4.4.3.3 ebdat5_03SpiReadByte
The ebdat5_03SpiReadByte function will read one byte from the SPI interface.

® Prototype

u8 ebdat5_03SpiReadByte (void);

® Parameters

NONE

SIM900_Embedded AT®_Application Note_V1.01 33 2011.12.30

.
.
.
11
A company o

e o S Tach Smart Machine Smart Decision

® Return values

One byte read from spi

4.4.3.4 ebdat5_04SpiWriteBytes

The ebdat5_04SpiWriteBytes function will write bytes to the SPI interface. This is a block
function.

® Prototype

s32 ebdat5_04SpiWriteBytes(u8 *p_data, u32 dataSize);

® Parameters

p_data: Pointer of data to be sent.
dataSize: Size of data to be sent. It cannot exceed 4K bytes.

® Return values

FL_OK: Write bytes successfully.
FL_ERROR: Write bytes failed.

4.4.4 Periphery-Display

Periphery-Display is for displaying interface pins. These functions are used to control the screen
of which its periphery bus is SPI. Following pins will be used in these function. For SIM900 and
SIM900A, they are FL_PIN_11, FL_PIN_12, FL_PIN_13, FL_PIN_14.

Note that once these pins are configured as DISP, it cannot be configured as GPIO again. The
maximal frequency of Display clock is 13MHz and the minimal frequency is 50.78125KHz.
Display interface is connected to SIM900 and SIM900A PINs: FL_PIN_68 (used as DISP_RST),
DISP_D/C, DISP _DATA, DISP_CLK and DISP_CS.

4441 ebdat05_11DispConfig

The ebdat05_11DispConfig function configures display interface using SIM900 and SIM900A
PINs: FL_PIN_68 (used as DISP_RST), DISP_D/C, DISP _DATA, DISP_CLK and DISP_CS.

® Prototype

s32 ebdat05_11DispConfig (FIPinName cs_gpio_num, SsiClockType clk);

® Parameters

cs_gpio_num: The GPIO used as Chip Select signal for display interface.
clk:

SIM900_Embedded AT®_Application Note_V1.01 34 2011.12.30

=i Com

A company of SM Tech Smart Machine Smart Decision
SSI_SYSTEM_DIV_2 [*26/2 Mhz*/
SSI_SYSTEM_DIV_4 [*26/4 Mhz*/
SSI_SYSTEM DIV_8 /*26/8 Mhz*/

SSI_SYSTEM_DIV_16 /*26/16 Mhz*/
SSI_SYSTEM DIV 32 /*26/32 Mhz*/
SSI_SYSTEM DIV 64 [*26/64 Mhz*/
SSI_SYSTEM_DIV_128 /*26/128Mhz*/
SSI_SYSTEM_DIV_ 256 /*26/256Mhz*/
SSI_SYSTEM_DIV 512 /*26/512Mhz*/

® Return values

FL_OK: Display configuration successfully.

FL_ERROR: Display configuration failed.

Note: In order to use the SPI to display interface correctly, DO NOT configure these pins to a
different mode before they are configured as DISP pins.

For SIM900 and SIM900A:

4.4.42 ebdat05_12DispWriteCommand

The ebdat05_12DispWriteCommand function sends one command (1 byte) to LED.
This operation will also clear DISP_D/C pin (low).

® Prototype

@® Parameters

command: The command to be sent to LED.

SIM900_Embedded AT®_Application Note_VV1.01 35 2011.12.30

500#1
npary of SIM Tech

Smart Machine Smart Decision

® Return values
FL_OK: Send display command successfully.
FL_ERROR: Send display command failed.

Note: In order to use the SPI to display interface correctly, DO NOT configure these pins to a
different mode before they are configured as DISP pins.

4.4.4.3 ebdat05_13DispWriteData

The ebdat05_13DispWriteData function sends data (1 byte) to the display equipment.
This operation will also set DISP_DC pin (high).

® Prototype

s32 ebdat05 13DispWriteData (u8 data);

® Parameters
data: The data (1 byte) to be sent to the display equipment.
® Return values

FL_OK: Send display data successfully.
FL_ERROR: Send display data failed.

445 Periphery interrupt

Periphery interrupt functions can be used to configure the GP1O as GPIO interrupt.

The following is the description of the functions of SIM900 and SIM900A.

Note that only four pins can be used as GPIO interrupt. They are “FL_PIN_37”, “FL_PIN_38",
“FL_PIN_67" and “FL_PIN_68".

4451 ebdaté 13IntSubscribe

The ebdat6_13IntSubscribe function subscribes the pins to be interrupt pins, and changes the pin
mode to be FL_PIN_FUNC_INTR. Please note that before the pin is configured as an interrupt,
ebdat6_08pinConfigureToUnused must be called first to configure the pins to
FL_PIN_MODE_UNUSED status. For eligible pins refer to section 4.4.5.

® Prototype

s32 ebdat6_13IntSubscribe(FIPinName pinName, FLGpioTriggerType triggerType,
ul6é deBouncePeriodMs);

SIM900_Embedded AT®_Application Note_V1.01 36 2011.12.30

5"“
[
Ss--
=il Com

Acompsey of SM Tech Smart Machine Smart Decision

® Parameters

pinName: The pin which is configured as GPIO interrupt
triggerType:

typedef enum

{
FL_GPIO_TRIG_ON_HIGH_LEVEL, /*trigger on high level*/

FL_GPIO_TRIG_ON_LOW_LEVEL, /*trigger on low level*/
FL_GPIO_TRIG_ON_RISING_EDGE, /*trigger on rising edge*/
FL_GPIO_TRIG_ON_FALLING_EDGE /*trigger on rising edge*/
}FLGpioTriggerType;
deBouncePeriodMs: It is the debounce time of the interrupt. Its unit is millisecond. If it is less
than 20ms, the debounce time will be ignored.

