HT-IDE3000 Programmer's Guide

for Holtek C Language

Verl.l

Copyright © 2003 by HOLTEK SEMICONDUCTOR INC. All rights reserved. Printed in Taiwan.
No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any
form by any means, electronic, mechanical photocopying, recording, or otherwise without the
prior written permission of HOLTEK SEMICONDUCTOR INC.

NOTICE

The information appearing in this document is believed to be accurate at the time of publication.
However, Holtek assumes no responsibility arising from the use of the specifications described.
The applications mentioned herein are used solely for the purpose of illustration and Holtek
makes no warranty or representation that such applications will be suitable without further
modification, nor recommends the use of its products for application that may present a risk to
human life due to malfunction or otherwise.

Holtek reserves the right to alter its products without prior notification. For the most up-to-date
information, please visit our web site at http://www.holtek.com.tw

HOLTEK i ‘ Contents

Contents
[HOLTEK C LANGUAGE ...ttt ettt eneen st esten et en et enss et st seeaneas 1]
[INTRODUCTION ... e e senenseeeeescaencncncnsnseaeacacncnenseseeacas 1
[JC PROGRAM STRUCTURE...........vuiieiiteieee et sesesaces 2
DAL EITIENES ..ttt e e e et e ettt e e ettt e e e tb e e e ettt e e e aateeeeaabteeeatbeeeaattreeeanbeeaaeanbreaeantreeeannres 2
OMIMIEIESiviiee ittt e e ettt e e et e e e ettt e e e ettt e e etteeesatteeeeaateeeesabeeaeanteeeeansteaesasbaeaaasteeeeanseeaesssbeeeeanteeeesnnees 2
[IDENTIFIERScveuveteeee ettt te et teteteeetenteteteeeseseneesenesesaseneesaneasesenn 2
R 3
[IDATA TYPES ...t 3
QLA TYPES AINT SIZES ...ttt ettt ettt ettt et e et et et ettt e ehe bt e e e bentesrearens 3
DB C AT ALION ...ttt e et et eeeab e e etbeeeab e e et b e e ea b e e ehb e e eab e s enrsesabesanrsenre et reenreeres 4
LICONSTANTS ..ottt cee s e ss s et et eeseesesees st et s e nssesessesesesessssnsssnssessscas 5
INEEOET CONSTANTS.......viiii ittt ettt ettt e e ettt e e e et e e e e e tteeaaasteeeeanteeaeasbeeaaanseeeaanresaesnreeeas 5|
N A ACTET CONSIANTS ...ttt e e e e st e e sssesesseesssessaseeensesesssesasessnnsssnsse st ssesnneesnns 5
SEFINO CONSTANTSeiitiiitiiit it ii ittt ettt e et e e s bt eeeteesitseeseeestseesseessseessseessseeensessssesnseessssesssesssessseesses 5
ENUMETAtioN CONSTANTSeiviiitiiiitiiiiti ittt ettt e et e e steeesteeestseeesseestseeasseessreessseessreessreessreessreesses 5
] e T 6
_%rithmetic (o T e S 6
BlATIONAT OPBIALONS ..ottt ettt ettt e et eeeseeabesreanea 6
EQUATTTY ODBIATOTS ..ttt e ettt e sttt e e s eat e e e e eatessssasesaesstseesanessessasenessssssesssnsessessnees 6
L OGICAI OPEIALOIS. ..ttt ettt e bt e et e e st e eetteesteeeenteestbeenneeesteeesnreestreeaseeesees 7
TEWISE OPEIALONS ...vecvveeieteetee ettt et et et e e st aeseeeteeteebeeseeanseanseaneeseenteesseassesseesseesteesseenees 7|
ASSIONMENT OPEIATOIS L..uviiitiiitiiiti ettt e et e s teeeteessbeeassesesteeassessessesnsssessssansssessssensssessssssssessssessseesns 7
Increment and ECIEMENT OPEIATOIScccuuveeiieiiiiieteieeeetiieeseeeiessseeesssseeeessssesesssseseesssssesssesessssseees 7
CONAIEIONAD OPEIALOIS....eiiviiectiiecteeete ettt e e et e e et e e ebeeeeteeeebeeastseeeseeesbreesseeestreesseeesses 8
Lo F o] oL = o P PP PPPTP 8
Precedence and assoCiatiVity Of OPEIATONScouviiuiiiiiiiii ittt e e sareesereessseessreesnreenes 8
T YD CONMVETSIONS. ... ietieeseteeeeeattt e e sttt aeseseteessssessassneeeessssseessnsessesanessessnssesesnssssessnsesesssssssssssessessnees 9
[PROGRAM CONTROL FLOW......c.ooooveoeeeeeeeeeeeeeeeeeeeeeeeeeeeevseeeeeeneneeesenneeeneneesseencncansnensseencncaneneneeencnce 9
I S e 1 e 9
FOI STATEMENTeivii ittt ettt e et e et e e bt e e eteeeeteeeeteeeebseeebeeeatseeateeebeeeasaeebeeesseneseeans 10
S e = T OO 10
O-WHIlE STAEEMENTecviiicieectie ettt e e et e e e teeeetteeeteeeetseeeteeessseesseeesbeeassesensreans 11
break and CONTINUE STATEMENTccuiiiiiiiiei ittt et et e e etreeeteeestbeesaaeesabeesneeereeans 11
ot0 Statement and 1ADEL.............couviiiiiiiiic e rae e 11
BVVIE N ST AN . .. ittt ettt ettt e st e e etteesssee st e esaseessbeeessee s seesssee s beessseeasseesesessseess 12
FUNCTIONSot s et et es e sessesssss s et s sessesesess st et s esensesessessssssssnsssnssesesesas 12
CIASSIC TOMTN L.ttt ettt e et e et e et e e teaeabeeebeaenbeessbaaanseesbeeensesansaesnsseessenensreans 13
IMOderN fO M 13}
POINTERS AND ARRAYSo.oooeieeoeseiessiosseesissssssessssseseesesssssessssemesssssemeesseemeeseesensessesemtesseessssensessssinss 14
P0IBTS ...ttt ettt et e e bt e et e et b e e be e e bt e e bee e bt e e beseabs e e beeerbeeareeerreaas 14
AT TAYS ..ottt ettt e ettt e et e e e ettt e e e ettt eeenteeaeatteeeaantteeeenteeeeantreaeantbeeeaanreeaeannreeeaatrreaans 14
ET%{UCTURES AND UNIONS......vieeieeeeseeeeeseeeeeeeeteesseseesesessesesessesasessesesassnsnsessnsnsansnsnsssensssssnssansnssseneneacs 14
VT T T T 14
OIS ettt e ettt ettt e et b e e s b e e en b e et b e e en b e e st e e en b e e n b e e enre s e beeerreeabeeerreeas 15
PREPROCESSOR DIRECTIVES ... oo 16
IMACTO SUDSTITULION: HOBTINEieiiiiiiiiicie ittt e etbeeeateestbeesraeestbeesbeeereeans 16
22 (0] TP T O O T P T O T PP O T T PP T P TP T PP TP PP PO PP PP PO PPPPPPUPPPPTT 16
Conditional inclusion: #if #1SE HeNdif..........cvviiiiiiiiiic e 16
CoNAItioNal INCIUSION & HOBTvvieceiiiiiiiece ettt et e e e teeestbeesteeenrreaas 17,

HOLTEK i ‘ Content

Conditional iNClUSION = #IfNAET ... 17,
CoNAItIONAl INCIUSION = HEIITcocviiiceiiicieece ettt etee et e e s teeestveesteeeereeaas 18
Conditional inclusion @ defined. ... 18}
LU O T ..ottt ettt e et et e et e et e eateeetn e et te e bee e st e e abse e bt e e bseearseebneenrreaas 18
1€ INCIUSION: HINCIUR ..eiiviiitiiececce ettt et eeebeeeebseesbeeesseesseeesseassesesreens 19
[LANGUAGE EXTENSIONS AND RESTRICTIONS.........c..ouvuvveveeeeeeseeesesesersesessessensnsesnsnsnsssessesensnenencnenenencas 19
LT 19
IVIEMOTY DANK ...ttt ettt ettt reaneenes 19

B UL A0 TY DB ittt ettt e sttt e e ettt e s ettt e s satteeesastesessnsesassssensesssssessnsesessnneneesssssseesas 20
INTINE ASSEMBIY .ttt e et e st e e enteestbeesareestbeeenreestreesnreesnes 20
AL T 0 o PP 21
VATADIES ... ettt e et s et e e st e e st beesabeeeabeeeabesabseerseeabeserreeas 22
SLALIC VaArTADIES. ...ttt e e sb e ebreesreeerreeas 22
CONSTANTS ...ttt e ettt e e ettt e e et e e e e ttreeeeateeeeatbeeeaattreaeebreaearreeeearrreeans 22
FUNCHIONS oo 22
AT TAYS ..o it ie ettt e ettt e oottt e ettt e e et b e e e etteeeetteeeeattseeeants e e nteeeeatseeeeann s s e nteeseeatsseeenreseeanrseeeasrreeeans 22
CONSEANT VAMTADIES ...ttt e e b e e erreeareeerreaas 23

P OINTEE ...ttt ettt ettt e et e e e bt e e bt e e bt e ettt e tee e bteeeteeebteeateeebteebeeerreeateeenrreans 23
T E R [T T T, 23
IMIUTEIDIY/DIVIAER/MOTUIUS ...ttt eneenes 24
BUITEIN FUNCTON oo 25|

O ACK ..ottt ettt ettt e e bt e e bt e e bee e ba e ettt e beeabeeebeeenbeeebeeenbeeabeeebreeateeenrreans 26
IMIXED LANGUAGEccoviiiiieiieieseesetstesetessetststsnstssessssesesesstenssssesesesssesssssssssssssssessssensssenessssens 28|
ITTLE ENDIAN L....ooiiiiiiiii it e oo e e oo e et e e oo s s e ease s e e e e s eassseeemsss s e emmsseseemnsssesnsssseennssssssnnnsss 28
|E AMING RULE OF FUNCTION AND PARAMETERSooiiiuiiiuiiisiissississessessesssseseenssenssensesssssssesnsssnssssenes 28
GIODAI VAITADIEottt ettt b e be bbb snreenreerrears 29

L OCAI VAFTADIE ...ttt ettt ete e ere et e enreenreereeans 29
LN CTION ...ttt eas e er s e et s etbeeh et b et s e heebe e resaresnreenreenseerseans 30
LN CTION PATAMEBIEIS.iiui ittt ittt ettt e iteeeteesesssesaseesseesseessesssesssesseessessseasseassesssenssenseassesssesss 30
PARAMETER PASSINGceiuutiieiitiieeeteee ettt e e ettt e eeetteeeetsteeeeasseeeensseseenssseeensseseeensseeeenssneeesseeeeanssseeanserens 30
RETURN VALUEcceeutiiieeiieeeeeeeeeee et te e et eeeeateeeeeaeeeeeeaseaeeentseeeenaeseseensseeeensseeeennseeas 31
PRESERVING REGISTERS.......cvtivieetieeteeuteeueeeeeeeueeeseeseseeesseeseeeseenseenseassessseessenssensssnssesseesssessenssasesnsesssennes 31
[CALLING ASSEMBLY FUNCTION FROM C PROGRAMcuooiiiiuuiieeeiiieeeeiieeeeieeeeeeeeeeeeaeeeeeeeeeeeaeaeeeenenns 31
[CALLING C FUNCTION FROM ASSEMBLY PROGRAMccuuiiiiiitiieieiiie ettt eeeiie e eeieeeeeiveeeeenseeeeeneneas 32
PROGRAMMING ISR WITH ASSEMBLY LANGUAGEcouviieeeiiieeeeieeeeeeeeeeeeeeeeeeeeeaeeeeaaeeevaaeenenns 34
PROGRAMMING WITH C LANGUAGEc.coovovoveeeieieeeeeeeeeeeveeeseteeeeveeenensenensreneensseseesssens 36|
START A C PROGRAMooiuuiiiiiiiiiiiiitiieiitieeeiteeeestteeeesstseeessesseeessssseessssseesssssseessssseessssssessssseeensssssesssssees 36
DEFINE THE INTERRUPT SERVICE ROUTINES ..o 37
" Peclare the name and address of ISR iN C SOUITE FIIE ..o 37|
Defing the ISR N C SOUICE FIlB......c.uiiiiiiiiiiiiiii ettt e ereesbeesareessbeseseeeas 37
RS ICTION ...ttt ettt ettt e et e e et e et e et e et e e hr e et e e b be e bt e e abe e et b e e beeearreeabreerreeas 37
DEFINE TABLES AND SYMBOLS IN PROGRAM MEMORYeeiiiiiieiiiiieiiiieeeiiteeeeiveeeeiieeeesaireeeenereeeennnens 38
DEFINE VARIABLES IN DATA IMEMORYvviiiiiiie ettt eeetteaeeivtaeeeveaaesetaeaeenereaaennrseeennnsens 40
_'§pecify AQAress 10 8 Variablecoveiiiiiiiiiee e 40
Access Variables in Multiple RAM BaNKS. ..o, 40
Specify Variables In RAM Bank 0 (Improve the Performance)c.coouveevueeiivveeiieiiieeireeicveeennen. 41
Pointer DOUNUAIY ...ttt et e et et a et e et esteestaesteesteereanseanseessenseenes 42
ACCESS TNE LOD AR BIEA. . ooovooroooooosorsoosooooooomooooomoooo oo 42
IMCU SPECIAL FUNCTION REGISTERSuiuiiiiiuiuiuiieieieseseossssesensnsesesasssensnsssssetssnenenenssesssetssenenenesess 43
ACCESS the TUNCEION FTOOISIEISvviieieeiiis i eeiee ettt e e ettt e e sttt e e eeattsessserasssssessssssessssasesesssssssessseseessas 43
ACCESS TN 1O PONTS .ttt ettt e et e e et e et eeeteeebveeeteeeetseeateeesseesseeeseeansesensreans 45|
BUILT-IN FUNCTIONS ... eeeseesessesetssessessesseseesestaseastseaetastmet st eeaeseaenetsetsentestenstsensenisnisss 45
IASSEMDIY-1ike DUITE-IN fUNCLIONSeeeieieieeeseiereseseeeeerersressesceeeeseresesseseseseacsesessssereeesesenesesessesesererereses 46

HOLTEK i ‘ Contents

Eotate FUNCLIONS ...ttt seses s sasesessesesssssnsssnsnsassnsnsassesnsessnssssssesnsssssenensssssssssssnsnssssess 4§|
WAD TUNCTION. ...ttt ettt e et et e e bt e et eeebeeseteeaabeeebeaansseebeeenseeanseesnrseenreesnrseanrenssres 47
Eelay CYCIe FUNCHION. o 47
ROGRAMMING TIPSoiuiiiiiiiiiiiieiee oo e oot e oot e et eeeeaeseseeasssesesassseesassssssnssesesnsssessasssssssns 48
Declare variables as UNSIGNEd JATA TYPEccvuueiiieeiiiieiie ettt eeie e st e e seteeesseterassssserassssensen 48
Declare variables to be Within RAM DaNK Occ.veiiuiiiiuiiiiiiiiiiicieecie e eve e 48
Declare a variable to be Bit YD ettt ettt e e teere e reatreaneeareereenreeneenreenes 49
S T e [I N o = 50)

Get the modulus by more effective METhOOoocuuviiiceiiiiiiieeeiee ettt eee e s sie e 50
Constant value CONVEISION / CASTINGc.ueecuviivieeeiieictieeetieeetieeeteeeetieeetveeeteeeetveeeteeestreesteeessreesseeesseeans 52
BERIAL PORT TRANSMITTING EXAMPLEcoovovivieievevevvererereeeeeeeeeeeesesesesesenssesessesesessesesesesenesessnsneececes 53

P I iMINGIY PrOOIAM ... uuiiiiiiii ittt e ettt esteeeitteessseessseessseesssesssseessseessseessssessseesssesssesesseens 53
AAJUSE TraNSMITEING TIMING .vveeeieiiiiieiiceceiee ettt settt e e sttt e e e etttsessaeesessaseeessssessesasessessssssessseseessns 54
AC]USE 10 MEEE the BAUD RALEcuvveceviiiiie ettt s et e e te e e baeebeeeebeeereens 55
SKELETON PROGRAM EXAMPLEcccuvviiiiiiiee ettt eett e eettaaeeivtaeanereaaeeatsesesneseaeannssesesnnsens 56
IDATA TYPE.....oiiiiiiiiiiiiii oot e oottt e et e e s eeeesesseessssesesassseseassseesassssesesssssseassssssnssssssssnses 57

| R 57

| SN N = 59|
[[ﬂ%UT/OUTPUT APPLICATIONS ...ttt e et e et e e e et e e e et eeeeateaeeeteeeeeeaeeaeaenreeaens 59
CANMING LIGNE oo 59
[TEAFTIC LIONT . .eiviiiieiiieei ettt ettt e st e e st e e sbeeesbesasseeebesssesansesssessnsessssesssesessesesresans 60
KEYDOAIT SCANNEE ...ttt ettt ettt et e et e eabestbeetbestaesteesbeesreereanseensessseassenss 62
OV ooooooooooooooeeoesoeeeemsoeeeeesseeeeessreeeerseeeeensoeeeesseeeersreeeerseeeerseeeerneeeeerseeeerneeeeeseeeeeeeeeeereeeees 65|
Using an I/O Portas a Serial AppHCAtion ..o 68
[NTERRUPT AND TIMER/COUNTER APPLICATIONS.c.vveeeieieeeeueiesosaesessensesesesasasasesesesesessnsnencncncncncas 70
ELECTIIC PHANO ...ttt ettt et e et e st e ebbesbeebeesbeesbessseabseabsebesnseenseenseenseses 70
ST 73

HDLTEKi ‘ Chapter 1 Holtek C Language

Chapter 1
Holtek C Language

Introduction

The Holtek C compiler is based on ANSI C. Due to the architecture of the Holtek
micro-controller, only a subset of ANSI C is supported. This chapter describes the C
programming language supported by the Holtek C compiler. They will apply to both
types of compilers if there is no special mention.

