

HT-IDE3000 Programmer''''s Guide

for Holtek C Language

Ver 1.1

Copyright © 2003 by HOLTEK SEMICONDUCTOR INC. All rights reserved. Printed in Taiwan.
No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any
form by any means, electronic, mechanical photocopying, recording, or otherwise without the
prior written permission of HOLTEK SEMICONDUCTOR INC.

 2

NOTICE

The information appearing in this document is believed to be accurate at the time of publication.
However, Holtek assumes no responsibility arising from the use of the specifications described.
The applications mentioned herein are used solely for the purpose of illustration and Holtek
makes no warranty or representation that such applications will be suitable without further
modification, nor recommends the use of its products for application that may present a risk to
human life due to malfunction or otherwise.

Holtek reserves the right to alter its products without prior notification. For the most up-to-date
information, please visit our web site at http://www.holtek.com.tw

Contents

I

Contents

HOLTEK C LANGUAGE .. 1

INTRODUCTION ... 1
C PROGRAM STRUCTURE.. 2

Statements .. 2
Comments .. 2

IDENTIFIERS.. 2
Reserved words .. 3

DATA TYPES ... 3
Data types and sizes... 3
Declaration .. 4

CONSTANTS .. 5
Integer constants.. 5
Character constants... 5
String constants ... 5
Enumeration constants .. 5

OPERATORS .. 6
Arithmetic operators .. 6
Relational operators .. 6
Equality operators ... 6
Logical operators... 7
Bitwise operators ... 7
Assignment operators .. 7
Increment and decrement operators .. 7
Conditional operators.. 8
Comma operator .. 8
Precedence and associativity of operators .. 8
Type conversions.. 9

PROGRAM CONTROL FLOW... 9
if-else statement ... 9
for statement .. 10
while statement .. 10
do-while statement ... 11
break and continue statement .. 11
goto statement and label .. 11
switch statement... 12

FUNCTIONS ... 12
Classic form ... 13
Modern form .. 13

POINTERS AND ARRAYS.. 14
Pointers.. 14
Arrays .. 14

STRUCTURES AND UNIONS.. 14
Structures... 14
Unions.. 15

PREPROCESSOR DIRECTIVES... 16
Macro substitution: #define ... 16
#error... 16
Conditional inclusion: #if #else #endif.. 16
Conditional inclusion : #ifdef .. 17

Content

 II

Conditional inclusion : #ifndef .. 17
Conditional inclusion : #elif .. 18
Conditional inclusion : defined.. 18
#undef .. 18
File inclusion: #include ... 19

LANGUAGE EXTENSIONS AND RESTRICTIONS.. 19
Keywords ... 19
Memory bank ... 19
Bit data type... 20
Inline assembly .. 20
Interrupts ... 21
Variables.. 22
Static Variables.. 22
Constants ... 22
Functions ... 22
Arrays .. 22
Constant variables ... 23
Pointer ... 23
Initial value.. 23
Multiply/Divide/Modulus ... 24
Built-in Function.. 25
Stack... 26

MIXED LANGUAGE.. 28
LITTLE ENDIAN ... 28
NAMING RULE OF FUNCTION AND PARAMETERS.. 28

Global variable.. 29
Local variable.. 29
Function... 30
Function parameters.. 30

PARAMETER PASSING.. 30
RETURN VALUE... 31
PRESERVING REGISTERS.. 31
CALLING ASSEMBLY FUNCTION FROM C PROGRAM... 31
CALLING C FUNCTION FROM ASSEMBLY PROGRAM... 32
PROGRAMMING ISR WITH ASSEMBLY LANGUAGE... 34

PROGRAMMING WITH C LANGUAGE ... 36
START A C PROGRAM ... 36
DEFINE THE INTERRUPT SERVICE ROUTINES... 37

Declare the name and address of ISR in C source file .. 37
Define the ISR in C source file... 37
Restriction.. 37

DEFINE TABLES AND SYMBOLS IN PROGRAM MEMORY.. 38
DEFINE VARIABLES IN DATA MEMORY... 40

Specify Address to a Variable .. 40
Access Variables in Multiple RAM Banks.. 40
Specify Variables In RAM Bank 0 (Improve the Performance) ... 41
Pointer boundary ... 42
Access the LCD data area.. 42

MCU SPECIAL FUNCTION REGISTERS... 43
Access the function registers.. 43
Access the IO ports .. 45