® Return values

FL_OK: Configure the pin to interrupt GPIO successfully.
FL RET_ERR_BAD_STATE: If an error occurred.
FL_RET_ERR_PARAM: Incorrect parameter.

4.4.6 Periphery square wave

Periphery square wave interfaces are used to configure the PWM pin to generate PWM signal.

4.4.6.1 ebdat6é_19SgwWaveSubscribe
The ebdat6_19SgWaveSubscribe function assigns a square wave to generate PWM wave. There

are two pins that user can use to generate PWM, which are PWM_1 and PWM_2.

® Prototype

s32 ebdat6_19SqWaveSubscribe(FIPWM pwm, u8 pwmbhalfPeriod, u8 pwmlevel);

® Parameters

pwm: The PWM that user wants to generate.

pwmbhalfPeriod: This is the period of the PWM. The period of PWM is equal to (pwmhalfPeriod
+ 1)/ 3.25 MHz. Its range is from 0 to 126.

pwmlevel: This is the duty of PWM. It equals to the high level divided by the period of the PWM.
Its range is from 0 to 100.

Note: pwmhalfPeriod is the frequency period; pwmlevel is the PWM pulse high time, which
equals to high time / period.

eg:

SIM900_Embedded AT®_Application Note_V1.01 37 2011.12.30

QCom

Smart Machine Smart Decision

ebdat6_19SqWaveSubscribe(FL_PWM_0, 100,50);
pwmhalfPeriod:100--->101 pwmclk
pwmlevel:50---->51 pwmclk
pwmclk=sysclk(26Mhz)/8=3.25Mhz

PWM out:3.25Mhz/101 = 32.178Khz

high time:51*pwmclk

In our reference code input level is limited.

if (level*period/100) =0

then pwmlevel =127

if pwmlevel > pwmbhalfPeriod

then pwm out low level

if user wants to set pwmclk=3.25Mhz/3=1.08Mhz
ebdat6_19SqwWaveSubscribe(FL_PWM_0, 2,50);
pwmhalfPeriod:2--->3 pwmclk

50*2/100 =1

pwmlevel:1---->2 pwmclk

® Return values

FL_OK: Subscribe the PWM successfully
FL_RET_ERR_PARAM: Incorrect parameter.

4.4.6.2 ebdat6é_20SqgWaveUnsubscribe

The ebdat6_20SqWaveUnsubscribe function unsubscribes PWM pin from square wave service,
and changes the pin to low level.

® Prototype

s32 ebdat6_20SgWaveUnsubscribe(FIPWM pwm) ;

® Parameters
pwm: The PWM that user wants to generate.
® Return values

FL_OK: Unsubscribe the PWM successfully.
FL_RET_ERR_PARAM: Incorrect parameter.

4.4.7 Periphery-GPIO

Periphery GPIO interfaces are used to configure pins to be GPIO. It can also be used to set the
GPO’s level and read the level from the GPI. Note that FL_PIN_3 cannot be configured as GPIO,
as it is reserved.

SIM900_Embedded AT®_Application Note_V1.01 38 2011.12.30

50

Smart Machine Smart Decision

) seee

4471 ebdat6é_02GpioSubscribe

The ebdat6_02GpioSubscribe function subscribes pins to GPIO pins and changes pin mode to
FL_PIN_MODE_GPIO. Before this function is called, ebdat6_08pinConfigureToUnused should
be called to configure the pin mode to FL_PIN_MODE_UNUSED status.

® Prototype
s32 ebdat6_02GpioSubscribe(FIPinName pinName,

FIGpioDirection gpioDir,
bool defValue);

® Parameters

pinName: Refer to Appendix A for eligible pins. Note that FL_PIN_3 cannot be configured as
GPIO, as it is reserved.

gpioDir: Input/output direction of the pin, refer to the pin lists for details on eligible pins. Some
pins can only be assigned as input while others can only be assigned as output pins.

defValue: Gpo default value.

® Return values

FL_OK: Subscribe the pin to GPIO successfully.
FL RET_ERR_BAD_STATE: If an error occurred.
FL_RET_ERR_PARAM: Incorrect parameter.

4.4.7.2 ebdat6_05ReadGpio

The ebdat6_05ReadGpio function reads the level from GPI pins. The pin should be configured as
GPI first.

® Prototype

s32 ebdat6_05ReadGpio(FIPinName pinName, bool *inputValue_p);
@ Parameters

pinName: The name of the GPIO pin from which the level to be read. Note that FL_PIN_3 cannot
be configured as GPIO, as it is reserved.
*inputValue_p: Pointer to the read value

® Return values

FL_OK: On success.
FL_RET_ERR_BAD_STATE: If an error occurs. Check whether the pin has been configured as
GPI or not.

SIM900_Embedded AT®_Application Note_V1.01 39 2011.12.30

5Com
d T

company of SIM Tech

Smart Machine Smart Decision

FL_RET_ERR_PARAM: Incorrect parameter.

4.4.7.3 ebdaté_04WriteGpio

The ebdaté_04WriteGpio function writes to GPIO pins. The pin should be configured as GPO
first.

® Prototype

s32 ebdat6_04WriteGpio(FIPinName pinName, bool outputValue);

® Parameters

pinName: The name of the GPIO pin to which the level to be written. Note that FL_PIN_3 cannot
be configured as GPIO, as it is reserved.
outputValue: The value to be written to the pin

® Return values

FL_OK: Set the GPO to expected level successfully.

FL_RET_ERR_BAD_STATE: If an error occurred. Please check if the pin has been configured
as GPO.