This chapter covers the following topics:
C program structure

Identifiers

Data types

Constants

Operators

Program control flow

Functions

Pointers and arrays

Structures and unions
Preprocessor directives
Language extensions and restrictions

HDLTEKi ‘ HT-IDE3000 Programmer’s Guide for Holtek C Language

C Program Structure

A C program is a collection of statements, comments, and preprocessor directives.

Statements

Statements, which may consist of variables, constants, operators and functions, are
terminated with a semicolon and perform the following operations:

® Declare data variables and data structures

e Define data space

® Perform arithmetic and logical operations

® Perform program control operations

One line can contain more than one statement. Compound statements are one or more
statements contained within a pair of braces and can be used as a single statement. Some
statements and preprocessor directives are required in the Holtek C source files. The
following is a shell:

voi d main()

/* user application source code */

The main function is defined within the user application source code. There may be
more than one source file for an application, but only one source file can contain the
main function.

Comments

Comments are used to document the meaning and operation of the source statements and
can be placed anywhere in a program except for the middle of a C keyword, function
name or variable name. The C compiler ignores all comments. Comments cannot be
nested. The Holtek C compiler supports two kinds of comments, block comment and
line comment.

= Block comment
The block comment begins with /* and ends with */, for example:

/* this is a block comment */

A block comment's end character */ may be placed in a different line from the beginning
block comment characters. In this case all the characters between the starting comment
characters and end comment characters, are treated as comments and ignored by the C
compiler.

= Line comment

A line comment begins with // and comments out all characters to the end of the line, for
example

// this is a |line comment
Identifiers

The name of an identifier contains a sequence of letters, digits, and under scores with the
following rules:
e The first character must not be a digit.

2

HDLTEKi ‘ Chapter 1 Holtek C Language

® Only the first 31 characters are significant.
e Upper case and lower case letters are different.
® Reserved words cannot be used.

Reserved words

The following are the reserved words supported by the Holtek C complier. They must be
in lower case.

auto bit break case char
const continue default do else
enum extern for goto if

int long return short signed
static struct switch typedef union
unsigned void volatile while

The reserved words double, float and register are not supported by the Holtek C
compiler.

Data types

Data types and sizes
Four basic data types are supported by the Holtek C compiler,

bi t a single bit

char a single byte hol ding one character

i nt an i nteger occupying one byte

voi d an enpty set of val ues, used as the type returned

by functions that generate no val ue

The following qualifiers are allowed

Qualifier Applicable Data Type Use

const any place the data in a ROM space
long int create a 16-bit integer

short int create an 8-bit integer

signed char, int create a signed variable
unsigned char, int create an unsigned variable

HDLTEKi ‘ HT-IDE3000 Programmer’s Guide for Holtek C Language

The following are the data types, sizes and range

Data Type Size (bits) Range

bit 1 0,1

char 8 -128 ~ 127
unsigned char 8 0~255
short int 8 -128 ~ 127
unsigned short int 8 0~255

int 8 -128 ~ 127
unsigned 8 0~255
long 16 -32768 ~ 32767
unsigned long 16 0~ 65535
Declaration

Variables must be declared before being used as this defines the data type and the size of
the variable. The syntax of variable declaration is:

data_type variable_name [,variable_name...];

where data_type is a valid data type and variable_name is the name of the variable. The
variables declared in a function are private (or local) to that function and other functions
cannot access these variables directly. The local variables in a function exist and are
valid only when this function is called, and are non-valid when exiting from the function.
If the variable is declared outside of all functions, then it is global to all functions.

The qualifier const can be applied to a declaration of any variable, to specify that the
value of the variable will not be changed. The variables declared with const are placed
within the ROM space. The const qualifier can be used in array variables. A const
variable must be initialized upon declaration, followed by an equal sign and an
expression. Other variables cannot be initialized when declared.

A variable can be declared in a specified RAM address by using the @ character; the
syntax is:
data_type variable_ name @ memory_location ;

The memory_location specifies the address variable located. To allocate a variable
above the RAM bank 0 in the multiple RAM banks MCU, you might specify the bank
no. in the high byte of memory_location. You should check the data sheet of the Holtek
MCU s to get the information of the available RAM space.

For example:

int vl @0x40; // declare vlinthe RAMbank O of f set 0x40
int v2 @0x160;// declare v2 in the RAMbank 1 of f set 0x60

Also, an array can be declared in a specified location:

int port[8] @O0x20; // array port takes menory | ocation
/1 0x20 through 0x27

All variables implemented by the Holtek C compiler are static unless they are declared
as external variables. Note that both static and external variables will not be initialized

HDLTEKi ‘ Chapter 1 Holtek C Language

to zero by default.

Note: Declaring a variable as unsigned type will get more efficient code than as signed.

Constants

A constant is any literal number, single character or character string.

Integer constants

An integer constant is evaluated as int type, a long constant is terminated with 1 or L.
Unsigned constants are terminated with a u or U, the suffix ul or UL indicates unsigned
long. The value of an integer constant can be specified with the following forms:

Binary constant: preceding the number by Ob or 0B

Octal constant: preceding the number by 0 (zero)

Hexadecimal constant: preceding the number by 0x or 0X

Others not included above are decimal

Character constants

A character constant is an integer, which is denoted by a single character enclosed by
single quotes. The value of a character constant is the numeric value of the character in
the machine s character set. ANSI C escape sequences are treated as a single character

constant.

Escape Character Description Hex Value
\a alert (bell) character 07
\b backspace character 08
\f form feed character 0C
\n new line character 0A
\r carriage return character 0D
\t horizontal tab character 09
\v vertical tab character 0B
\ backslash 5C
\? question mark character 3F
\ single quote (apostrophe) 27
\! double quote character 22

String constants

String constants are represented by zero or more characters (including the ANSI C
escape sequences) enclosed in double quotes. A string constant is an array of characters
and has an implied null (zero) value after the last character. Hence, the total required
storage is one more than the number of the characters within the double quotes.

Enumeration constants

Another method for naming integer constants is called enumeration. For example:

HDLTEKi ‘ HT-IDE3000 Programmer’s Guide for Holtek C Language

enum { PORTA, PORTB, PORTC} ;
defines three integer constants called enumerators and assigns values to them.

The enumeration constants have type int (-128~127). An explicit integer value might be

associated with an enumberation constants. For example,
enum { Bl G=10, SMALL=20} ;

The first enumeration constant has the value 0 if no explicit value is specified.
Subsequent enumeration constants without explicit associations receive an integer value
one greater than the value associated with the previous enumeration constant.

An enumeration can be named. For example:

enum boolean {NO, YES};

The first name (NO) in an enum statement has the value 0, the next has the value 1.

Operators

An expression is a sequence of operators and operands that specifies a computation. An
expression follows the rules of algebra, may result in a value and may cause side effects.
The order of evaluation of subexpressions is determined by the precedence and grouping
of the operators. The usual mathematical rules for associativity and commutativity of
operators may be applied only where the operators are really associative and
commutative. The different types of operators are discussed in the following.

Arithmetic operators

There are five arithmetic operators,

+ addition

- subtraction

* multiplication

/ division

% modulus (the remainder of division, always positive or zero)

The modulus operator %, can only be used with integral data types.

Relational operators

The relational operators compare two values and return either a TRUE or FALSE result
based on the comparison.

> greater than

>= greater than or equal to
< less than

<= less than or equal to

Equality operators

The equality operators are exactly analogous to the relational operators

== equal to
1= not equal to

HDLTEKi ‘ Chapter 1 Holtek C Language

Logical operators

The logical operators support the logical operations AND, OR and NOT. They create a
TRUE or FALSE value. Expressions connected by && and || are evaluated from left to
right. The evaluation stops as soon as the result is known. The numeric value of a
relational or logical expression is 1 if the relation is true, and 0 otherwise. The unary
negation operator ! converts a non-zero operand into 0 and a zero operand into 1.

&& logical AND
I logical OR
! logical NOT

Bitwise operators

There are six operators for manipulating bit-by-bit operations. The shift operators >>
and << perform the right and left shifts of the left operand by the number of bit positions
given by the right operand, which must be positive. The unary ~ yields the one's
complement of an integer, converts every 1-bit to a 0-bit and vice versa.

& bitwise AND

| bitwise OR

A bitwise XOR

~ one's complement
>> right shift

<< left shift

Assignment operators

There are a total of 10 assignment operators for expression statements. For simple
assignment, the equal sign is used with the value of the expression replacing the variable,
in the left operand. This also provides a shortcut for modifying a variable by performing
an operation on itself.

<var> + = <expr> add the val ue of <expr> to <var>
<var> - = < expr> subtract the value of <expr> from <var>
<var> * = <expr> multiply <var> by the val ue of <expr>
<var> |/ = <expr> divide <var> by the val ue of <expr>
<var> % = <expr> nodul us, renmi nder when<var>i s divided

by <expr>
<var> & = <expr> bitwi se AND <var> with the val ue of <expr>
<var> | = <expr> bitwise OR <var> with the value of <expr>
<var> N = <expr> bitwi se XOR <var> with the val ue of <expr>
<var> >> = <expr> right shift <var> by <expr> positions
<var> << = <expr> left shift <var> by <expr> positions

Increment and decrement operators

The increment and decrement operators can be used in a statement by themselves, or can
be embedded within a statement with other operators. The position of the operator
indicates whether the increment or decrement is to be performed before (prefix operators)
or after (postfix operators) the evaluation of the statement it is embedded within.

++ <var> pre-increnent
<var > ++ post -i ncrenent

HDLTEKi ‘ HT-IDE3000 Programmer’s Guide for Holtek C Language

- -<var> pr e- decr enent
<var>- - post - decr enent

Conditional operators

The conditional operator ?: is a shortcut for executing a statement between two
selectable statements according to the result of the expression.

<expr> ? <statement1l> : <statenent2>

If <expr> evaluates to a nonzero value, <statementl> is executed. Otherwise,
<satement2> is executed.

Comma operator

A pair of expressions separated by a comma is evaluated from left-to-right and the value
of the left expression is discarded. All side effects of the left expression are performed
before the evaluation of the right expression. The type and value of the result are the
type and value of the right operand. For example,

f(a, (t=3,t+2),¢);

has three arguments, the second of which has the value 5.

Precedence and associativity of operators

The following table lists the precedence and associativity of operators. The precedence
is from the highest to the lowest. Each box holds operators with the same precedence.
Unary and assignment operators are right associative, all others are left associative.

Operators Description Associativity
[1 subscription left to right
0 parenthesis

-> structure pointer

. structure member

sizeof size of type

++ increment right to left
-- dcrement

~ complement

! not

- unary minus

+ unary plus

& address of

* dereference

* multiply left to right
/ divide

% modulus (remainder)

+ add (binary) left to right

- subtract (binary)

<< shift left left to right

8

HDLTEKi ‘ Chapter 1 Holtek C Language

>> shift right

< less than

<= less than or equal to

> greater than

>= greater than or equal to

== equal left to right
1= not equal

& bitwise AND

A bitwise XOR (exclusive OR)
| bitwise OR

&& logical AND

I logical OR

? conditional expression

= simple assignment right to left
*= multiply and assign

= divide and assign

%= modulus and assign

+= add and assign

= subtract and assign

<<= left shift and assign

>>= right shift and assign

= bitwise AND and assign
= bitwise OR and assign
A= bitwise XOR and assign

s comma left to right

Type conversions

The general rule for type conversion is to convert a "narrower" operand into a "wider"
one without losing information, such as converting an integer into a long integer. The
conversion from char to long is sign extension. Explicit type conversion can be forced
in any expression, with a unary operator called a cast. In the example:

(type-name) expression

the expression is converted to the named type

Program Control Flow

The statements in this section are used to control the flow of execution in a program.
The use of relational and logical operators with these control statements and how to
execute loops are also described.

if-else statement
e Syntax
if (expression)
statementl;
[else
statement2;

HDLTEKi ‘ HT-IDE3000 Programmer’s Guide for Holtek C Language

]

® Description

The if-else statement is a conditional statement. The block of statements executed
depends on the result of the condition. If the result of the condition is nonzero, the
block of its associated statements is executed. Otherwise, the block of statements
associated with the else statement is executed if the else block exists. Note that the
else statement and its block of statements may not exist as it is optional.

e Example
if (word_count > 80)

wor d_count =1;
i ne++;

}

el se
wor d_count ++;

for statement
e Syntax
for (initial-expression; condition-expression;
update-expression) statement;
The initial-expression is executed first and only once. It is used to assign an initial
value to a loop counter variable. This loop counter variable must be declared before
the for loop. The condition-expression is evaluated prior to each execution of the
loop. If the condition-expression is evaluated to be nonzero, the statement in the loop
is executed. Otherwise, the loop exits and the first statement encountered after the
loop is executed next. The update-expression executes after the statement of the loop.

e Description
The for statement is used to execute a statement or block of statements repeatedly.
e Example
for (i=0;i<10;i ++)

a[i]=b[i]; // copy elenents froman array
/1l to another array

while statement
e Syntax
while (condition-expression)
statement;
® Description
The while statement is another kind of loop. When the condition- expression is
nonzero, the while loop executes the statement. The condition-expression is checked
prior to each execution of the statement.

e Example

i =0;
while (b[i] !=0)

a[i]=b[i];
i ++;

10

HDLTEKi ‘ Chapter 1 Holtek C Language

do-while statement
e Syntax
do
statement;
while (condition-expression);
® Description
The do-while statement is another kind of while loop. The statement is always
executed before the condition-expression is evaluated. Hence, the statement executes
at least once, then checks the condition-expression.

e Example

i =0;
do

ali]=b[i];
i ++;
twhile (i<10);

break and continue statement
e Syntax

break;
continue;

® Description
The break statement is used to force an immediate exit from while, for, do-while
loops and switch. The break statement bypasses normal termination and returns
control to the previous nesting level if a break occurs within a nested loop.

The continue statement orders the program to skip to the end of the loop and begins
the next iteration of the loop. In the while and do-while loops, the continue
statement forces the condition-expression to be executed immediately. In the for loop,
control passes to the update-expression.

e Example

char a[10],b[10],i,];
for (i=j=0;i<10;i++)// copy data fromb[] to a[],
/1 skip bl anks

if (b[i]==0) break;
if (b[i]==0x20) continue;
a[j ++] =b[i];

goto statement and label
e Syntax

goto label;
e Description

A label has the same form as a variable name, but followed by a colon. The scope of
a label is the entire function.

e Example
See the switch statement example

11

HDLTEKi ‘ HT-IDE3000 Programmer’s Guide for Holtek C Language

switch statement

Functions

Syntax
switch (variabl e)
{
case constant 1:
st at enent 1;
br eak;
case constant 2:
st at enent 2;
goto Label 1;
case const ant 3:
st at enent 3;

br eak;
defaul t:
st at enent ;
Label | : st at enent4;
br eak;

}

The switch variable is tested against a list of constants. When a match is found, the
statements with that constant are executed until a break statement is encountered. If
no break statement exists, execution flows through the rest of the statements until the
end of the switch routine. If no match is found, the statements associated with the
default case are executed. The default case is optional.

Description

The if-else statement can be used to select between a pair of alternatives, but becomes
cumbersome when many alternatives exist. The switch statement is an alternative
multi-way decision method that evaluates if an expression matches one of many
alternatives, and branches accordingly. It is equivalent to multiple if-else statements.
The switch statement's limitation is that the switch variable must be an integral data
type, and can only be compared against constant values.

Example
for (i=j=0;i<10;i ++)
switch (b[i])
{

case 0: goto outl oop;
case 0x20: break;

defaul t:
a[j]=b[i];
|+t
br eak;

}
out | oop:

In the C language, all executable statements must reside within a function. Before a
function is used or called, it must be either defined or declared, otherwise a warning
message will be issued by the C compiler. Two syntax forms, namely classic and
modern, are supported for function declaration and definition. Unlike the variable, there
is no need and no way to assign a function in a specific bank for the MCU having
multi-bank of ROM. The linker will locate functions into a appropriate ROM bank.

12

HDLTEKi ‘ Chapter 1 Holtek C Language

Classic form

return-type function-name (argl, arg2,...)
var-type argl;
var-type arg2;

Modern form

return-type function-name (var-type argl, var-type arg2, ...)

In both forms, the return-type is the data type of the function returned value. If functions
do not return values, then return-type must be declared as void. The function-name is
the name of this function and is equivalent to a global variable of all other functions.
The arguments, argl, arg2 etc, are the variables to be used in this function. Their data
type must be specified. These variables are defined as formal parameters to receive
values when the function is called.

= Function declaration

// classic form

return-type function-name (argl, argz, ...);

// modern form

return-type function-name (var-type argl, var-type arg2,...);

= Function definition

// classic form

return-type function-name (argl, argz, ...)
var-type argl;

var-type arg2;

{

statements;

}

// modern form
return-type function-name (var-type argl, var-type arg2, ...)

{

statements;

}

= Passing arguments to functions

There are two methods for passing arguments to functions.

e Pass by value.
This method copies the argument values to the corresponding formal parameters of
the function. Any changes to the formal parameters will not affect the original values
of the corresponding variables in the calling routine.

® Pass by reference.

In this method, the address of the argument is copied to the formal parameters of the
function. Within the function, the formal parameters can access the actual variables
within the calling routine. Hence, changes to the formal parameters can be made to
the variables.

= Returning values from functions

By using the return statement, a function can return a value to the calling routine.
The returned value must be of a data type specified within the function definition. If

13

HDLTEKi ‘ HT-IDE3000 Programmer’s Guide for Holtek C Language

return-type is void, it means no return value, therefore no value should be in the
return statement. When a return statement is encountered, the function returns
immediately to the calling routine. Any statements after the return statement are not
executed.

Pointers and Arrays

Pointers

A pointer is a variable that contains the address of another variable. For ex-ample, if a
pointer variable, namely varpoint, contains the address of a variable var, then varpoint
points to var. The syntax to declare a pointer variable is

data-type *var_name;

The data-type of a pointer is a valid C data type. It specifies the type of variable that
var_name points to. The asterisk (*) prior to var_name tells the C compiler that
var_name is a pointer variable. Two special operators, the asterisk (*) and ampersand
(&), are associated with pointers. The address of a variable can be accessed by
preceding this variable with the & operator. The * operator returns the value stored at
the address pointed to by the variable.

In addition to * and &, there are four operators that can be applied to the pointer
variables: +, ++, -, --. Only integer quantities may be added or subtracted from pointer
variables. An important point to remember when performing pointer arithmetic is that
the value of the pointer is adjusted according to the size of the data type it is pointing to.

Arrays

An array is a list of variables that are of the same type and which can be referenced by
the same name. An individual variable in the array is called an array element. The first
element of an array is defined to be at an index of 0 and the last element is defined to be
at an index of the total elements minus one. C stores one-dimensional arrays in
contiguous memory locations. The first element is at the lowest address. C does not
perform boundary checking for arrays.

Assignment from an entire array to another array is not allowed. To copy, each
individual element must be copied one by one from the first array into the second array.
Any array element can be used anywhere a variable or a constant can be used.

Structures and Unions

Structures
e Syntax

struct struct-name

{

data-type memberl;
data-type member2;

data-type membern;

} [variable-list] ;
e Description

14

HDLTEKi ‘ Chapter 1 Holtek C Language

A structure is a collection of one or more variables, possibly of different types,
grouped together under a single name for convenient handling. Structures may be
copied and assigned to, passed to functions and returned by functions. C allows bit
fields. Nested structures are also allowed.

The reserved word struct indicates a structure is to be defined while struct-name is
the name of the structure. Within the structure, data-type is one of the valid data types.
Members within the structure may have different data types. The variable-list
declares variables of the type struct-name. Each item in the structure is referred to as
a member.

After defining a structure, other variables of the same type are declared with the
following syntax:
struct struct-name variable-list;

To access a member of a structure, specify the name of the variable and the name of
member separated by a period. The syntax is

variable.memberl
where variable is the variable of structure type and memberl is a member of the
structure. A structure member can have a data type with a previously defined
structure. This is referred to as a nested structure.

Example
struct person_id

char id_nuni6];

char nane[3];

unsi gned | ong birth_date;
} mark;

Unions

Syntax

union union-name

{
data-type memberl;
data-type member2;

data-type memberm;
} [variable-list] ;
Description

Unions are a group of variables of differing types that share the same memory space.
A union is similar to a structure, but its memory usage is very different. In a structure,
all the members are arranged sequentially. In a union, all members begin at the same
address, making the size of the union equal to the size of the largest member.
Accessing the members of a union is the same as accessing the members of a
structure. union is a reserved word and union-name is the name of the union. The
variable-list, which is optional, contains the variables that have the same data type as
union-name.

Example
uni on common_ar ea

char nane[3];

15

HDLTEKi ‘ HT-IDE3000 Programmer’s Guide for Holtek C Language

int id;
| ong dat e;
} cdat a;

Preprocessor Directives

The preprocessor directives give general instructions on how to compile the source code.
It is a simple macro processor that conceptually processes the source codes of a C
program before the compiler properly parses the source program. In general, the
preprocessor directives do not translate directly into executable code. It removes
preprocessor command lines from the source file and expands macro calls that occur
within the source text and adds additional information, such as the #line command, on
the source file. The preprocessor directives begin with the # symbol. A line that begins
with a # is treated as a preprocessor command, and is followed by the name of a
command. The following are the preprocessor directives:

Macro substitution: #define
e Syntax
#define name replaced-text
#define name [(parameter-list)] replaced-text
® Description
The #define directive defines string constants that are substituted into a source line
before the source line is evaluated. The main purpose is to improve source code
readability and maintainability. If the replaced-text requires more than one line, the
backslash (V) is used to indicate multiple lines.

e Example

#defi ne TOTAL_COUNT 40

#def i ne USERNANME "Henry"
#def i ne MAX(a, b) (((a)>(b))?(a): (b))
#def i ne SWAP(a, b) {int tnp; \
tmp=a; \
b=a; \
a=tmp; }
#error
e Syntax

#error message-string
® Description

The #error directive generates a user-defined diagnostic message, message-string.

e Example

#if TOTAL_COUNT > 100
#error "Too many count."
#endi f

Conditional inclusion: #if #else #endif
e Syntax
#if expression
source codesl
[#else
source codes2]
#endif

16

HDLTEKi ‘ Chapter 1 Holtek C Language

® Description

The #if and #endif directives pairs are used for conditionally compiling code
depending upon the evaluation of the expression. The #else which is optional
provides an alternative compilation method. If the expression is nonzero, then the
source codesl will be compiled. Otherwise, the source codes2, if it exists, will be
compiled.

e Example

#def i ne MODE 2
#if MODE > O

#def i ne DI SP_MODE MODE
#el se

#defi ne DI SP_MODE 7
#endi f

Conditional inclusion : #ifdef
e Syntax

#ifdef symbol

source codesl

[#else

source codes2]

#endif
e Description

The #ifdef directive is similar to the #if directive, except that instead of evaluating
the expression, it checks if the specified symbol has been defined or not. The #else
which is optional provides alternative compilation. If the symbol is defined, then the
source codesl will be compiled. Otherwise, the source codes2, if it exists, will be
compiled.
e Example
#i f def DEBUG_MODE

#defi ne TOTLA COUNT 100
#endi f

Conditional inclusion : #ifndef
e Syntax

#ifndef symbol

source codesl

[#else

source codes2]

#endif
® Description

The #ifndef directive is similar to the #ifdef directive. The #else which is optional
provides alternative compilation. If the symbol has not been defined, then the source
codesl will be compiled. Otherwise, the source codes2, if it exists, will be compiled.

e Example
#i f ndef DEBUG_ MODE

#def i ne TOTAL_COUNT 50
#endi f

17

HDLTEK#

Conditional inclusion : #elif
e Syntax

#if expressionl

source codesl

#elif expression2

source codes2

[#else

source codes3]

#endif
® Description

HT-IDE3000 Programmer’s Guide for Holtek C Language

The #elif directive is accompanied with the #if directive. It provides other
compilation conditions in addition to the usual two. If the expressionl is nonzero,
then the source codesl will be compiled. If expressionl is zero, then expression2 is
checked to see if it is nonzero. If so then the source codes2 will be compiled.

Otherwise, the source codes3, if it exists, will be compiled.

e Example

#i f ==1

#define DI SP_MODE 1
#el i f ==2
#define DI SP_MODE 7
#endi f

Conditional inclusion : defined
e Syntax

#if defined symbol

source codesl

[#else

source codes2]

#endif
e Description

The unary operator defined can be used within the directive #if or #elif.

A control line of the form
#ifdef symbol

is equivalent to
#if defined symbol

A line of the form
#ifndef symbol

is equivalent to

#if 1defined symbol

e Example
#i f defined DEBUG MODE
#def i ne TOTAL_COUNT 50

#endi f
#undef
e Syntax

#undef symbol
® Description

The #undef directive causes the symbol's preprocessor definition to be erased. Once
defined, a preprocessor symbol remains defined and in scope until the end of the

18

HDLTEKi ‘ Chapter 1 Holtek C Language

compilation unit or until it is undefined using an #undef directive.

e Example
#defi ne TOTAL_COUNT 100

#undef TOTAL_COUNT
#define TOTAL COUNT 50

File inclusion: #include
e Syntax
#include <file-name>
or
#include “file-name”
® Description
#include inserts the entire text from another file at this point in the source file. When
<file-name> is used, the compiler looks for the file in the directory specified by the
environment variable INCLUDE. If the INCLUDE is not defined, the C compiler
looks for the file in the path. When “file-name” is used, the C compiler looks for the
file as specified. If no directory is specified, the current directory is checked.
e Example

#i ncl ude <ht 48c10-1. h>
#i ncl ude "ny. h”

Language Extensions and Restrictions

Holtek C language provides a number of extensions for ANSI C. Most of these provide
support for elements of the Holtek microcontroller architecture. Due to the limited
resource of the microcontroller, there are also some restrictions you should take care.

Keywords
The following is a list of the keywords available in Holtek C.

@ bit norambank rambank(vector

The following keywords and qualifiers are not supported:
double float register

Memory bank

For variables located in high banks (not bank 0), they should be accessed through
indirect addressing mode. To achieve the efficiencies, you might locate the most used
variables in Ram bank 0. The Holtek C provides you a rambank0 keyword to declare
variables in bank 0.
e Syntax

#pragma rambankO0

//data declarations

#pragma norambank
® Description

The rambankO keyword directs the compiler to declare subsequent variables to
locate in Ram bank 0 until the norambank keyword meets. For the single Ram bank

19

HDLTEKi ‘ HT-IDE3000 Programmer’s Guide for Holtek C Language

MCU, these two keywords will be ignored.

e Example
#pragma ranmbankO

unsigned int i, j; /11, j located in Ram bank 0
| ong | en; //1en located in Ram bank 0
#pragma nor anbank
unsigned int iflag; [1iflag's bank nunber i s unknown
#pragma ranbankO
int tnp; [/tnp located in Ram bank 0
i =1 [ITMOV AL

[ITMOV i, A
iflag = 1; [1TMOV A BANK _iflag

[IMOV [04H, A

/I MOV A, OFFSET _iflag

/I MOV [0O3H], A

[ITMOV AL

[IMOV [02H], A

Bit data type

Holtek C provides you with a bit data type which may be used for variable declarations,
argument lists, and function return values. A bit variable is declared just as other C data
types are declared. For the MCU supports multiple RAM banks, you should declare the
bit variables in the RAM bank 0 (using #pragma rambank0) area.

e Example

#pragma ranmbankO

bit test _flag; [Ibit var should locate in ranbankO
bit testfunc(/1bit function
bit f1, [Ibit arguments
bit f2)
{
.r.eiurn 0; [/return bit value
}

® Restriction

— To get the benefit of the bit data type, it is not recommended to declare a
bit array variable.

— There is no bit pointer.

— There is no bit data type member in a structure declaration.

Inline assembly
e Syntax
#asm
< [label:] opcode [operands] >

#endasm
e Description

The #asm and #endasm are the inline assembly preprocessor directives. The #asm

20

HDLTEKi ‘ Chapter 1 Holtek C Language

directive inserts Holtek's assembly instruction(s) after this directive (or within the
directive #asm and directive #endasm) into the output file directly.

e Example
/'l convert | ow ni bble value in the accunul ator to ASCI |

#asm
; this is an inline assenbly coment
and a, Ofh
sub a, 09h
sz ¢
add a, 40h-30h-9
add a, 30h+9
#endasm
Interrupts

The Holtek C language provides a means for implementing interrupt service routines
(ISRs) through the preprocessor directive #pragma. The directive #pragma vector is
used to declare the name and address of the ISRs. Any function declared later with the
same name as defined with #pragma vector is the ISR for the vector. The return
statement within the ISR generates a RETI instruction.
e Syntax
#pragma vector symbol @ address
e Description
symbol is the name of the interrupt service routine.
address is the interrupt address. The reset vector (address 0) is reserved for main
function and therefore cannot be used.
® Restriction

There are five restrictions to keep in mind when writing an ISR.
— There is no parameter for ISR; the return type is void.
— The ISR is not reentrant. Do not enable the interrupt in the ISR.
— Do not call the ISR explicitly in your programs. It should always be
invoked implicitly by the system while the interrupt coming.