FL_RET_ERR_PARAM: Incorrect parameter.

4.4.8 Periphery-Keypad

Periphery-Keypad interfaces are used to configure pins to be keypad. Only following pins can be
used as key pad pins. They are FL_PIN_40, FL_PIN_41, FL_PIN_42, FL_PIN_43, FL_PIN_44,
FL_PIN_ 47, FL_PIN_48, FL_PIN_49, FL_PIN_50, FL_PIN_51. Note that once one of these pins
is configured as GPIO, the rest of them will all be configured to GPI automatically.

4.4.8.1 ebdaté 15KeySubscribe

The ebdat6_15KeySubscribe function initializes the keypad pins to be keypad.

® Prototype

s32 ebdat6_15KeySubscribe(void);

® Return values

FL_OK: Initialize successfully.

SIM900_Embedded AT®_Application Note_V1.01 40 2011.12.30

Smart Machine Smart Decision

4.5 Audio API

File fl_audio.h needs to be included before audio functions are called.

451 ebdatl0_01PlayContinousAudio

The ebdat10_01PlayContinousAudio function plays the continuous music in system.

® Prototype

bool ebdat10_01PlayContinousAudio(FIAudioName name);

® Parameters
name: The audio track name and its range must be from FL_MELODYO01 to FL_DIAL_TONE.
® Return values

TRUE: If it is ok, otherwise it will return FAIL.

45.2 ebdatl0_02StopContinousAudio

The ebdat10_02StopContinousAudio function stops playing continuous music

® Prototype

bool ebdat10_02StopContinousAudio(void) ;

® Return values

TRUE: Ifitis ok, if not it will return FAIL.

45.3 ebdatl0_03PlaySingleAudio

The ebdat10_03PlaySingleAudio function plays the audio one time. Its range must be from
FL_SUBSCRIBER_BUSY_TONE to FL_GAME_OVER.

® Prototype

bool ebdat10_03PlaySingleAudio(FIAudioName name) ;

® Parameters

name: The audio track name and its range must be from FLL_ SUBSCRIBER_BUSY_TONE to

SIM900_Embedded AT®_Application Note_V1.01 41 2011.12.30

R eomany of S Tech Smart Machine Smart Decision
FL_GAME_OVER.

® Return values

TRUE: Ifitis ok
FALSE: If it is failed.

45.4 ebdatl0_04PlaySingleAudioFromFile

The ebdat10_04PlaySingleAudioFromFile function is used to play an audio file which is stored in
the flash.

® Prototype

® Parameters
fileName: The audio file name which is to be played.
® Return values

TRUE: Ifitis ok
FALSE: If it is failed.

455 AUDIO TRACKS

SIM900_Embedded AT®_Application Note_VV1.01 42 2011.12.30

Smart Machine Smart Decision

SIM900_Embedded AT®_Application Note_VV1.01 43 2011.12.30

50

i Smart Machine Smart Decision

) seee

46 TIMERAPI

File fl_timer.h needs to be included for the following APIs to work properly. In this part, the
interfaces are used to start or stop a timer or get the system tick or time. Note that only 10 timers
can be started at the same time.

4.6.1 Timer structure

typedef struct FITimerTag
{

u32 timeoutPeriod; /*the time elapse before the timer expires*/
ulé timerld; /* the ID of the timer*/

}

t emb_Timer;

4.6.2 ebdat8 O1StartTimer

The ebdat8 01StartTimer function starts a timer. When the timer is expired, it will be stopped and
if another time period is wanted, the “ebdat8 01StartTimer” must be called to start the timer
again.

® Prototype

s32 ebdat8_01StartTimer(t_emb_Timer timer);

® Parameters

timer: The timer to be started. This variable has two members. The timeoutPeriod is the time
elapsed before the timer expires. The timerld is the ID of the timer.

® Return values

FL_RET_ERR_PARAM: Incorrect parameter.
FL_RET_ERR_BAD_STATE: The timer has been started.
FL_OK: Start a timer successfully.

Example:

t_emb_Timer timerDemo;
timerDemo.timeoutPeriod = ebdat8_04SecondToTicks(2); /* set timeout to be 2 seconds™/
if (ebdat8_01StartTimer(timerDemo) == FL_OK)

{

SIM900_Embedded AT®_Application Note_V1.01 44 2011.12.30

50

Smart Machine Smart Decision

) seee

} I*start the timer*/
[* for time out event, refer to 3.1.6 EVENT_TIMER section*/

4.6.3 ebdat8 02StopTimer

The ebdat8 02StopTimer function stops a Timer before it expires.

® Prototype

ul6 ebdat8 02StopTimer(t_emb_Timer timer);

® Parameters

timer: The timer to be stopped. This variable has two members. The timeoutPeriod is the time
elapsed before the timer expires. The timerld is the ID of the timer.

® Return values:

FL_RET_ERR_PARAM: Incorrect parameter.
FL_OK: Stop a timer successfully.

4.6.4 ebdat8 04SecondToTicks

The ebdat8 04SecondToTicks function converts time from seconds to KernelTicks.
One kernel tick = 9.23 milliseconds.

® Prototype

u32 ebdat8 04SecondToTicks(u32 seconds);

® Parameters
seconds: It is the time expected to be converted. Its unit is second.
® Return values

The return value is measured in KernelTicks.

4.6.,5 ebdat8 05MillisecondToTicks

The ebdat8 05MillisecondToTicks function converts time from milliseconds to KernelTicks.