— Do not call the user defined function written in C within the ISR. It is safe
to use the system calls. If a function has to be called within the ISR then it
should be written in assembly. It is safety to call the built-in functions in
the ISR.

— It is the user's responsibility to preserve the affected registers when they
are used in inline assembly in the ISR. The Holtek C compiler will only
preserve the affected registers written in the C statements.

e Example
#pragma vector timer0 @ 0x8

extern void ASM FUNCTI ON();
voi d setbusy(){

}
void timer0(){

ASM FUNCTI ON(): //The ASM FUNCTI ON shoul d be
/1 an assenbly function

21

HDLTEKi ‘ HT-IDE3000 Programmer’s Guide for Holtek C Language

_del ay(3); [1OK. built-in function
set busy(); /1 Wong! do not call C function
Variables

The operator '@' can be used to specify the address of variables in the data memory.
e Syntax

data_type varaible_name @ memory_location
e Description

The memory_location specifies the address variable located. For single bank of
RAM/ROM, the memory_location is one byte. For multiple banks of RAM/ROM, the
memory_location is two bytes, the high byte is the bank number. You should check the
data sheet of the Holtek MCUs to get the information of the available RAM space.

e Example
int vl @Ox5B; // declare vl inthe RAMbank O of f set 0x5B
int v2 @0x2F0;//declare v2 in the RAMbank 2 of f set 0xFO

Static Variables

Holtek C supports file scope static variables while local static variables does not.
e Example

static int i; // file scope static
void f1(){
i =1; //XK
}
void f2(){

static int j; //Wong. local static variable
/1 is not supported

Constants

Holtek C supports binary constants. Any string that begins with Ob or 0B will be treated
as a binary constant.

For example:

0b101= 5
Ob1110= 14

Functions
Avoid using reentrant and recursive code.

Function can not return a structure data type.

Arrays

An array should be located in a contiguous block of memory and must not have more
than 256 elements. To speak precisely, the size of an array is limited to the size of the

22

HDLTEKi ‘ Chapter 1 Holtek C Language

RAM bank of the Holtek MCU you used.

Constant variables

Constant variables must be declared in global scope and be initialized when declared. A
constant variable could not be declared as external.

A constant array should specify the array size otherwise an error generated. The size of
an array is limited to 255 bytes.

const char carray[]= {1,2,3}; //wong

const char carray[3]= {1,2,3}; //right

A constant string must be used in the C file with the main function.

//test.c
char *str
void fl(char *s);
void f2(){
f1(“abcd”); //"abcd” is a constant string
/1 1f thereis nonmain() function decl ared
/l'intest.cthentheHoltek Cconpil er woul d
/1l generate an error.
str = “1234"; [/"1234” is constant string

}
voi d mai n(){

}

Pointer

Pointer cannot be applied to constant and bit variables

Initial value

Global variables cannot be initialized when declared. Local variables do not have this
constraint. Constant variables must be initialized when declared.

For example:

unsigned int i1= 0;//illegal declaration; can not be
[linitialized

unsigned int i2;

const unsigned int i3; //illegal declaration; should be
/[linitialized

const unsigned int i4=5;

const char al[5]; //illegal declaration; should be
[linitialized

const char a2[5] ={0x1, 0x2, 0x3, 0x4, 0x5};

const char a3[4]="abc"; //={"a', b, '¢', 0}

const char a4[3]="abc"; //={'a', 'b', 'c'

[l const char a5[2]="abc”; //array size m snatched

23

HDLTEKi ‘ HT-IDE3000 Programmer’s Guide for Holtek C Language

Multiply/Divide/Modulus

The multiply, divide and modulus ("*", "/", "%") operators are implemented by system
calls.

24

HDLTEKi ‘ Chapter 1 Holtek C Language

Built-in Function

e WDT & halt & nop

C system call Assembly code
void _clrwdt() CLR WDT
void _clrwdtl() CLR WDT1
void _clrwdt2() CLR WDT2
void halt() HALT

void _nop() NOP

® Rotate right/left
void rr(int*); /lrotate 8 bits data right
void _rrc(int*); [//rotate 8 bits dataright throughcarry
void Irr(long*); //rotate 16 bits data right
void Irrc(long*);//rotate 16 bits dataright throughcarry

void rl(int*); [lrotate 8 bits data |eft
void _rlc(int*); //rotate 8 bits data left through carry
void Irl(long*); //rotate 16 bits data |left

void Irlc(long*);//rotate 16 bits data left through carry

® swap nibble
void _swap(int *); //swap nibbles of 8 bits data

e delay cycle
void _delay(unsigned long); //delay n instruction cycles

The delay function forces the MCU to execute the specified cycle count. A value of
zero causes an endless loop. The parameter of the delay could be constant value only.
It does not accept a variable.

Example :

/lassune the watch dog timer is enable
//and using one instruction

void error(){
_delay(0); //infinite |oop, sane as while(1);
}

void dotest(){
unsi gned int ui;

ui = 0x1;

_rr(&ui); //rotate right

if (ui !'= (unsigned int)0x80) error();
ui = Oxab;

_swap(&ui);

if (ui !'= (unsigned int)Oxba) error();

}

void main(){
unsigned int i;
for(i=0; i<100; i++){

25

HDLTEKi ‘ HT-IDE3000 Programmer’s Guide for Holtek C Language

_clrwdt();
_delay(10); //delay 10 instruction cycle
dotest();
}
}
Example :

/lassune the watch dog tiner is enable
/land using two instructions
voi d dotest(){

}
void mai n(){

unsigned int i;
for(i=0; i<100; i++){

_clrwdt1();
_clrwdt2();
dotest();
}
}
Stack

Because the Holtek micro-controllers have limited depth stack the programmer needs to
consider the function call depth to avoid stack overflow. The multiply, divide, modulus,
and const variables are implemented by "call" instructions, taking one stack.

Operator/System Function Stack Needed

main ()
_clrwdt()
_clrwdtl()
_clrwdt2()
_halt()
_nop()
_rr(int*)
_rre(int®)
_lrr(long™)
_lrre(long®)
_rl(int*)
_rle(int*)
_Irl(long*)
_Irlc(long™)
_swap(int*)
delay(unsigned long)

~ x|

%
constant array

—_—m e e e O O OO OO OO OO

26

HDLTEKi ‘ Chapter 1 Holtek C Language

27

HDLTEKi ‘ HT-IDE3000 Programmer’s Guide for Holtek C Language

Chapter 2
Mixed language

The Holtek Cross Tools (Cross Assembler, Cross Linker, Library and Holtek C compiler)
provide methods to program with mixed languages, Holtek assembly language and C
language. That means a project can consist of source files programming with assembly
language and C language. However, the programmer should conform to some rules
when programming with mixed language. In order to facilitate the program coding, this
chapter describes the conventions that Holtek C compiler compiles a C program into the
assembly language, how to define the subroutine name, etc. The following are the
topics:

Little endian

Naming rule of functions and parameters
Parameter passing

Return value

Preserving registers

Calling assembly function from C program
Calling C function from assembly program
Programming ISR with assembly language

Little endian

The data format adopted by the Holtek C compiler is Little-Endian, i.e. the low byte of a
WORD is the WORD's least significant byte, and the high byte is the most significant. In
memory allocation, the low byte occupies the lower address and high byte occupies the
higher address.

For example

| ong var @ 0x40;
var = 0x1234;

Then the address 0x40 contains 0x34, and the address 0x41 contains 0x12.

Naming rule of function and parameters

The Holtek Cross Assembler is non case-sensitive when handling symbol names.
Actually, all symbol names are translated into uppercase no matter what the original
form is. But the Holtek C language is case-sensitive. Due to the difference of these two
languages, the variables and functions which are defined in C source files and referred
by the assembly program should be defined as uppercase.

The names of the global variables and functions in C language are prefixed with
underscore when C compiler translates them into the assembly language. For the local

28

HDLTEK; ; Chapter 2 Mixed Language

variables, if a local variable is declared without referenced, the C compiler won't reserve

memory space for it. By checking the assembly file generated by the Holtek C compiler,
the programmer can find out what the translated name of the C local variable is.

Global variable

A global variable in a C file is translated into the same case letters with a prefixed
underscore.

For example,

Ti mer Ct
TMP

will be translated into

_Tinmerct
_TWP

Local variable

If a local variable in a C function is not referenced by other programs, it will not be
translated into assembly language. By checking the assembly file to find out what the
result is.

void main(){
int i, j, k; /1 k is not used
Il ong m
char c;
i =] =m=c¢c = 2
#asm
set CR3[1].2 ;set bit 10 of m=> m|= 0x400
#endasm

}

The corresponding part of the assembly file will looks like this:

#line 2 "C:\ HT- 1 DE2000\ SAMPLE\ NAME. C"
LOCAL CR1 DB ? ; i

#pragma debug variable 2 CR1 i

#line 2 "C:\ HT- 1 DE2000\ SAMPLE\ NAME. C"
LOCAL CR2 DB ? ; |

#pragma debug variable 2 CR2 j

#line 3 "C:\ HT-1 DE2000\ SAMPLE\ NAME. C"
LOCAL CR3 DB 2 DUP (?) ; m

#pragma debug variable 2 CR3 m

#line 4 "C:\ HT- 1 DE2000\ SAMPLE\ NAME. C"
LOCAL CR4 DB ? ; c

#pragma debug variable 2 CR4 ¢

The second and third line indicates that the i is translated into CR1 in the assembly file.
By the same way, | is translated into CR2, m is CR3 and ¢ is CR4. The k is not
referenced so it is not translated.

Caution: If the local variables are added to or removed from or arranged the order, then the
translated names might be changed by the C compiler.

29

HDLTEKi ‘ HT-IDE3000 Programmer’s Guide for Holtek C Language

For the above sample code, if the micro controller supports multiple RAM banks, then
the instruction
set CR3[1].2

can execute correctly or not. The program will corrupt if the CR3 is allocated in high
bank. But this phenomenon won't happen, because the local variable is defined with
LOCAL directive in the translated assembly file and instructs the assembler to allocate
the variable in the RAM bank 0. Hence it can execute correctly in the way like a variable
does in the single RAM bank.

Function

Like the global variable, a function in a C file is translated into the same case letters with
a prefixed underscore.

For example,

CGet Key
| sBusy

will be translated into

_Cet Key
_I sBusy

Function parameters

The names of the function parameters in a C file are translated into the function name
following the number of the parameters occurring, indexed from 0.

For example,

Get Key(int row, long col)

row is translated into GetKey0
col is translated into GetKey1

Parameter passing

Due to the micro controller resource's limitation, the Holtek C compiler passes
parameters to function via the RAM space instead of the stack. The naming of the
function parameters are the function name appending the number of the parameters
occurring, indexed from 0. Like the local variable, the function parameters are also
allocated in the RAM bank 0.

For example:

void function (int a, int b)
Then the parameter a will be translated into function0, b will be functionl.

For mixed language, the data type of function parameters should always declares as
BYTE in assembly, if it's more than one byte, e.g. WORD (2 bytes), programmer should
use the instruction “DB n DUP(?) “ to declare it.

30

HDLTEK; ; Chapter 2 Mixed Language

Return value

The return value of a C function is located in the A register or in the RH system variable.
If the size of the return value is one byte (e.g. char, unsigned char, int, unsigned int,
short, unsigned short), then the value is stored in the A register. If it is two bytes (e.g.
long, unsigned long, pointer), then the high byte is stored in the RH and the low byte is
stored in the A register.

Note: The RH variable is located in RAM bank 0.

Preserving registers

Except the ISR, there is no need to preserve the registers when writing a function in
assembly. If a user writes an ISR in assembly language, then it is his responsibility to
preserve the registers used in the ISR.

Calling assembly function from C program

This section describes the steps to call an assembly function from a C program. The
steps are divided into two parts, one is for the assembly file, the other is for C file.

> In Assembly File

e Declare RH as external byte variable if the return value is two bytes.

Declare the function name with prefixed underscore as public.

® Declare the function parameters, if there is, in the RAM bank 0 as public. Be
aware of the naming of parameters.

® Put the return values into A or RH.

> In C File
® Declare the prototype of the external function name with uppercase
e Callit
Example

The following function is defined in assembly file and called by a C program,
long KEYIN(int row, long col);

In assembly file

;;Declare external byte variable RH
EXTERN RH:BYTE

;;Declare function name & parameters as public
PUBLIC KEYIN, KEYINO, KEYINI

;;Declare parameters
RAMBANK 0 KEYINDATA ;suppose the MCU has multiple ram banks
KEYINDATA .section 'data’

KEYINO DB ? ;TOW

KEYINI1 DB 2 DUP (?) ;col, don't use “KEYIN1 DW ?”
;function body

CODE .section 'code'

_KEYIN:

31

HDLTEKi ‘ HT-IDE3000 Programmer’s Guide for Holtek C Language

MOV A, KEYINO ;retrieve row

MOV A, KEYINI ;retrieve low byte of col
MOV A, KEYINI1[1] ;retrieve high byte of col
;; Put the return values into A and RH
MOV A,0AO0H ;suppose the return value is 0xA010
MOV RH,A ; store high byte 0xA0 to RH
MOV A,10H ; store low byte 0x10 to A
RET
In C file

// Declare the external function name with uppercase
extern long KEYIN(int row, long col);
long rc;

// Call it
rc = KEYIN(10, 20L);

Calling C function from assembly program

This section describes the steps to call a C function from an assembly program. For the
micro controller with multiple ROM banks, it is important to set the BP (bank pointer)
before calling the function.

> In C File

® Declare the function name with uppercase

> In Assembly File

® Declare RH as external byte variable if the return value is two bytes.

® Declare the external function name with prefixed underscore

® Declare the function parameters as external if there is. Be aware of the naming
of parameters.

e Set function parameters if there is

e Call C function

Call the C function directly if the micro controller supports single
RAM/ROM bank.

Set BP to the bank of function first, then calls the C function if the micro
controller supports multiple RAM/ROM banks.
® Get return value from A or RH

Example 1

The following function is defined in C language and called by assembly program
long KEYIN(int row, long col);

and the micro controller has single ROM bank.

32

HDLTEK; ; Chapter 2 Mixed Language

1/
// In C file, function definition
1/
long KEYIN(int row, long col){

29

;; In assembly file

29

;;Declare external byte variable RH
EXTERN RH:BYTE

;;Declare the external function name with prefixed underscore
extern KEYIN: near ;; underscore and function name

;;Declare the function parameters as external variables

extern KEYINO:byte ; function parameter : row

extern KEYIN1:byte ; function parameter : col, although it's 2 bytes,
; to declare it as BYTE

code ki .section 'code’

;; Set function parameters for calling KEYIN(0x10, 0x200L)

mov a,10H

mov KEYINO,a ; put value to function parameter : row
mov a,2H

mov KEYINI[1],a ; put value to high byte of parameter : col
clr KEYIN1 ; put value 0 to low byte of parameter : col

;; Call C function
call KEYIN

;; Get return value from A or RH
;; A register keeps low byte of return value
;; RH keeps high byte of return value

Example 2

The following function is defined with C language and called by assembly program,
long KEYIN(int row, long col);

and the micro controller supports multiple ROM banks

/
//'In C file
/
long KEYIN(int row, long col){

; In assembly file

33

HDLTEKi ‘ HT-IDE3000 Programmer’s Guide for Holtek C Language

>

;;Declare external byte variable RH
EXTERN RH:BYTE

;; Declare the external function name with prefixed underscore
extern KEYIN:near

;; Declare the function parameters as external variables

extern KEYINO:byte ; parameter :row
extern KEYIN1:byte ; parameter : col, although it's 2 bytes,
; only declare one BYTE

code ki .section 'code'

;;Set function parameters for calling KEYIN(0x10, 0x200L)

mov a,10

mov KEYINO,a ; parameter : Tow

mov a,2

mov KEYINI[1],a ; high byte of the parameter : col
clr KEYINI ; low byte of the parameter : col

;; Call C function in multiple ROM banks
;; Set BP to the bank of function first

mov a, bank KEYIN
mov bp,a ; change the bank number
cal KEYIN

;; Get return value from A or RH
;; A register keeps low byte of return value
;; RH keeps high byte of return value

Programming ISR with assembly language

An ISR (Interrupt Service Routine) is invoked by hardware interrupt. It should not be
explicitly called by user, hence it doesn’t have parameters passing nor return value..
When you write an ISR in assembly, there is nothing to do with the other c files. All you
need to do is to add the assembly file into the project. Please refer to the assembly
language user’s guide for more information about ISR programming.