® Prototype

SIM900_Embedded AT®_Application Note_V1.01 45 2011.12.30

) seee

50

Smart Machine Smart Decision

u32 ebdat8_05MillisecondToTicks(u32 milliseconds);
® Parameters
milliseconds: It is the time that is expected to be converted. Its unit is millisecond.
® Return values

The return value is measured in KernelTicks.

4.6.6 ebdat8 03GetRelativeTime

The ebdat8 03GetRelativeTime function gets the rest of ticks before the timer will be expired.

® Prototype

s32 ebdat8_03GetRelativeTime(t_emb_Timer timer, u32 *tick) ;

® Parameters

timer: The timer to be stopped. This variable has two members. The timeoutPeriod is the time
elapsed before the timer expires. The timerld is the ID of the timer.
*tick: It will return the rest of ticks that the timer will be expired.

® Return values

FL_OK: Get the system time successfully
FL_RET_ERR_PARAM: Incorrect parameter

4.6.7 ebdat8 06GetSystemTime

The ebdat8 06GetSystemTime function gets the local time.

® Prototype

void ebdat8_06GetSystemTime(t_emb_SysTimer * datetime);

® Parameters

datetime: Ant_emb_SysTimer struct to store current local time.
t emb_SysTimer are defined as:

typedef struct FISysTimerTag
{

unsigned short year;

SIM900_Embedded AT®_Application Note_V1.01 46 2011.12.30

Smart Machine Smart Decision

4.6.8 ebdat8_08GetSystemTickCounter

The ebdat8_08GetSystemTickCounter function gets the system ticks when the module is powered
on.

@ Prototype

® Return values

It returns the system ticks when the module is powered on.

SIM900_Embedded AT® _Application Note_VV1.01 47 2011.12.30

HD
E:—_(')...l
o aeee

Smart Machine Smart Decision

4.7 FCM API

File fl_fcm.h needs to be included for these APls to work.
The following diagram illustrates how each FCM function controls the direction of data flow

Simcom Module

ebdat9 02Sen dToSeriaIP‘

\ | Embedded application

ort
uTrt }
b N\

A

(

EVENT UARTDATA
bdat9 01SendToModem

EVENT_MODEMDATA

/

External
Application switch = CORE

SwitchL
) (|

Simcom Core Software

Switch A: ebdat9 04SetUartdataToFL function
Switch B: ebdat9 03SetModemdataToFL function
CORE: Core data flow control software.

Switch A is the input flow director, when it is set to 1, data coming from external application
(trace port or serial port) will be directed to the embedded application, and triggers
EVENT_UARTDATA event. When it is set to 0, external data will flow into SIMCom core
software, and it no longer notifies embedded application.

Switch B is the output flow director, when it is set to 1, data coming out of SIMCom core software

SIM900_Embedded AT®_Application Note_V1.01 48 2011.12.30

-(‘).ccc
ot

5 om
A e Smart Machine Smart Decision

will go to the embedded application, and trigger EVENT_MODEMDATA. When it is 0, data will
go directly to the external application, and no data is received by embedded application.

4.7.1 ebdat9 01SendToModem

This function sends data to core buffer. Return information of AT commands and result codes OK
or ERROR are received by eatl 02GetEvent function when ebdat9 03SetModemdataToFL is set
to 1. Refer to Chapter 3.1.5 for more details. A special character “\r” (cartridge return) should be
appended to the string of AT command to indicate the end of it. For example:
ebdat9_01SendToModem (“ati\r*,4) is same as user typing "ati" command and pressing
ENTER.

® Prototype

s32 ebdat9_01SendToModem(u8 *senddata,ul6 data_len);

® Parameters

senddata: The data which will go into core buffer.
data_len: The length of the data, which cannot exceed 1024.

® Return values

FL_OK: Send to modem successfully.
FL_RET_ERR_PARAM: Incorrect parameter

4.7.2 ebdat9_02SendToSerialPort

The ebdat9_02SendToSerialPort function is used to send string to serial port, it is valid only when
ebdat9_05GetSerialPortTxStatus returns 1 (which means the transmit buffer is null).

® Prototype

s32 ebdat9_02SendToSerialPort(char *src, ul6 len);

® Parameters

src: The string user wants to send to serial port.
len: The length of the string, which must be less than 256.

® Return values

FL_OK: Send to serial port successfully.
FL_RET_ERR_PARAM: Incorrect parameter.

SIM900_Embedded AT®_Application Note_V1.01 49 2011.12.30

5

A campany o

) seee
0 asee

Smart Machine Smart Decision

4.7.3 ebdat9 03SetModemdataToFL

The ebdat9_03SetModemdataToFL function controls output data’s direction from core.

® Prototype

void ebdat9 03SetModemdataToFL (bool destination);

® Parameters

destination:
TRUE: Sends the output data from core to embedded application.
FALSE: It is directed to serial port.

4.7.4 The ebdat9 04SetUartdataToFL function

The ebdat9_04SetUartdataToFL function controls the input data’s direction from serial port.

® Prototype

void ebdat9_04SetUartdataToFL (bool destination);

® Parameters

destination:
TRUE: The input data from serial port is sent to embedded application.
FALSE: For sending to core buffer.

4.75 ebdat9 05GetSerialPortTxStatus

The ebdat9_05GetSerialPortTxStatus function gets the transmit buffer's status of the serial port. If
it returns FALSE, user cannot send any data to serial port.

® Prototype

bool ebdat9_05GetSerialPortTxStatus(void);

® Return values

TRUE: The transmit buffer is null, data can be sent to the serial port.
FALSE: There are data in the transmit buffer.

SIM900_Embedded AT®_Application Note_V1.01 50 2011.12.30

Smart Machine Smart Decision

476 ebdat6_23GetRTSPinLevel

The ebdaté_23GetRTSPinLevel function is used to get the status of RTS level. If it returns 1, it
means that RTS is high level. Otherwise it means that RTS is low level.

® Prototype

u8 ebdaté_23GetRTSPinLevel (void);

® Return values

1: RTS is high level.
0: RTS is low level.

4.7.7 ebdat9_09ChangeMainUartBaudRate

The ebdat9_09ChangeMainUartBaudRate function sets the baud rate of the main serial port.

® Prototype

s32 ebdat9_09ChangeMainUartBaudRate(u32 BaudRate);

® Parameters

BaudRate: The baud rate of the main port. The range of its value is 0, 1200, 2400, 4800, 9600,
19200, 38400, 57600, 115200. Note that ‘0" means auto baud.

® Return values

FL_OK: Set the baud rate successfully.
FL_ERROR: Set baud rate failed.

4.7.8 ebdat9_10GetMainUartBaudRate

The ebdat9_10GetMainUartBaudRate function is used to get the baud rate of the main serial port.

® Prototype

u32 ebdat9_10GetMainUartBaudRate(void);

® Return values

It returns the baud rate of the main serial port. Its range is 0, 1200, 2400, 4800, 9600, 19200,
38400, 57600, 115200. Note that ‘0" means auto baud.

SIM900_Embedded AT®_Application Note_V1.01 51 2011.12.30

LIES
LEEd
LLEd
e

Com . .
Smart Machine Smart Decision

A company of SIM Tech

4.79 ebdat9_l11ChangeMainUartDataFormat

The ebdat9_11ChangeMainUartDataFormat function sets the data format of the main port.

® Prototype

® Parameters

uartDataFormat:

® Return values

FL_OK: Set the data format successfully.
FL_ERROR: Set data format failed.

SIM900_Embedded AT® _Application Note_VV1.01 52 2011.12.30

Smart Machine Smart Decision

4.7.10 ebdat9_12GetMainUartDataFormat

The ebdat9_12GetMainUartDataFormat function is used to get the data format of the main port.

® Prototype

FIMainUartDataFormat ebdat9 12GetMainUartDataFormat(void);

® Return values

Return the data format of the main port. The structure is defined in 4.7.9.

4.7.11 ebdat9_13ChangeMainUartFlowControl

The ebdat9_13ChangeMainUartFlowControl function sets the flow control of the main port.

® Prototype

s32 ebdat9_13ChangeMainUartFlowControl(FIMainUartFlowControlStruct flowControl);

® Parameters

flowControl:

typedef enum FIMainUartFlowControlTag

{
FL_MAIN_UART NO_FLOW_CONTROL, /*No flow control.*/
FL_MAIN_UART_SOFTWARE_FLOW_CONTROL, [*software flow control*/
FL_MAIN_UART_HARDWARE_FLOW_CONTROL /*hardware flow control*/

}FIMainUartFlowControl;

typedef struct FIMainUartFlowControlStructTag

{
FIMainUartFlowControl dcebydte; [*To specifies the method will be used by TE at

receive of data from TA*/
FIMainUartFlowControl dtebydce;
}FIMainUartFlowControlStruct;

® Return values

FL_OK: Set the data format successfully.
FL_ERROR: Set data format failed.

SIM900_Embedded AT®_Application Note_V1.01 53 2011.12.30

50

Smart Machine Smart Decision

) seee

4.7.12 ebdat9_l14GetMainUartFlowControl

The ebdat9_14GetMainUartFlowControl function is used to get the flow control of the main port.

® Prototype

FIMainUartFlowControlStruct ebdat9 14GetMainUartFlowControl(void);

® Return values

Return the flow control of the main port. The structure is defined in 4.7.11.

4.7.13 ebdat9 15SubscribeURC

The ebdat9_15SubscribeURC function subscribes a URC. When modem sends to the URC which
is subscribed, a call-back function will be called.

® Prototype

s32 ebdat9_15SubscribeURC(u8 *urcString, u32 stringlLen, fl_urchandle hd,
u8 iswholeStringCmp);

® Parameters

urcString: The URC to be subscribed. The maximum of the URC which can be subscribed is 32.
stringLen: The length of the URC string.
hd: The call back function

typedef void(*fl_urchandle)(u8 *data, u32 datalen);

isWholeStringCmp: if it is 1, the URC should be identical to the string which was set, and the
call back function will be called. If it is 0, the string which was set is one part of the URC, and the
call back function will be called.

® Return values

FL_RET_ERR_PARAM: Incorrect parameter
FL_RET_ERR_ALREADY_SUBSCRIBED: The URC has been subscribed.
FL_ERROR: Subscribe the URC failed. The number of URC reaches the maximum number.
FL_OK: Subscribe the URC successfully.

4.7.14 ebdat9_16UnSubscribeURC

The ebdat9_16UnSubscribeURC function is used to unsubscribe a URC.

® Prototype

SIM900_Embedded AT®_Application Note_V1.01 54 2011.12.30

5Com

Smart Machine Smart Decision

s32 ebdat9_16UnSubscribeURC(u8 *urcString);

® Parameters
urcString: The URC will be unsubscribed.
® Return values

FL_RET_ERR_PARAM: Incorrect parameter

FL RET _ERR_NOT_SUBSCRIBED: The URC has not been subscribed.
FL_ERROR: Subscribe the URC fail.

FL_OK: Unsubscribe the URC successfully.

4.7.15 ebdat9 17GetURCNum

The ebdat9 17GetURCNum function is used to get the number of URCs which have been
subscribed.

® Prototype

u8 ebdat9_17GetURCNum(void);

® Return values

Return the number of URCs which have been subscribed.

4.7.16 ebdat9 19SubscribeATCommand

The ebdat9 19SubscribeATCommand function subscribes an AT command which can be defined
by the customer. The maximum number of the AT command is 32.