Do not call a C function from an ISR, no matter the ISR is written in assembly or C.

34

HDLTEK; ; Chapter 2 Mixed Language

35

HDLTEKi ‘ HT-IDE3000 Programmer’s Guide for Holtek C Language

Chapter 3
Programming With C

Language

This chapter covers the following sections:
Start a C Program

Define the Interrupt Service Routines
Define Tables and Symbols in Program Memory
Define Variables in Data Memory
MCU Special Function Registers
Built-in Functions

Programming Tips

Serial Port Transmitting Example
Skeleton Program Example

Data Type

Start a C Program

The source files of a project in HT-IDE3000 may be written by Holtek assembly

language or C language. After a chip reset, the program always begins execution at

address 0 of Program Memory. When there is at least one source file is programming

with C language and the program entry point is the C program, then the function main is

forced to be located on address 0 of Program Memory by C compiler. Also, the

following rules must be followed,

® A main function has been defined in a source file and all other source files can
not define it. The main function is the entry point of program execution.

® The address 0 of Program Memory can not be used for other functions, tables
or Code sections . This address is used by main function only. The following
statement will cause an error when building the project.

#pragma vector ResetFunction @ 0x00
The function ResetFucntion can not be defined at address 0

Example

void test(){
}

void main(){ /1 define the main function
test();
}

36

HDLTEK; ‘ Chapter 3 Programming With C Language

Define the Interrupt Service Routines

When a project needs to handle the MCU interrupts and the corresponding interrupt
service routines (ISR) are going to program with C language, then the proper usage and
restrictions should be noticed.

It is not necessary to preserve the system registers explicitly, the Holtek C compiler
preserves the used registers automatically.

Declare the name and address of ISR in C source file
To declare the name and address by using the pragma vector statement as follow,

#pragma vector IsrRoutineName @ address

pragma and vector are keywords.

IsrRoutineName is the name of the interrupt service routine.

address is the memory address of the interrupt service routine. The address 0 is
reserved for the main function and cannot be used.

Define the ISR in C source file
To define a function with the same name as IsrRoutineName in above #pragma
vector.

#pragma vector ExternISR @ 0x04
void _Externl SR(void){
}

Restriction

There are some restrictions to keep in mind when writing an ISR with C language.

® There is no parameter for ISR and the return type is void.

e The ISR is not reentrant. Do not enable the interrupts in ISR.

® Do not call the ISR explicitly within the programs. It should always be
invoked implicitly by the system when the interrupt occurs.

® Do not call any user defined C function in ISR. But calling the built-in
functions is safe. If ISR wants to call a function, the function should be written
with assembly language.

e If ISR contains inline assembly instructions, then the affected registers due to
these instructions execution should be preserved before execution and restored
after execution . The Holtek C compiler only preserves the affected registers
caused by C statements.

Example
#i ncl ude <ht47c20. h>
#pr agma vector _Externl SR @ 0x4
#pr agma vector _TineBasel SR @ 0x8

37

HDLTEKi ‘ HT-IDE3000 Programmer’s Guide for Holtek C Language

#pr agma vector _RTCI SR @ 0xc
#pr agma vector _TinmerlSR @ 0x10

unsi gned count;

void Externl SR(void){
}

void _TineBasel SR(voi d){
count =count >>7| count <<1,;

_pa = count;
}
void _RTCI SR(voi d) {
}
void _Tinmerl SR(void){
}

voi d main()

count =0Oxee;
_intc0=0x05; /| EM &ETBI ENABLE
while(l);

Define Tables and Symbols in Program Memory

The Holtek C compiler allocates program memory for those tables and symbols with
fixed value. When a table (array) or a symbol with the fixed value, then it can be located
in program memory by declaring its type as const. The usage of this symbol or array is
the same as those symbols or array defined in Data Memory. The difference is the
symbol or array in Program Memory can not be modified. The maximum value of these
constants is 255, however if higher values are needed they can be separated into several
constants.

Example

/1 below three variables are in Program Menory

const unsigned char ascii[16]="0123456789ABCDEF";

const unsigned char pattern[16]={0,1,2,3,4,5,6,7,8,
9,10, 11, 12, 13, 14, 15};

const unsigned int cl = 0x8B;

/1 bel ow variables are in Data Menory
#pragma ranmbankO
unsi gned char str[2];

void itoa(unsigned int v, unsigned char *s){
*s = ascii[v & Oxf];
_swap(&v); //swap nibble
*(s+1l) = ascii[v & Oxf];

}

voi d main(){
unsi gned int val;
val = cl;
itoa(val, str);

}

Note: The symbols or array of type const should be initialized when declared. The size

38

HDLTEK; ’ Chapter 3 Programming With C Language

of a const array should also be specified.

39

HDLTEKi ‘ HT-IDE3000 Programmer’s Guide for Holtek C Language

Define Variables in Data Memory

There are two or three functional groups in Holtek MCU Data Memory, the register
area, the general data area and the LCD data area. The Data Memory may consists of
more than one bank, the RAM bank 0 and other RAM bank area.

The register area is the memory resident MCU function registers. The LCD data area
stores the data which are used for LCD display. The general data area applies for the
variables when programs execute. All Holtek’s MCUs have the register area and the
RAM bank 0 data area. But only some of them have more than one RAM bank. Please
refer to corresponding data sheet for more information.

If not explicitly specified address, a variable will be allocated to the general data area by
C compiler, it is relocatable. As for registers and the LCD data area, a proprietary
address should be specified explicitly, otherwise it will be taken as a relocatable
variable.

Specify Address to a Variable

The operator '@' is used to specify the address of variables in Data Memory.

e Syntax
data_type varaible_ name @ memory_address

® Description

The memory_address specifies the address at which the variable variable_name is
located. It is comprised of RAM bank number and the address within the RAM
bank. The high byte of memory_address is the RAM bank number and the low byte
is the address within this RAM bank. The data_type is the allowed the data type.

e Example
int v @0x50; // vl is in address 0x50 of RAM bank O
int v2 @0x380; // v2 is in address 0x80 of RAM bank 3
int v3 @0xef0; // v3 is in address Oxf0 of RAM bank 14

Access Variables in Multiple RAM Banks

In assembly language it is necessary to set the bank pointer and use the indirect
addressing mode to access the high RAM bank memory. Holtek C compiler has done
these works automatically, users don’t have to do any effort.

e Example
int vl @O0x5B; // vl is in address 0x5B of RAM bank O
int v2 @0x2F0; // v2 is in address OxFO of RAM bank 2
int v3; /1 bank nunber is unknown

void mai n(){

vl = 10; //access bank O variable
v2 = 10; //access high bank variable
v3 = 10;

40

HOLTEK ; ‘ Chapter 3 Holtek C Programming

Specify Variables In RAM Bank O (Improve the Performance)

For MCU with multiple RAM banks, it must use indirect access instructions to access
the variables in high RAM banks. The more of these accesses, the more instructions are
executed. The result is to reduce the program performance. Hence, it had better to define
those frequently used variables in RAM bank 0. By using C preprocessor pragma
rambanko, the frequently used variables can be defined in RAM bank 0. It forces the
Holtek Linker to find memory from the RAM bank 0 for the specified variables. If the
RAM bank 0 has no enough memory to hold the variables, the Linker will issue an
error even if there is enough memory in other bank. For this situation, user should
rearrange the variables in the rambank0 block. The preprocessor pragma norambank
will end the rambankO function. All variables declared between rambank0 and
norambankO will be allocated to the RAM bank 0 unless RAM bank 0 has exhausted
the space.

e Syntax
#pragma rambankO0
//data declarations : variables defined in this block will be in RAM bank 0

#pragma norambank
//data declarations : variables defined in here are not necessary in RAM bank 0

® Description

The rambank0 keyword directs the compiler to declare subsequent variables to be
located in the RAM bank 0 until the norambank keyword or end of file is
encountered. For MCU with the single RAM bank, these two keywords will be
ignored.

e Example

/1 default is norambank
unsi gned int vi; /[1v1l s bank nunmber is unknown

//switch to ramnmbankO
#pragma ranbank0
unsigned int i, j; /1
| ong | en; /1

i, | located at RAM bank 0
len | ocated at RAM bank O

/1l nranmbankO area t he addr ess cannot be | arger t han 0x100
unsi gned char ucO @ 0x83;

/'l back to noranbank

#pragma nor anbank

unsigned int iflag; /I bank nunber of iflagis unknown
unsi gned char uc @ 0x140;

[Iswitch to ranbankO |inki ng node

#pragma ranbankO

bit bitflag; /1bit variable should al ways be
/1 declared in ranbankO bl ock

void mai n(){
i = 1; [ITMOV AL
[IMOV i, A

41

HDLTEKi ‘ HT-IDE3000 Programmer’s Guide for Holtek C Language

iflag = 1;

ucO = uc = 0O;
bitflag = 1;

Pointer boundary

The address pointed by a pointer cannot cross the bank boundary while doing the
pointer arithmetic. It will wrap when it overflows or underflows.

e Example:
#pragma ranbankO
unsi gned char *pl
unsi gned | ong *p2;

void main(){
pl = (unsigned char *)0x2fO0;
pl += 0x20; //nowpl points to address 0x210, not 0x310

pl = (unsigned char *)0x100;
pl--; [//now pl points to address Ox1ff, not Oxff

p2 = (unsigned | ong*)0x3fe;
p2++; // 'long occupies two bytes.
/1 now p2 is pointed to 0x300 not 0x400.

Because a pointer cannot cross the bank boundary, the Holtek C does not support long
integer pointer arithmetic.

e Example :

#pragma ranbankO

unsi gned char *pl, *p2
unsigned int i;

unsi gned | ong |en;

void mai n(){

pl = p2+10; //ok
pl = p2+0x100; //error, 0x100 is a long integer
pl +=1i; //ok

pl +=len; //error, lenis a long integer

Access the LCD data area

Holtek C provides an easy way to access the LCD data area. To declare variables
corresponding to LCD data memory address by using the '@' operator described in
section Specify Address To a Variable. The following example demonstrates how to
declare the LCD variables and how to access them.

42

HOLTEK # Chapter 3 Holtek C Programming

e Example:
// LCD data memory is at RAM bank 14 (0x0e)
//'lcd_day is at address 0x80 of RAM bank 14
//'lcd_mon is at address 0x82 of RAM bank 14

#include <HTG2190.H>
// delcared lcd_day at LCD data area
unsigned char led_day @ 0xe80;

//declared lcd_mon at LCD data areca
unsigned char lcd mon @ 0xe82;

#pragma rambank0
unsigned int i, j;
unsigned char *lcd_ptr;

/*
Delcared non RAM bank 0 variables

A realistic scenario is that the variables are declared within the rambank0 block
if the memory is available.
*/

#pragma nonrambank0
unsigned int tmp;

void main(){

led mon = 0x10; // put value 0x10 to LCD data memory 0xe82
led ptr = &lcd day; //'led_ptr points to LCD data memory 0xe80
*led_ptr = Ox(ff; // put value 0xff to LCD data memory 0xe80
*(led_ptr+1) = 0xa0; // put value 0xa0 to LCD data memory Oxe81

MCU Special Function Registers

The Holtek MCU special function registers reside in the leading area of RAM bank 0.
This data memory will not be used for general variables.

Access the function registers

To access the special function registers, it is necessary to bind a variable to the register.
Holtek C provides an easy way to access the byte or bit of all registers.

® Byte variable

The syntax of defining a byte variable of the special function register is the same as the
data variable with a specific address.

data_type varaible_name @ memory_location

It is recommended to declare the data type as ‘unsigned char’. For example,
unsi gned char _a @ 0x05;
unsi gned char _pcl @ 0x06;
unsigned char _tblp @ 0x07;

unsi gned char _tblh @ 0x08;

43

HDLTEKi ‘ HT-IDE3000 Programmer’s Guide for Holtek C Language

unsi gned char _wdts @ 0x09;
unsi gned char _status @ 0xOa;
unsi gned char _intc @ 0xO0b;
unsi gned char _tnrOh @ 0xOc;
unsi gned char _pa @ 0x12;
unsi gned char _pb @ 0x14;

The usage of the special function registers is the same as that of the ordinary data

variables. For example
_pa = Oxff; //set PA
if (_pb == (unsigned char)0x80)

}

e Bit variable

Holtek C compiler provides built-in bit variables for the special function registers. The
naming rule of these bit variables is:
_XX_N

xx: the memory address of the function register by two hexadecimal digits.
n: the bit number of the function register

Example
_0a_0 is the bit variable of bit 0 of address 0aH, the carry flag of status register
12 1 is the bit variable of bit 1 of address 12H, port A

It is not necessary to declare these built-in bit variables before using them, for example,
user may assign a meaningful name for each of these bit variables by #define directive

as follow.

// The HT48C50-1
#define _c _0a 0
#define _ac _Oa_1
#define _em 0Ob O
#define _eei 0Ob_ 1
#define _etOi _0Ob_2
#define _etli _0Ob_3
#define _eif _Ob 4
#define _tOf _0Ob_5
#define _tl1f _0Ob_6
#def i ne _pa0 12 0
#def i ne _pal 12 1
#def i ne _pa2 12 2

The data type of these variables is bit. The usage is the same as that of the ordinary bit

data variables. For example:
bit bflag;

1; //enable interrupt
/lset carry
0){ //if port A bit O set

@ -

bflag = _eei ;
_pa2; //bit assignnent
f

44

HOLTEK i ‘

Chapter 3 Holtek C Programming

For each Holtek MCU, there is a corresponding include file which declares the MCU
special function registers. The file name of the include file is the same as the MCU name.
For example, the HT48C10-1.H is the include file for HT48C10-1 MCU. To access a
special function register, either to include the correct MCU include file or to declare the
special function register alone.

The following example demonstrates how to access the special function registers. The
MCU is HT48C10-1.

#i ncl ude <HT48C10-1. H>

void main(){

int i;

_intc = 0;

_tnmrc = 0;

_tmr = 0;

¢ = 0; [lclear carry flag

rrc(&); /lrotate right through carry

Access the 10 ports

User can access the Holtek MCU 1/O ports by using the same access method of the
special function registers. It includes byte variables and bit variables.

Example :

unsi gned char _pac @O0x13;
unsi gned char _pbc @ 0x15;

#define _pa0 _12 0

#define _pa3 _12 3

#define _pa5 _12 5

#define _pb3 _14 3

#define _pc2 _16_2

#define _pc5 _16_5

voi d main(){
_pac = Oxff; /] set port A control register
_pbc = 0x40; /] set port B control register
_pa0 = 1; /] set port Abit O
_pb3 = 0; //clear port B bit 3
_pc5 = _pa3;

if (_pa5){ /1if bit 5 of port A ==

}
while(! _pc2){ //while bit 2 of port C ==

}

Built-in Functions

The Holtek C compiler provides some built-in functions which is similar to write
assembly instruction directly. Some of these built-in functions are translated to only one
assembly instruction. Other built-in functions will facilitate to program with C language.

45

HDLTEKi ‘ HT-IDE3000 Programmer’s Guide for Holtek C Language

Assembly-like built-in functions

The following built-in functions will be translated to corresponding assembly instruction
by Holtek C compiler.