® Prototype

532 ebdat9_19SubscribeATCommand(ascii *urcString, u32 index);

® Parameters

urcString: The AT command will be unsubscribed. The maximum of the AT command which can
be subscribed is 8. And its length cannot exceed 20 bytes.
index: index which corresponded to the AT command. It cannot be OXFFFFFFFF.

EVENT_MODEM event will be triggered when module receives AT command customized by

customer. Customer can use the variable atCommandindex of MODEMDATA_EVT structure to
acquire which AT command is triggered (atCommandIndex is correlated with index)

SIM900_Embedded AT®_Application Note_V1.01 55 2011.12.30

500#1

e o S Tach Smart Machine Smart Decision

® Return values

FL_RET_ERR_PARAM: Incorrect parameter

FL_RET_ERR_ALREADY_SUBSCRIBED: The AT command has been subscribed.
FL_ERROR: Subscribe the URC fail. The number of AT commands reaches the maximum
number.

FL_OK: Subscribe the URC successfully.

4.7.17 ebdat9_20UnsubscribeATCommand

The ebdat9 20UnsubscribeATCommand function unsubscribes an AT command which can be
defined by the customer.

® Prototype

532 ebdat9_20Unsubscribe ATCommand(ascii *pString);
® Parameters
urcString: The AT command will be unsubscribed.
® Return values

FL_RET_ERR_PARAM: parameter error

FL RET_ERR_ALREADY_SUBSCRIBED: The URC has been subscribed.
FL_ERROR: Subscribe the URC failed. The number of URC reaches the maximum number.
FL_OK: Subscribe the URC successfully.

4.8 DebugAPI

File fl_trace.h must be included for debug functions to work.

4.8.1 ebdat7 00EnterDebugMode

The ebdat7_0OEnterDebugMode function enters debug mode, once in debug mode,
ebdat7_01DebugTrace() prints debug information to the debug port instead of sending debug
information to spytrace. The default debug mode is off.

® Prototype

void ebdat7_0OEnterDebugMode(void);

SIM900_Embedded AT®_Application Note_V1.01 56 2011.12.30

5

Smart Machine Smart Decision

) seee
0 asee

4.8.2 ebdat7_01DebugTrace

The ebdat7_01DebugTrace function prints out customer’s data to debug port.

® Prototype

void ebdat7_01DebugTrace (const u8 *Format, ...);

® Parameters

Format: The parameter string works identical to printf function, except for:
“\r” Outputs to the beginning of a line, equivalent of “\x0d”.
“\n” Outputs to a new line, but vertical prompt position remains the same from its
last position, equivalent of “\x0a”.
Note: In order to print from the beginning of a new line, the combination of “\r\n” will be used.

4.8.3 ebdat7_02DebugUartSend

The ebdat7_02DebugUartSend function prints out customer data to debug port. This is a block
function.

® Prototype

s32 ebdat7_02DebugUartSend(u8 *buff, ul6 len);

® Parameters

buff: The data user wants to send to the trace port.
len: The length of data user wants to send to the trace port.

® Return values

FL_ERROR: If the len is larger than 512 or buff, it is NULL.
FL_OK: Send the data successfully.

4.9 Standard library API

STDLIB API includes standard library function definitions in the file “fl_stdlib.h”

4.9.1 Standard input/output functions

#define fl_strcpy strcpy
#define fl_strncpy strncpy

SIM900_Embedded AT®_Application Note_V1.01 57 2011.12.30

Smart Machine Smart Decision

Note: Above STDIO functions are identical to their standard C counter parts, the only
difference is that these functions use user defined types instead of standard C types.

4.9.2 ebdat4d 10strRemoveCRLF

The ebdat4_10strRemoveCRLF function removes the cartridge return “/r” and line feeder “/n”
character from a string

@ Prototype

® Parameters

*dst: Modified string
*src: Original string
size: Size of the original string

® Return values

Modified string
49.3 ebdat4_listrGetParameterString

The ebdat4_11strGetParameterString function returns parameter string at a given position

® Prototype

SIM900_Embedded AT®_Application Note_VV1.01 58 2011.12.30

5Com

oo of S Toch Smart Machine Smart Decision

® Parameters

*dst: Destination string
*src: Original string
Position: Parameter position

® Return values

Address to the parameter string

4.9.4 ebdat6_17DisablePowerOffKey

The ebdat6_17DisablePowerOffKey function makes power key as a normal key instead of a
power off key.

® Prototype

void ebdat6_17DisablePowerOffKey (void);

4,95 ebdat6 18EnablePowerOffKey

The ebdat6_17EnablePowerOffKey function makes power key as a power key instead of a normal
key.

® Prototype

void ebdat6_18EnablePowerOffKey (void);

4.9.6 ebdatd 15ExitOutOfSleepMode

The ebdat4_15ExitOutOfSleepMode function makes the module go out of sleep mode.

® Prototype

s32 ebdat4_15ExitOutOfSleepMode(void);

® Return values

FL_OK: exit sleep mode successfully.
FL_ERROR: exit sleep mode failed.

SIM900_Embedded AT®_Application Note_V1.01 59 2011.12.30

5

A campany o

) seee
0 asee

Smart Machine Smart Decision

49.7 ebdat4_17EnterSleepMode

The ebdat4_17EnterSleepMode function makes the module go into sleep mode.
Note: Before calling this function, “AT+CSCLK=2" should be sent to the Modem first.

® Prototype

s32 ebdat4_17EnterSleepMode(void);

® Return values

FL_OK: enter sleep mode successfully.
FL_ERROR: enter sleep mode failed.

410 SOCKET API

SOCKET APIs are used for TCP/IP data operation with API forms in the Embedded AT program.
API method is designed to satisfy the customers who used to use API, customers still can use AT
command in Embedded AT of SIM900 to get more powerful APPTCP, FTP, HTTP and TCP/IP
data operation.

4.10.1 ebdatll_10GprsActive

The ebdat1l_10GprsActive function is used to activate gprs bearer.

® Prototype

s32 ebdatll_10GprsActive(u8 *apnName,u8 *user,u8 *pass);

® Parameters

*apnName: The APN of the bearer to be activated, which is 32 bytes long maximum
*user: The user name of the bearer to be activated, which is 32 bytes long maximum
*pass: The password of the bearer to be activated, which is 32 bytes long maximum

® Return values

FL_OK: Legal parameter, start to activate gprs scenario.
FL_ERROR: Illegal parameter or gprs was already activated.

® Related EVENT

SIM900_Embedded AT®_Application Note_V1.01 60 2011.12.30

5

A campany o

) seee
0 asee

Smart Machine Smart Decision

The result of GPRS activation, it will be returned through EVENT_SOCKET among which type
is FL_SOCKET_GPRS_ACTIVE, bsdResult 0 means activation failure, 1 means activation

successful.
4.10.2 ebdatll_15GprsDeactive

The ebdatll_15GprsDeactive function is used to release gprs bearer.

® Prototype

s32 ebdatll_15GprsDeactive(void);

® Return values

FL_OK: Legal parameter, start to release gprs scenario.
FL_ERROR: gprs scenario was not activated and cannot be released.

® Related EVENT

GPRS activation result, it will be returned through EVENT_SOCKET, among which type is
FL_SOCKET_GPRS DEACTIVE, bsdResult 0 means gprs release failure, 1 means release
successful.

Note: If network initiates the release of GPRS scenario, it is also reported through
EVENT_SOCKET, among which type is FL_SOCKET_GPRS_DEACTIVE, bsdResult is 1.

4.10.3 ebdatll 20SocketConnect

The ebdatll_20SocketConnect function sets up TCP andUDP socket.

® Prototype

u32 ebdatll 20SocketConnect(FISocketType e type,u8 *url, ul6 sockPort);

® Parameters

* type: EBDAT_TCP_CONNECT represents TCP, EBDAT_UDP_CONNECT represents UDP.
*url: The remote IP or domain name of the socket
sockPort: The remote port number of the socket

® Return values

Socket id, used for closing, sending and receiving data operation. If it is OXFFFFFFF, it means
setup failed.

SIM900_Embedded AT®_Application Note_V1.01 61 2011.12.30

5Com

oo of S Toch Smart Machine Smart Decision

® Related EVENT

The result of connect, it will be returned through EVENT_SOCKET, among which type is
FL_SOCKET_CONNECT, socket id is the return value of ebdatll 20SocketConnect, bsdResult

0 means socket close failure, 1 means close successful.

4.10.4 ebdatll 25SocketClose

The ebdatll 25SocketClose function is used to close the socket.

® Prototype

s32 ebdatll 25SocketClose(u32 socket,u8 mode);

® Parameters

Socket: Socket id for those to be closed
mode: 0 Close by FIN method
1 Close by RST method

® Return values

FL_OK: Legal parameter, start to close the socket.
FL_ERROR: Socket has not been set up, and can not be closed.

® Related EVENT

The result of close, it will be returned through EVENT_SOCKET, among which type is
FL_SOCKET_CLOSE, socket id is the return value of ebdat11_20SocketConnect, bsdResult 0

means socket close failure, 1 means close successful.

Note: If the connection is closed remotely, the result will be returned through EVENT_SOCKET,
among which type is FL_SOCKET_REMOTE_CLOSE, socket id is the return value of
ebdatll 20SocketConnect.

4.10.5 ebdatll 30SocketSend

The ebdatll 30SocketSend function sends socket data.

® Prototype

s32 ebdat1l_30SocketSend(u32 socket,void *buf_p, ul6 len);

SIM900_Embedded AT®_Application Note_V1.01 62 2011.12.30

5Com

oo of S Toch Smart Machine Smart Decision

® Parameters

Socket: The socket id for those data to be sent
*buf_p: The data pointer to be sent
len: The data length to be sent

® Return values

FL_OK: Legal parameter, start to send data.
FL_ERROR: Parameter error or status error

® Related EVENT

The result of Send, it is returned through EVENT_SOCKET, among which type is
FL_SOCKET_SEND, socket id is the return value of ebdatll 20SocketConnect. If bsdResult is
0 it means send failed, other value represents the length of data received by protocol stack.

Note: It will be used here only when module needs to wait for the return of
FL SOCKET _SEND event after ebdatll 30SocketSend. Generally the return value of
bsdResult in FL_SOCKET_SEND event equals the len parameter of ebdatll 30SocketSend, if
it does not equal or is 0, it means abnormal data sent, user needs to wait for some time then
retry to send data.

4.10.6 ebdatll 35SocketRecv

The ebdatll 35SocketRecv function is used to read socket data.

® Prototype

ul6 ebdatll 35SocketRecv(u32 socket,void *buf_p, ul6 len,ul6 *remain);

® Parameters

socket: Socket id of data to be read

*buf_p: buffer of data to be read

len: max data length to be read

*remain: The data length which can be acquired by this return value when the function is called,
this data length is not an accurate value, the actual data length may be much greater than *remain.

® Return values
The data length when read is successful.