C Subroutine Assembly Instruction
void _clrwdt() CLR WDT

void clrwdtl() CLR WDT1

void clrwdt2() CLR WDT2

void halt() HALT

void _nop() NOP

e Example :

/lassune the watchdog tiner is enabl ed
//and use one clear WDT instruction

voi d dotest(){

}

void mai n(){
unsigned int i;
for(i=0; i<100; i++){

_clrwdt(); /1 CLR WDT
dotest();

}

e Example :

/lassune the watchdog tiner is enabl ed
//and use two clear WDT instructions

voi d dotest(){
}”
void mai n(){

unsigned int i;
for(i=0; i<100; i++){

_clrwdt1(); /1 CLR WDT1
_clrwdt2(); /1 CLR WDT2
dotest();

Rotate functions

There is no rotate operator within the C language, however the Holtek C compiler
provides a built-in function for data rotation.

void rr(int*)
void _rrc(int*

; [l/rotate 8 bits data right
); //rotate 8 bits data right through carry

46

HOLTEK # Chapter 3 Holtek C Programming

void _Irr(long*); /[l/rotate 16 bits data right

void _lrrc(long*) //rotate 16 bits data right through carry
void rl(int*); /[/rotate 8 bits data |eft

void _rlc(int*); //rotate 8 bits data left through carry
void _Irl(long*); [l/rotate 16 bits data left

void _Irlc(long*); //rotate 16 bits data |left through carry

For example,
#i ncl ude <HT48C50- 1. h>
unsigned int ui;
unsi gned | ong ul;

void error(){
whil e(1);

void mai n(){

ui = 0Ox1;

rr(&ui); /[lrotate right

if (ui !'= (unsigned int)0x80) error();

¢ = 1; /lset carry

_rrc(&ui); //rotate right through carry
if (ui !'= (unsigned int)0xc0) error();

ul = 0xc461;

lrl(&ul); //long rotate |eft

if (ul !'= 0x88c3) error();

¢ = 0; [lclear carry

Irlc(&ul); //long rotate left through carry
if (ul !'= 0x1186) error();

Swap function
void _swap(int *); //swap nibbles of 8 bit data

For example,
unsigned int ui;

void error(){
while(l);

void main(){
ui = Oxab;
_swap(&ui);
if (ui !'= (unsigned int)0Oxba) error();

Delay cycle function
voi d _del ay(unsi gned | ong)

The delay function forces the MCU to execute the specified cycle count. A value of
zero causes an endless loop. The parameter of the _delay could be constant value only.
It does not accept a variable.

For example,
#define _pa0 _12 0 //port A bit O
unsi gned char _pb @0x14 //port B
void error(){

47

HDLTEKi ‘ HT-IDE3000 Programmer’s Guide for Holtek C Language

_delay(0); [//infinite |oop. sane as while(1);

void main(){
unsi gned long tine;
//wong, paraneter should be constant value only
/1 _delay(tine);

_pa0 = 1;
_delay(1); //delay 1 instruction cycle
_pa0 = 0;

_delay(15); //delay 15 instruction cycle
if (_pb != (unsigned int)0x8f) error();

Programming Tips

Declare variables as unsigned data type

Generally, the operations for unsigned variables are simpler than those for signed
variables. It is recommended to declare a variable as an unsigned data type if it does not
have a negative value.

Example
int i,j;
unsigned int ui, uj;

void test(){
if (i >=17); /1 translate to 8 instructions

if (ui >=uj); /] translate to 4 instructions

The first signed comparison is translated into 8 instructions while the second one is
translated to only 4 instructions.

Declare variables to be within RAM bank O

Data located above RAM bank 0 requires indirect accessing which generates some
inefficient codes. For those MCUs with multiple RAM banks, it had better to declare the
frequently used variables to be within RAM bank 0.

Example

//file RAMBANKO. C
/lassune the MCU has nultiple RAM banks

#pragma ranbankO
unsigned int ui0; // ui0Ois in RAM bank O

#pragma nor anbank

unsigned int ui; /1 ui is relocatable, may not in RAM
/1 bank O
void test(){
ui O++; /'l translate to 1 instruction
ui ++; /!l translate to 5 instructions

48

HOLTEK # Chapter 3 Holtek C Programming

Be care for using the variable declared in RAM bank 0 when a program in other source
file wants to access this variable. If a variable is declared to be within RAM bank 0 in
file RAMBANKO.C, it could be accessed by programs in other files, ACCESS0.C and
ACCESSI.C. But this variable has to be declared as an external and within RAM bank 0
also, otherwise redundant codes or improper codes will be generated. The execution
result is unpredictable.

Example

/1 assunme the ui 0, ui are declared in the above exanpl e
/1 file RAMBANKO. C

/1 file ACCESSO.C

/'l declare variables to be the sane as RAVMBANKO. C
#pragma ranbankO

extern unsigned int uiO; /1 declare ui0 in RAM bank 0

#pragma nor anbank
extern unsigned int ui;

void testB(){
ui 0++; // translate to 1 instruction; correct

ui ++; // translate to 5 instructions; correct
}
/1 file ACCESSL. C
/1l declare variables to be not the sane as RAMBANKO. C

#pragma ranbank0
extern unsigned int ui; // declared ui in ranbankO

#pragma nor anbank
extern unsigned int uiO;

void testC(){
ui 0++; /1 5 instructions; correct
ui ++; /1 1 instruction; wong

In file ACCESS1.C, the ui0++ statement translated into five instructions, four more
instructions than the one in the file ACCESS0.C. However this statement is executed
correctly. But the ui++ statement is translated to only one instruction and the execution
result is unpredictable. The reason is that ui is not defined in RAM bank 0 in file
RAMBANKO.C, it should be accessed by the indirect method.

Declare a variable to be Bit type

The bit data variable occupies one bit of memory. If a variable has only two possible
values then the bit data type is suitable. Besides the smaller data size to be used, it also
generates more compact code.

Example
/lassune the MCU has single RAM bank

bit bitflag;
unsigned int intflag;

49

HDLTEKi ‘ HT-IDE3000 Programmer’s Guide for Holtek C Language

void test(){

bitf = 1; /1 1 instruction
intflag = 1; /1 2 instructions
if (bitflag); /1 2 instructions
if (intflag); /1 3 instructions

Assign an address to a pointer

To assign a constant address to a pointer, the type casting needs to be done explicitly,
otherwise the compiler will issue an error.

Example

/lassune the MCU has nultiple RAM banks
int *pil;

unsi gned char *p2;

| ong *p3;

void main(){
/Il point to RAM bank 0, offset 0x50
pl = (int*)0x50;
pl = 0x50; /1 error, no casting

/[l point to RAM bank 1, offset 0x60
p2 = (unsigned char *)0x160;

/[l point to RAM bank 2, offset 0x30
p3 = (long *)0x230;

Get the modulus by more effective method

When you want to get the quotient and the remainder of a division, the following are the
most popular statements.

q dil / d2;
r dl % d2;

The division subroutine is called by each statement and total is twice. Another effective
method to get the quotient and the remainder is to use in-line assembly. The quotient
statement is the same, but the remainder is changed to in-line assembly. For 8-bit
signed/unsigned division, the remainder will be stored in system variable T3. For 16-bit
signed/unsigned division, the remainder will be stored in system variables T4 and TS.
T4 is the high byte, T5 is the low byte.

= MCU with single RAM bank

e 8 bits division
unsigned int di, d2;
unsigned int q, r;

q =dl / dz; /1 get quotient
#asm

MOV A T3 ; get renainder
MV r,A

#endasm

50

HOLTEK i : Chapter 3 Holtek C Programming

® 16 bits division
unsi gned | ong dl1, d2;
unsigned long q, r;
g =dl/ dz;
#asm
MOV A, T5
MV r,A ; get | ow byte renmi nder
MOV A T4
MOV r[1], A ; get high byte renuai nder
#endasm

= MCU with multiple RAM banks.

e 8 bits division, r is in ram bank 0
unsigned int di, d2;
unsigned int q;
#pragma ranmbank 0
unsigned int r;
#pragma nor anbank

q =dl / dz;
#asm

MOV A, T3
MV r,A
#endasm

® 16 bits division, r is in ram bank 0
unsi gned | ong dl1, d2;
unsigned long q, r;
g =dl/ dz;
#asm
MOV A, T5
MV r,A ;get | ow byte renai nder
MOV A T4
MOV r[1], A ;get high byte renmi nder
#endasm

e 8 bits division, r is not in ram bank 0
unsigned int di, d2;
unsigned int q;
unsigned int r;

q =dl / dz;
#asm
MOV A, OEOH

AND [04H] , A ; BP, cl ear RAM bank and preserve ROM bank
MOV A, BANK _r

OR [04H, A ; set bank pointer

MOV A, COFFSET _r

MOV [O3H], A ; nove offset to MP1

MOV A, T3

MOV [O2H, A ; nove T3 to RL

#endasm

® 16 bits division, r is not in ram bank 0
unsi gned | ong dl1, d2;
unsigned long q, r;

q =dl / dz;
#asm

51

HDLTEKi ‘ HT-IDE3000 Programmer’s Guide for Holtek C Language

MOV A, OEOH

AND[04H], A ; BP, cl ear RAMbank and pr eser ve ROMbank
MOV A, BANK _r

OR [04H, A ; set bank pointer

MOV A, OFFSET _r

MOV [O3H], A ; move offset to MPL

MOV A, T5

MOV [O2H], A ; store to | ow byte of remai nder
I NC [O3H] ; point to high byte of renainder
MOV A T4

MOV [O2H], A ; store to high byte of renainder
#endasm

Constant value conversion / casting

The Holtek C compiler is an 8-bit compiler. Note that int is equivalent to char data type
with a range from —128 to +127. If the application operations deals with eight bits
constant integers, it is required to cast it into int/char (or unsigned int / unsigned char),
otherwise an eight bit hexadecimal integer might be erroneously converted into a 16 bits
integer. The constants between 0x80 and Oxff will be converted into the corresponding
16 bit integer without sign extension if no explicit type casting.

Example:

with explicit type casting, (unsigned int)Oxff is equal to an unsigned 8 bits
integer with value 255

e with explicit type casting, (int)Oxff is equal to a signed 8 bits integer with
value —1

e without explicit type casting, 0xff will be implicitly converted into a 16 bit
long integer with value 255

Example

/lassunme the MCU has a singl e RAM ROM bank
unsigned int ui;
int i;

void main(){
/18 bit signed conparison
/15 instructions
if (i >= 0x7f){
[lequals to if (i >= 127)

}

/10x80 inplicitly converted to (long) 128
/116 bit signed conparison

/116 instructions

if (i >= 0x80){

/1 equals to if (i >= 128)
/lalways fal se

}
/lexplicitly casting 0x80 to (int)-128
/18 bit signed conparison
/15 instructions
if (i >= (int)O0x80){
/1 equals to if (i >= -128)
/1 al ways true
}

52

HOLTEK i ‘

Chapter 3 Holtek C Programming

/18 bit unsigned conparison
/14 instructions
if (ui >= 0x7f){
/1 equals to if (ui >= 127);
}

/10x80 inplicitly converted to (long) 128
/116 bit signed conparison
/114 instructions
if (ui >= 0x80){

/lequals to if (ui >= 128L)

}

[lexplicitly casting 0x80 to (unsigned int)128
/18 bit unsigned conparison

/14 instructions

if (ui >= (unsigned int)0x80){

}

Serial Port Transmitting Example

This example shows you how to use the Holtek C language to write the time sensitive
program. Since the instruction codes translated from the C statements are compiler
dependent, the delay constant in the following example might be different under
different version compiler. You MUST examine the delay constant when you use it in
the first time, update the C compiler or change the MCU. The instructions generated by
C compiler are dependent on ROM/RAM single bank or multiple banks.

Preliminary Program

The serial port transmitting protocol is one start bit 0, eight bits data, one stop bit 1.
Below is the preliminary program for single RAM bank MCU.

/1 set address 0x12 bit 1 to be output pin (PA1)
#define tx _12 1

unsi gned char sent_val;

void main(){
13 1 = 0; //set PA1 as output pin

sent _val =

a ;

transmt();

void transmt(){
unsi gned char sent_bit;
unsi gned char i;

tx

= 0; // L1 start bit

for(i=0; i<8; i++){

sent_bit = sent_val & 0x1;
sent _val >>= 1,

53

HDLTEKi ‘ HT-IDE3000 Programmer’s Guide for Holtek C Language

if (sent_bit){

tx = 1; /1 L2
el se {
tx = 0; /1 L3
}
} .
tx = 1; /1 L4 stop bit

The function transmit() in above example is not correct due to the transmission baud
rate. In order to match the transmission baud rate, a proper delay time should be
calculated and inserted before or after each transmitting bit. Because the assembly
instructions for output 0 and 1 are different, it has better to use different C statement to

output 0 and 1 individually. Hence, it is recommended to replace the statement
tx = sent_bit;

with
if (sent_bit){
tx = 1; /1 L2
el se {
tx = 0; /1 L3

The statement tx = sent bit can not determine when it sends 0 or 1.

Adjust Transmitting Timing

Now we need to adjust the timing in order that the instruction cycles between all
transmitting (L1 to L2, L1 to L3, L2 to L3, L3 to L2, L2 to L4 or L3 to L4) are the same.
After building the program under HT-IDE3000, the Debug window is active.

= AdjustLltolL2andLl1toL3

Set Break Points at L1, L2, L3, Open the Cycle Count Window in View menu
Free Run. ICE will stop at L1

Modify the sent val’s value to 1 in the Watch WindowEI in Windows menu
Reset Cycle Count

Free Run. ICE will stop at L2. cycle count = 0x11

Reset ICE.

Free Run. ICE will stop at L1.

Modify the sent val’s value to 0 in the Watch Window.

Reset Cycle Count

e Free Run. ICE will stop at L3. cycle count = 0x12

Now, we know the instruction cycles between L1 and L2 is one more than that
between L1 and L3. Hence, it should delay one cycle before L2, then both of the

instruction cycles from L1 to L2 and from L1 to L3 are all equals to 0x12.
if (sent_bit){

" In the HT-IDE3000 Watch Window, write dot sent_val (.sent_val) and press Enter.
You will see something like “.sent_val :[xxH] = nn”. Now you could modify nn to 01.
Do not forget to press Enter after your modify otherwise the value will not be modified.

54

HOLTEK ; ‘ Chapter 3 Holtek C Programming

del ay(1); /1 add this statenment
tx = 1; /1 L2

= AdjustL2to L3 and L3to L2
Using the modified code to do below test.
Set Break Points at L1, L2, L3
Free Run. ICE will stop at L1.
Modify the sent val’s value to 5 (00000101b) in the Watch Window.
Free Run. ICE will stop at L2.
Reset Cycle Count
Free Run. ICE will stop at L3. cycle count = 0x12
Reset Cycle Count
Free Run. ICE will stop at L2. cycle count = 0x10
Now, the cycle count between L2 and L3 is 0x12, the cycles count between L3
and L2 is 0x10. Hence, it should delay two cycles after L3.

el se {
tx = 0; /1 L3
_del ay(2); /1 add this statenent

It is wrong to delay the cycles before L3. Because, it will prolong the period of L1
to L3.
= AdjustL2to L4 and L3to L4

At this moment, the cycle count of the (L1,L2), (L1,L3), (L2,L3), (L3,L2) are all
the same. The rest is to check L2 and L4. Using the modified code to do below

test.

e Set Break Points at L1, L2,1L.4

e Free Run. ICE will stop at L1.

® Modify the sent val’s value to 0x80 in the Watch Window.

e Free Run. ICE will stop at L2. (the last loop)

e Reset Cycle Count

o Free Run. ICE will stop at L4. cycle count = 0x8

The delay cycle count should be 10 (0x12-0x8) before L4.
_del ay(10); /1 add this statement
tx = 1; /1 L4 stop bit

Now all the transmission cases have the same period, 18 cycles.

Adjust to Meet the Baud Rate

Baud Rate = SysClk / 4 / (cycle count for transmitting one bit)
Transmit one bit cycle = X+18, X is the additional delay cycle count.
Then the formula of X is

X = (SysClk / Baud Rate / 4) — 18

For example, SysClk = 4MHz and Baud Rate = 9600 then X is equal to 86
The following is the final program.

Thi s function depends on conpiler and MCU.
You MUST adj ust the delay constants when different
conpil er or MCU are used

~~
~~

/'l suppose address 0x12 bit 1 is the output pin (PAl)

55

HDLTEKi ‘ HT-IDE3000 Programmer’s Guide for Holtek C Language

#define tx 12 1
unsi gned char sent _val

void transmt(){
unsi gned char sent_bit;
unsi gned char i;

tx = 0; // L1 start bit
for(i=0; i<8; i++){
sent_bit = sent_val & 0x1;
sent _val >>= 1;

_del ay(86); /1 add this statenent
if (sent_bit){
_delay(1); /1 add this statenent
tx = 1; /1 L2
el se {
tx = 0; /1 L3
del ay(2); /1 add this statenent
_del ay(86+10); /1 add this statenent
tx = 1; /1 L4 stop bit
_del ay(86); /1 add this statenent

The receiving part is similar to the above.

Skeleton Program Example

//include files
#i ncl ude <ht 49C50-1. h>

/1l nterrupt service routines declaration
#pragma vector external _isr @O0x4
#pragma vector timerO_isr @ O0x8

#pragma vector timerl_isr @ O0xc

/I RAM bank undefi ned vari abl es
unsigned int uia, uib,;
unsi gned |l ong ula, ulb;

/I RAM bank 0 vari abl es
#pragma ranmbankO

unsi gned int uia0, uibO;
unsi gned | ong ul a0, ul bO;

bit flag;

//1SR

void external _isr(){
}

void tinerO_isr(){

}

void timerl_ isr(){

56

HOLTEK ; ‘ Chapter 3 Holtek C Programming

}

// main function
void mai n(){

Data Type
Data types
The following table lists the data types, sizes and their range
Data Type Size (bits) Range
bit 1 0,1
char 8 -128~127
unsigned char 8 0~255
short int 8 -128~127
unsigned short int 8 0~255
int 8 -128~127
unsigned 8 0~255
long 16 -32768~32767
unsigned long 16 0~65535

The floating point data type is not supported.

57

HDLTEKi ‘ HT-IDE3000 Programmer’s Guide for Holtek C Language

58

HOLTEK i ‘ Chapter 4 C Examples

Chapter 4
C Examples

In the HT-IDE’s installation path, you could find below examples’ source projects under
the <Sample\C Example> sub-directory.

Input/Output Applications

Scanning Light

This example gives a functional emulation of a scanning LED array. Here a row of
LEDs will light in turn one after the other. The circuit uses the PA port PAO~PA7, each
bit of which is connected via a 240Q2 series resistor to an LED.

= Circuit design

The I/O port bits PAO~PA7 are the outputs, with each output bit controlling a single
LED via a 240Q series resistor. By using the shift right and shift left operator the
illuminated LED can be made to move from left to right and vice versa. See the circuit
diagram for more details.

\VbD
VDD PAO
10k0 RES PA1
INT PA2

% VSS PA4

VbD

PA5
T 0OSC1 PA6
2MHz PA7
0sc2
HT48C10-1
= Program

Mask option

/1

I

/1 Body: HT48Cl0-1

11

/1A'l the mask options use the default val ue.

59

HDLTEKi ‘ HT-IDE3000 Programmer’s Guide for Holtek C Language

#i ncl ude <ht 48c10-1. h>

bit direction;
unsi gned char | anp;

#pragma vector isr_4 @O0x4
#pragma vector isr_8 @O0x8
#pragm vector isr_c @ Oxc

/1l SR for safequard

void isr_4(){} // external ISR
void isr_8(){} // tinmer/event O
void isr_c(){} // timer/event 1

/linitialize registers for safeguard
voi d safeguard_init(){

_intc = 0;

_tnmrc = 0;

_tnr = 0;

_pac = Oxff; //input node

_pbc = Oxff;

_pcc = Oxff;

}

voi d mai n(){
safeguard_init();

direction = 0; //shift left direction

_pac = O; /lset port A as output port
lanp = 1; //set initial lanp light up
while(1) {

_pa = lanmp; //output |lanp value to port A
_del ay(50000);

if(!direction)
| amp <<= 1;
el se
| amp >>= 1;

if(lanp & (unsigned char) 0x80)
direction = 1; //shift right
else if(lamp & 0x01)
direction = 0; //shift |eft
/lelse, don't change the direction

= Mask option

All the mask options use the default value.

Traffic Light

This application uses red, green and yellow LEDs to simulate a crossroads traffic light
function. Initially R1 and G2 are illuminated. After a delay the green light flashes
followed by the yellow light. After another delay R2 and G1 are illuminated. This cycle
will continue in this way indefinitely in the application the different time durations for

60

HOLTEK ; ‘ Chapter 4 C Examples

the red and green light as well as the flashing time can be programmed.

= Circuit design

The circuit uses the two port sections PAO~PA2 and PA4~PA6 with each one
representing a set of traffic lights on each road at a crossroad intersection. The operation
of the circuit will be self explanatory from the contents of the program. See the circuit
diagram for more details of the hardware.

Vbbp
2400 ww
VDD PAO
10k0] RES PA1
INT PA2

;ii____ Vss PA4
N
=

PA5
OSC1 PA6
2MHz
0SC2
HT48C10-1

= Program

Traffic.c

/1

/1

/1 Body: HT48Cl10-1

/1 Mask option

/1A'l the mask options use the default val ue.

#i ncl ude <ht 48c10-1. h>

const unsi gned char tabl e[16] ={

0x14, Ox4, 0x14, O0x4, 0x14, O0x4, O0x14, 0x24,
0x41, 0x40, 0x41, 0x40,0x41, 0x40, 0x41l, 0x42 };

#pragma vector isr_4 @O0x4
#pragm vector isr_8 @O0x8
#pragm vector isr_c @ Oxc

/1l SR for safequard

void isr_4(){} // external ISR
void isr_8(){} // tinmer/event O
void isr_c(){} // timer/event 1

Ilinitialize regis

ters for safeguard
void safeguard_init(){

intc = 0;
“tnrc = 0;
_tnr = 0;
_pac = Oxff; //input node
_pbc = Oxff;
_pcc = Oxff;

61

HDLTEKi ‘ HT-IDE3000 Programmer’s Guide for Holtek C Language

/la long tinme del ay

voi d mydel ay(unsi gned int tines){
whil e(tines--) _del ay(65000);

}

void main(){
unsi gned char i, j, idx;

safeguard_init();

_pac = 0; //set port A to output port
pa = 0; //zero port A (all Ilight on)
) {
= 0;
i =

while(1l
i dx
for(i=0; i!=2; i++) {
_pa = table[idx];
i dx++;
nydel ay(8);
for(j=0; j!=6; j++)
_pa = table[idx];
i dx++;
mydel ay(1);
_pa = table[idx];
i dx++;
mydel ay(4);

}

= Mask option

All the mask options use the default value.

Keyboard Scanner

This application uses a 4x4 keyboard matrix, giving a total of 16 keys with each key
representing a single hexadecimal value as shown in the diagram. The program scans the
keyboard matrix to detect which key was pressed and after detection displays on the
LED display the corresponding hex code. There are 4 LEDs, so a range of values from
0000 to 1111 can be displayed. During the scanning process, if two keys are pressed
simultaneously only the first key scanned will be detected and displayed. By using this
method 8 logic lines can control up to 16 switches with required values assigned to each
key.

Circuit design

PAO~PA3 are assigned as outputs and PA4~PA7 assigned as inputs, together forming a
4x4 matrix. Note that during creation of the project, PA/PA should have the pull-high
option selected from the mask option and the BZ/BZB should select “All Disable”. The
program detects which key was pressed while a look up table defines the value of each
key. PBO~PB3 are defined as outputs and represent a 4 bit hex code giving 16 different
values with each value representing a single key.

62

A

HOLTEK Chapter 4 C Examples

VbD
VDD PAO l l]
_ PA1 1.62 03
10k
RES b PRI
INT PA4
0ACF oS ICINCINY
kvss PAT \F_.\?_.\?_.
ICINGINE
PBO \L'XL'\L‘
[osct lD lE 1F
2MHz 3 PB1 \?_.
0SC2 PB2
PB3
HT48C10-1
= Program

Keyboard. c

[/

/1

/] Body: HT48C10-1

/1 Mask option

//BZ/BZB : Al Disable

//the others use the default val ue

#i ncl ude <ht 48c10-1. h>
#pragma vect or @ 0x4

isr_ 4
#pragm vector isr_8 @O0x8
#pragm vector isr_c @ O0xc

/1l SR for safequard

void isr_4(){} // external ISR
void isr_8(){} // tinmer/event O
void isr_c(){} // timer/event 1

/linitialize registers for safeguard
voi d safeguard_init(){

_intc = 0;

_tnrc = 0;

_tmr = 0;

_pac = Oxff; //input node

_pbc = Oxff;

_pcc = Oxff;

}

const unsi gned char |ed_code[16] =
{Oxff, Oxfe, Oxfd, Oxfc, Oxfb, Oxfa, Oxf9, Oxf8,
oxf7, Oxf6, Oxf5, Oxf4, Oxf3, Oxf2, Oxfl, OxfO0};
const unsi gned char scan[4] = {Oxfe, Oxfd, Oxfb, Oxf7};

63

HDLTEKi ‘ HT-IDE3000 Programmer’s Guide for Holtek C Language

//return the row nunber of the pressed key
unsi gned char wait_key pressed(){
unsi gned char i;
i =0;
whi | e(1){
_pac = scan[i]; //output scan code to port A
if ((~_pa) & (unsigned char)O0xf0){ //key pressed

_del ay(2000); //debounce
[l after debounce, if the key is still pressed
/[Iwe claimit a key pressed, otherw se ignore it
if ((~_pa) & (unsigned char) 0xf0)
returni; //rowi, key pressed
%++;
if (i >3) i =0;

}

/1 return the colum nunber of the pressed key
unsi gned char wait_key rel eased(){

unsi gned char i;

unsi gned char key;

key = pa; //keep the pressed key

/1 wait until key rel eased
ile((~_pa) & (unsigned char) 0xfO0);

//find out which colum key pressed
/I no debouce needed
for(i=0; i<4; i++)
if ((~key) & (0x10<<i))
break; //colum i, key pressed
return i;

unsi gned char get_key(){
unsi gned char row, col
row = wait_key_ pressed();
col = wait_key rel eased();
return (row << 2) + col

}

void main(){
unsi gned char i ndex;

safeguard_init();

_pac = Oxff; //set port A as input port
_pbc = 0x00; //set port B as output port
_pa = 0; /lzero port A

_pb = Ooxff; //off LEDs

whi | e(1){

i ndex = get_key();

/1the key value won't be displayed until
/1 the key is rel eased

_pb = led_code[index];

}

= Mask option

64

HOLTEK ; ‘ Chapter 4 C Examples

The BZ/BZB mask option selects All Disable, the others use the default value.

LCM

This application describes the use of an 8-bit microcontroller used in conjunction with a
DV16100NRB liquid crystal display. This LCM is driven and controlled by an internal
Hitachi HD44780 device. In this application only the timing requirements of the LCM
need to be considered to produce the correct microcontroller signals. for more detailed
timing and instruction information, the LCM manufacturer’s data should be consulted
first.

LCMs can operate in either 4 bit or 8 bit mode. Using a 4 bit mode of operation,
transmitting a character or an instruction to the module requires two transmission events
to complete the operation. With an 8-bit mode of operation only one transmit event is
required, however an extra 4 I/O lines are required.

= Circuit design

PBO~PB7 are setup as I/O bits while PCO~PC2 as the LCM control lines are setup as
outputs. These can be setup according to the specific user requirements.

VDD
? VDD 7~14
- -) (5(7dot.) (16
kaJ% E RES PBO-PB7 ——1P0-D7 \word LCD Matrix
INT
E RW RS VSS VO VDD

0.1CF
6 5 4 1 3 2
VSS

f 0OSC1 PCO
—

2MHz PC1
0sC2 PC2
HT48C30-1

= Program

Lcmc

Mask option
BzZ/BZB : Al Disable
the others use the default val ue

/1

/1

/1 Body: HT48C30-1

/1

/1

/1

#i ncl ude <ht48c30-1. h>
#pragma vector isr_4 @O0x4
#pragm vector isr_8 @O0x8
#pragm vector isr_c @ Oxc

/1l SR for safequard

65

HDLTEK#

HT-IDE3000 Programmer’s Guide for Holtek C Language

voi d isr 4(){} /1l ex
void isr_8(){} // ti
void isr_c(){} // ti
[linitialize r
voi d safeguard_in
_intc =
_tnrc =
_tnr
_pac
_pbc
_pcc

0
0
0

Oxff;
Oxff;

#define FOUR BI T

}
/1
/1 #define ONE LI NE

//for DV-16100NRB

egi ste
it (

ternal ISR
nmer/event O

rs
){

i mer/event 1

for safeguard

Oxff; //input node

/1l port B: LCMdata port

/1 port C: LCM cont
#defi ne LCM CLS
#defi ne CURSOR_HOVE
#defi ne CURSOR_SR
#def i ne CURSOR_SL

#define TURN ON DI SP

rol

port

0Ox1

0x2
0x14
3 0x10
#define | NCDD CG SHF C 0x6

Oxf

#define LCD ON CSR OFF Oxc
pb

#defi ne LCM DATA

#defi ne LCM_DATA CTRL

#defi ne LCM CTRL

#define LCM CTRL_CTRL

#define LCM CTRL_E
#define LCM CTRL_RW
#define LCM CTRL_RS

#defi ne WRI TE(a)

LCM DATA = (a) \
LCM CTRL_E \
LCM CTRL_E O }

const unsi gned char

" _pbc

pc

" _pcc

_pcO
_pcl
_pc2

{

\

meg[16] = "HOLTEK 8 bit MU';

voi d mydel ay(unsi gned char ct);

void LCM initialize(

)

voi d send_cnd(unsi gned char);
void wite_char(unsi gned char)
voi d busy_check(void);

void | cm del ay(voi d);

voi d mai n() {

unsi gned int i

safeguard_init();
LCM.initialize();
whil e(1){
send_cnd(LCM CLS)
nydel ay(2) ;
send_cnd(CURSOR_HOVE)
for(i = 0;

if (i

66

i <si zseof (msg); i++){

send_cnd(0xcO0);

/ / nove cursor
//to 2nd |ine

HOLTEK ; == Chapter 4 C Examples

write_char(nmsg[i]); //(1st |ine:00h~,
/1 2nd line:40h~)

}
send_cnd(LCD_ON_CSR_OFF);
nydel ay(5);

}

voi d mydel ay(unsi gned char ct){
whil e(ct--) _del ay(65535);
}

void LCMinitialize(){
LCM DATA CTRL = 0;//setup LCMdata port as output port
LCM CTRL_CTRL =0;//setup LCMcontrol port as out put port
LCM DATA = 0; /lclear LCM data port
LCM CTRL = O; [lclear LCM control port

#i fdef FOUR BIT

VWRI TE(0x20); //4 bit node
#el se

VWRI TE(0x30); //8 bit node
#endi f

/1 According to the data for the HD44780, there needs to be at
//least 4.5 nms del ay between each program

nydel ay(1);