® Related EVENT

SIM900_Embedded AT®_Application Note_V1.01 63 2011.12.30

5

A campany o

) seee
0 asee

Smart Machine Smart Decision

After receiving EVENT_SOCKET, among which type is FL_SOCKET_RECV, socket id is the
return value of ebdatll 20SocketConnect, bsdResult is readable data length. The data can be
acquired by ebdat11_35SocketRecv.

4.10.7 ebdatll_45SocketTcpServerSet

Set up and close tcp server.

® Prototype

S32 ebdatll 45SocketTcpServerSet(u8 mode,ul6 port);

® Parameters

mode: 1 means socket setup successfully, 0 means closing server.
port: Local monitor port, this parameter will not be examined when mode is 0.

® Return values

FL_OK: Legal parameter, which is operating.
FL_ERROR: Parameter error or status error

® Related EVENT

EVENT_SOCKET will be received when Server is successfully setup, among which event type
is FL_SOCKET_TCP_SERVER_START, socket id is the socket id of the server, if bsdResult is

0, it means server setup failed, while 1 means setup is successful.

EVENT_SOCKET will be received when Server is successfully closed, among which Event type
is FL_SOCKET_TCP_SERVER_STOP, socket id is the socket id of the server, if bsdResult is 0,

it means server close failed, while 1 means close is successful.

EVENT_SOCKET will be received when client is connected to server, among which Event type
is FL_SOCKET_TCP_SERVER_CONNECT, socket id is the socket id assigned to this
connection, which equals the return value of ebdatl1l_20SocketConnect. It can be used for closing,
sending and receiving data operation.

SIM900_Embedded AT®_Application Note_V1.01 64 2011.12.30

Com .
Smart Machine Smart Decision

4.11 Error Codes

fl_error.h defines all the error codes API function may return.

Flash related error code

SIM900_Embedded AT®_Application Note_VV1.01 65 2011.12.30

R eomany of S Tech Smart Machine Smart Decision

4.12 Updating Embedded Application

The eatl_09UpdateEmbeddedAp function initiates the embedded application updating procedure.

® Prototype

® Parameters

startlD: The start ID user wants to store the firmware.
idCount: The ID count of the flash objects
0sSize: The total size of the new embedded application

® Return values

FL_OK: System will begin to update the embedded application upon exiting the current

application.
FL_RET_ERR_OVERSIZE: An error occurred during reading flash or when the object size is

bigger than 8K byte.
FL_RET_ERR_UNMATCH: The size of the new application stored on the flash does not match

the parameter 0sSize.

Note: After calling eatl 09UpdateEmbeddedAp, updating process does not start immediately; it
will wait after current application to exit fl_entry().

Example:

SIM900_Embedded AT®_Application Note_VV1.01 66 2011.12.30

Smart Machine Smart Decision

Once fl_entry() exits, the update process will begin.

SIM900_Embedded AT®_Application Note_VV1.01 67 2011.12.30

Com . .
R compaey of St Tech Smart Machine Smart Decision
5 AT+CRWP

Due to the consideration of versatility, AT+CRWP allows developer to pass data in the form of AT
commands. Disregarding ebdat9_03SetModemdataToFL setting, string after “AT” will be passed
to embedded application through EVENT_MODEMDATA, developer can parse the string that
suits their specification.

Following example represents the basic idea of how to parse attached string and apply customer
rules.

Developer can establish their strings parsing rules freely, in this case, it takes three integers after
the char “=", and assign them to variable paral, para2, and para3 accordingly.

The AT command at input terminal can look like:
AT+CRWP=1,2,1, while “AT+CRWP=1,2,1" is passed to embedded application.

SIM900_Embedded AT®_Application Note_VV1.01 68 2011.12.30

R eomany of S Tech Smart Machine Smart Decision

The following table is PIN mapping of SIM900 and SIM900A.

R eomany of S Tech Smart Machine Smart Decision

Appendix B: Example

SIMCom provides some examples such as CSD, FCM, GPIO, HTTP, SMS, SPI, SYSTEM API
and TIMER. In these examples, users can learn how to create their own project and how to write
their own code.

At first user should write user’s own fl_entry() function. fl_entry is the main entrance to the
embedded application. Then user should call eatl_02GetEvent() to get the EVENT from the core
system, as shown below:

User can call ebdat9_01SendToModem () to send an AT command to the core system. And if
user wants to receive the response of the AT command, user should call
ebdat9_03SetModemdataToFL(TRUE) first. The response of the AT command will be received
from eatl_02GetEvent(). The type of EVENT is EVENT_MODEMDATA and user should use
union “modemdata_evt” to get the data. The type of modemdata_evt is MODEM_CMD or
MODEM_CRWP which is “AT+CRWP” command from the core system as shown below:

SIM900_Embedded AT®_Application Note_VV1.01 70 2011.12.30

Smart Machine Smart Decision

If user wants to receive the data from the serial port, user should call the
ebdat9_04SetUartdataToFL(TRUE) to set the UART data which is sent to the application system
instead of the core system. Then if the data are received from the serial port, user calls

eatl 02GetEvent() to get the data from the core system. The type of EVENT is
EVENT_UARTDATA, and user should use union “uartdata_evt” to get the data. If the data are
received from the UART, the type of uartdata_evt will be DATA_SERIAL. If the data are received
from the debug port, the type of uartdata_evt will be DATA DEBUG as shown below:

SIM900_Embedded AT®_Application Note_VV1.01 71 2011.12.30

Smart Machine Smart Decision

SIM900_Embedded AT®_Application Note_VV1.01 72 2011.12.30

Contact us:

Shanghai SIMCom Wireless Solutions Ltd

Add: SIM Technology Building A,

No. 633, Jinzhong Road, Shanghai, P. R. China 200335
Tel: +86 21 3252 3300

Fax: +86 21 3252 3020

URL: www.sim.com