#i fdef FOURBIT
#i fdef ONE_LI NE

WRI TE(O0x20); //4-bit 1-line
#el se

WRI TE(O0x28); //4-bit 2-1ine
#endi f
#el se
#i fdef ONE_LI NE

WRI TE(O0x30); //8-bit 1-line
t#el se

WRI TE(Ox38); //8-bit 2-line
#endi f
#endi f

#ifdef FOUR BIT
VWRI TE(0x80); //4-bit high nibble (2nd pass)
#endi f
send_cnmd(LCM CLS); /I clean display
send_cnd(TURN_ON DI SP) ; [/turn on display
send_cnd(| NCDD_CG _SHF C); /lauto increnent node
//cursor left and DD RAM address+1

/1 send conmand to LCM
voi d send_cnd(unsi gned char c){
#i fdef FOUR BIT

unsi gned char tnp;

tnp = ¢ << 4;

¢ &= (unsigned char) 0xf 0;
#endi f

busy_check();

LCM DATA = c;

LCM CTRL_RW = 0;

LCM CTRL_RS = 0;

LCM CTRL_E = 1;

67

HDLTEKi ‘ HT-IDE3000 Programmer’s Guide for Holtek C Language

LCM CTRL_E = 0O;
#i fdef FOUR BIT

WRI TE(t mp) ;
#endi f

}

/'l wite character to LCM
void wite_char(unsigned char c){
#i fdef FOUR BIT
unsi gned char tnp;
tnp = c<<4;
¢ &= (unsigned char) 0xf 0;
#endi f
busy_check();
LCM DATA = c;
LCM CTRL_RW =
LCM CTRL_RS =
LCM CTRL_E = 1;
LCM CTRL_E = 0;
#i fdef FOUR BIT
WRI TE(t mp) ;

0
1

#endi f
}

/1 Wait until the busy flag is not busy
voi d busy_check(voi d){
unsi gned char val, tnp;
do{
LCM CTRL_E = 0;
LCM DATA CTRL = Oxff;
LCM CTRL_RS = 0;
LCM CTRL_RW = 1;
LCM CTRL_E = 1;
val = LCM DATA,
LCM CTRL_E = O0;
#ifdef FOURBIT
tnp=val &(unsi gnedchar)Oxf0;//4-bit highnibble
LCM CTRL_E = 1; /1 pul se high
val = LCM DATA; [14-bit | ownibble (2nd pass)
LCM CTRL_E = 0; [l pul se | ow
val = (val>>4) | tnp; //conbine 2 pass

#endi f
}whil e(val & (unsigned char)0x80);
LCM CTRL_RW = 0;
LCM DATA CTRL = 0; //LCMnot busy, then set LCMdata
//bus to input port
}
Mask option

The BZ/BZB mask option selects All Disable, the others use the default value.

Using an I/O Port as a Serial Application

This application shows code to simulate serial port operation. This can be used as a
basis for the development of simple serial port applications such as 8-bit communication,
non-parity, single stop bit applications.

Program

//Serial.c
/1

68

HOLTEK ; == Chapter 4 C Examples

/1 Body: HT48C70-1
/1 Mask option
[T VDT :
/1

D sabl e
the others use the default val ue

#i ncl ude <ht 48c70-1. h>

#pragm vector isr_4 @O0x4
#pragm vector isr_8 @O0x8
#pragm vector isr_c @ Oxc

/1SR for s

a r
voi d isr_4(g
)

q

mer/event O
nmer/event 1

void isr_8(

uard
// external |SR
] ti

void isr_c(/1 ti

fe
{}
{}
{}

[linitialize

voi d saf eguar
_intc
_tnrOc
_tmOh
_tnr0l

for safeguard

o=
=5 =

IILRLeeeee

0x

#define tx _pa3 /ltransmit pin
#define rx _pa2 //receive pin
#define pac3 13 3
#define _pac2 _13 2

unsi gned char dat a;

void transmt(unsigned char);
voi d recei ve(unsi gned char *);

/Il system frequency: 4Miz
//#define T 38 //baudrate 19200 = 4M 4/(T+14) => T = 38
#define T 90 //baudrate 9600 = 4M 4/ (T+14) => T = 90
[/ #define T 194 //baudrate 4800 = 4M 4/ (T+14) => T = 194
[/ #define T 402 //baudrate 2400 = 4M 4/ (T+14) => T = 402
voi d mai n(){

saf equard_init();

_pac2 = 1; /lset receive pin to input node
_pac3 = 0; //set transmit pin to output node
whil e(1){

recei ve(&dat a) ;
transmt(data);

}

void transmt(unsigned char val){

69

HDLTEKi ‘ HT-IDE3000 Programmer’s Guide for Holtek C Language

unsi gned char i;

tx = 0;

for(i=0; i<8; i++){
_delay(T);
if (val & 1) tx = 1;
else tx = 0
val >>= 1;

}
_del ay(T);
tx = 1;
_delay(T);
}
voi d recei ve(unsi gned char *val){
unsi gned char i, v;
v = 0;
while(rx); //wait start bit
for(i=0; i<8; i++){
_del ay(T);
if (rx) v |= (unsigned char)0x80
VvV >>= 1;
}
_delay(T);//skip stop bit
del ay(T);
*val = v;
}

= Mask option

The WDT mask option selects Disable, the others use the default value.

Interrupt and Timer/Counter Applications

Electric Piano

This example describes how to implement a scanning keyboard and then from the
pressed key generate a corresponding defined sound frequency. Each time a key is
pressed the corresponding frequency value is placed into the timer/counter register.
When this counter counts to its maximum value an internal interrupt is generated and the
interrupt routine is run. At this point the timer/counter register value is reloaded and the
counting continues. In this way, by programming different values into the timer/counter
register, different values of frequency can be generated. The internal interrupt routine
contains code to change the state of the output port and thus generate the required
frequency on a corresponding pin and create the desired note. By adding a suitable
amplifier and speaker the system is complete. The important point of the software is to
use the timer/counter as a counter to control the output frequency. This frequency has to
be calculated.

= Circuit design

The I/O port bits PAO~PA7 are the outputs, with each output bit controlling a single
LED via a 240Q series resistor. By using the shift right and shift left operator the
illuminated LED can be made to move from left to right and vice versa. See the circuit
diagram for more details.

70

PiC“:rEF(i ‘ Chapter 4 C Examples

2MHz

>

% V33

Voo

4 Thik=«8

PAD
PA1
VDD PA2
PA3
RES3 PA4
PAS
PAG
PAT

z

0sCH
0sC
PBO
HT4BCS50
Program

/1

[/

/1 Body: HT48C50-1

/1 Mask option

//BZ/BZB : All Disable

//the others use the default val ue

#i ncl ude <ht 48c50-1. h>
#pragm vector isr_4 @O0x4

#pragm vector isr_8 @O0x8
#pragm vector isr_c @ O0xc

/11 SR for safequard
void isr_4(){} // external ISR
void isr_8(){} // timer/event O

/[linitialize regi

voi d safeguard_in
_intc =
_tnrOc =
_tmr0 =
_tnrlc
_tnrlh
_tm 1l
_pac
_pbc
_pcc
_pdc

for safeguard

o OI

[eXeX< NI

#define tmrlcd4d 11 4 //tinerl enable bit

71

liCH:TEﬂ(i;1$!£

HT-IDE3000 Programmer’s Guide for Holtek C Language

const unsigned char frq[16] =
0x21, Oxfe, 0x58, Oxfe, 0x84, Oxfe, 0x99, Oxfe,
Oxcl, Oxfe, Oxe3, Oxfe, 0x2, Oxff, Ox11l, Oxff};
unsi gned char frqg_idx;
void initial();
void wait_key press();
void wait_key rel ease();
void start_sound();
voi d stop_sound();
voi d mai n(){
saf equard_init();
initial();
whil e(1){
wai t _key_press();
start_sound();
wai t _key_rel ease();
stop_sound();
}
}
void wait_key press(){
unsi gned char i, key;
key = 0;
whi | e(! key)
key = ~_pa;
for(i=0; i<8; i++){
if (key & 0Ox1){
frqidx =i << 1,
br eak;
}
key >>= 1,
}
}
void wait_key_ rel ease(){
unsi gned char key;
key = 1;
whi | e(key)
key = ~ pa;
}
voi d start_sound()({
_intc = 9; //enable tinmerl
_tmrlc = 0x80; /1tinmer node
_tm1l = frq[frqg_idx]; //load sound freq.
_tmilh = frq[frq_idx+1];
_tnrlc4 1; [lstart timerl

}

voi d stop_sound(){

}

void isr_c(){

}

_tmric4 0; /lstop timerl
_pb = 0;
[l timerl
_pb = ~_pb; /1 generate square wave

72

HOLTEK i ‘ Chapter 4 C Examples

2>

void initial (){

_pac = Oxff; //set port A to input port
_pbc = 0; /lset port B to output port
_pb = 0;

Mask option

The BZ/BZB mask option selects All Disable, the others use the default value.

Clock

This application shows the use of the 16 bits of the timer counter to generate internal
interrupts and consequently generate a timing function. This application depends upon
the system clock frequency as a basis for its timing. The application shown here uses a
400KHz system clock which will generate a 100KHz timer/counter clock due to the
internal divide by four operation. With a 16 bit counter the maximum count is 65536,
this would generate an internal interrupt every 0.65536 seconds. However for a clock
function a basic time unit of 1 second is required so for this reason the timer/counter is
setup to record a basic timing of 0.5 seconds. In this case an interrupt will be generated
every 0.5 seconds, so by counting two interrupts a means of obtaining the basic timing
unit of 1 second is obtained. The application shown uses a 4 seven segment displays to
display a clock in 24 hour format, displaying both hours and minutes. Two keys are
provided to provide for adjustment of hours and minutes.

Circuit design

PAO~PA7 are setup as outputs with PAO~PA3 setup as the display data. PA4~PA7
provide scanning inputs to the control transistors for the segment displays. These will
scan the individual displays one after the other. PBO and PB1 are setup as inputs for the
switches which enable the hours and minutes to be preset.

\Vbb _A |
| R
VDD PAO 1 51l |_| || ||
L =2
RES Pas ;A | | ||
10k RES PA2 4 my | L _ _ _
— PA3 8] G| o ° ° °
INT B1/RBO | 15
4 RBIJ F COM COoM COM COM
0.1CF o LTJ ﬁ/'
7—% VSS O 7448 —_ 8050 1_8050 {_8050 8050
VbD |7
PA4 AN
PA5 AN
PA6 m
0SC1 PA7
\VVbb VVbD
PB7 M
400kHz T3 3300 5 @) @)
0sc2 %WD T
PBO
PB1 2[
\f Min. Adj. Hour Adj.
HT48C10-1 747

73

HDLTEK#

= Program

Cl ock. c

[/

/1

/1 Body: HT48C50-1

/1 Mask option

//BZ/BZB : Al Disable

/1 SysFreq: 400KHz

//the others use the default val ue

#i ncl ude <ht 48c50-1. h>

#define tnrlcd4d 11 4 //tinmer4d enable bit
#define mn_adj button _pbO
#defi ne hour_adj _button _pbl

#pragm vector isr_4 @O0x4
#pragm vector isr_8 @O0x8
#pragm vector isr_c @ O0xc

/11 SR for safe
void isr_4(){}
void isr_8(){}

quard

/1 external ISR
/1 timer/event O
/[linitialize regi
voi d safeguard_in

_intc =

for safeguard

I
o

void initial();

voi d check tinme();

voi d show cl ock();

unsi gned char mn_adj pressed();
unsi gned char hour_adj _pressed();
void mn_adjust();

voi d hour _adj ust();

voi d arrange_hour();

void set _timer();

unsi gned char hal f_second;
unsi gned char mn_I, mn_h;
unsi gned char hour _|, hour_h;

voi d mai n() {

safeguard_init();
initial ();

whil e(1){
check_time();
show _cl ock();

HT-IDE3000 Programmer’s Guide for Holtek C Language

if (mn_adj pressed()) mn_adjust();
i f (hour_adj pressed()) hour_adjust();

74

HOLTEK ; == Chapter 4 C Examples

void isr_c(){ [ltimerl
hal f _second++;
_pb = ~_pb; //flash 'dot' every 0.5 second
}
void initial (){
_pac = 0; /lset port A to output port
_pbc = Ox7f; //set port B to input port exclude pb7
_pb = 0;
_pa =0
mnl = 0;
mn_h = 0;
hour | = 0;
hour _h = O,
hal f _second = 0
_intc = 0x9; //enable tinerl

_tnrlc = 0x80; //tinmerl node (internal clock)
set _tiner();

/check if the mn_adj _button is pressed or not
/return 1: if the min_adj _button is pressed
/ 0: otherw se
nsi gned char nin_adj pressed(){
if (min_adj button == 0){//pressed
_del ay(2000); //debounce
i f (nin_adj_button == 0)
return 1; //still pressed, recognize it

}
/
/
/
u

return O;

/check if the hour_adj button is pressed or not
/return 1: if the hour_adj_button is pressed
/ 0: otherw se
nsi gned char hour_adj pressed(){
if (hour_adj button == 0){//pressed
_del ay(2000); //debounce
i f (hour adj_button == 0)
return 1; //still pressed, recognize it

}
/
/
/
u

return O;

}

voi d check_time()({
if (half_second >= 120){
half_second -= 120;

mn_|+
if (mn_l >= 10){
nln I = 0;
m n_h++;
if (mn_h >= 6){
mn_h =
hour I++
arrange_hour();
}
}

}

/1 This function is to arrange the hour val ue
voi d arrange_hour () {

75

HDLTEKi ‘ HT-IDE3000 Programmer’s Guide for Holtek C Language

if (hour_h == 2 && hour_| == 4){
hour_h = 0;
hour | = 0;
}
else if (hour_ | == 10){
hour | = 0;
hour _h++;
}
}
voi d show_cl ock() {
pa = mn|l | 0x10;
_pa = mn_h | 0x20
pa = hour| | 0x40;
_pa = hour_h | 0x80
}
/1 This function is to adjust the mnute.
/I Themnutewi || i ncrease lwhenthem n_adj buttonis pressed.
/11f thebuttonis heldlonger than 1.5 seconds, the mnute w ||
/lincrease 1 every 0.5 second
void m n_adjust(){
bit held long time = O;
repeat _i nc:
mon_| ++;
if (mn_l >= 10){
mnl = 0;
m n_h++;
if (mn_h >= 6) //don't care hour
mn_h = 0;

hal f _second =
whi | e(m n_adj button == 0){//while mn_adj_button
show cl ock(); /1 is held
if (lheld_ Iong time){
if (half_second>2){//Ionger than 1.5 sec
held _long time = 1; //set flag
gotorepeat _inc; //increase mnute

//less than 1.5 seconds, do nothing

el se{
i f (half_second)
goto repeat _inc; //inc 1, 0.5 sec
//1ess than 0.5 second, do nothing
}

hal f _second =
set _timer();

}

/1 This function is to adjust the hour.

/1 The hour wi Il increase 1 whenthe hour_adj _buttonis pressed.
/11f the buttonis held | onger than 1.5 seconds, the hour wl|l
/lincrease 1 every 0.5 second

voi d hour _adjust(){

bit held_long_time = 0;

repeat _inc:
hour | ++;
arrange_hour () ;
hal f _second = 0;
whi | e(hour _adj _button == 0){
show cl ock();

76

HOLTEK ; == Chapter 4 C Examples

if ('held long tine){
if (half_second>2){//longer than 1.5 sec
held long time = 1; //set flag
goto repeat _inc;//increase hour

//less than 1.5 seconds, do nothing

el se{
i f (half_second)
goto repeat_inc;//inc 1, 0.5 sec
/1l1ess than 0.5 second, do nothing
}

hal f _second = 0;
set _timer();

}
void set_tiner(){

_tnrlc4 = 0;

_tnrll = 0xbO;

_tm1lh = 0x3c;

_tnrlc4 = 1; /[lstart timerl
}

77