BUILT-IN FUNCTIONS .. 45
Assembly-like built-in functions... 46

Contents

III

Rotate functions ... 46
Swap function... 47
Delay cycle function... 47

PROGRAMMING TIPS ... 48
Declare variables as unsigned data type ... 48
Declare variables to be within RAM bank 0 .. 48
Declare a variable to be Bit type ... 49
Assign an address to a pointer... 50
Get the modulus by more effective method .. 50
Constant value conversion / casting .. 52

SERIAL PORT TRANSMITTING EXAMPLE ... 53
Preliminary Program... 53
Adjust Transmitting Timing ... 54
Adjust to Meet the Baud Rate .. 55

SKELETON PROGRAM EXAMPLE ... 56
DATA TYPE... 57

Data types .. 57
C EXAMPLES ... 59

INPUT/OUTPUT APPLICATIONS .. 59
Scanning Light ... 59
Traffic Light ... 60
Keyboard Scanner ... 62
LCM ... 65
Using an I/O Port as a Serial Application... 68

INTERRUPT AND TIMER/COUNTER APPLICATIONS... 70
Electric Piano .. 70
Clock .. 73

Chapter 1 Holtek C Language

1

Chapter 1
Holtek C Language

Introduction

The Holtek C compiler is based on ANSI C. Due to the architecture of the Holtek
micro-controller, only a subset of ANSI C is supported. This chapter describes the C
programming language supported by the Holtek C compiler. They will apply to both
types of compilers if there is no special mention.

This chapter covers the following topics:
� C program structure
� Identifiers
� Data types
� Constants
� Operators
� Program control flow
� Functions
� Pointers and arrays
� Structures and unions
� Preprocessor directives
� Language extensions and restrictions

HT-IDE3000 Programmer’s Guide for Holtek C Language

 2

C Program Structure

A C program is a collection of statements, comments, and preprocessor directives.

Statements
Statements, which may consist of variables, constants, operators and functions, are
terminated with a semicolon and perform the following operations:
� Declare data variables and data structures
� Define data space
� Perform arithmetic and logical operations
� Perform program control operations

One line can contain more than one statement. Compound statements are one or more
statements contained within a pair of braces and can be used as a single statement. Some
statements and preprocessor directives are required in the Holtek C source files. The
following is a shell:

void main()
{
/* user application source code */
}

The main function is defined within the user application source code. There may be
more than one source file for an application, but only one source file can contain the
main function.

Comments
Comments are used to document the meaning and operation of the source statements and
can be placed anywhere in a program except for the middle of a C keyword, function
name or variable name. The C compiler ignores all comments. Comments cannot be
nested. The Holtek C compiler supports two kinds of comments, block comment and
line comment.

� Block comment

The block comment begins with /* and ends with */, for example:

/* this is a block comment */

A block comment's end character */ may be placed in a different line from the beginning
block comment characters. In this case all the characters between the starting comment
characters and end comment characters, are treated as comments and ignored by the C
compiler.

� Line comment

A line comment begins with // and comments out all characters to the end of the line, for
example

// this is a line comment

Identifiers
The name of an identifier contains a sequence of letters, digits, and under scores with the
following rules:
� The first character must not be a digit.

Chapter 1 Holtek C Language

3

� Only the first 31 characters are significant.
� Upper case and lower case letters are different.
� Reserved words cannot be used.

Reserved words
The following are the reserved words supported by the Holtek C complier. They must be
in lower case.

auto bit break case char
const continue default do else
enum extern for goto if
int long return short signed
static struct switch typedef union
unsigned void volatile while

The reserved words double, float and register are not supported by the Holtek C
compiler.

Data types

Data types and sizes
Four basic data types are supported by the Holtek C compiler,

bit a single bit
char a single byte holding one character
int an integer occupying one byte
void an empty set of values, used as the type returned

by functions that generate no value

The following qualifiers are allowed

Qualifier Applicable Data Type Use

const any place the data in a ROM space

long int create a 16-bit integer

short int create an 8-bit integer

signed char, int create a signed variable

unsigned char, int create an unsigned variable

HT-IDE3000 Programmer’s Guide for Holtek C Language

 4

The following are the data types, sizes and range

Data Type Size (bits) Range

bit 1 0,1

char 8 -128 ~ 127

unsigned char 8 0 ~ 255

short int 8 -128 ~ 127

unsigned short int 8 0 ~ 255

int 8 -128 ~ 127

unsigned 8 0 ~ 255

long 16 -32768 ~ 32767

unsigned long 16 0 ~ 65535

Declaration
Variables must be declared before being used as this defines the data type and the size of
the variable. The syntax of variable declaration is:

data_type variable_name [, variable_name . . .] ;

where data_type is a valid data type and variable_name is the name of the variable. The
variables declared in a function are private (or local) to that function and other functions
cannot access these variables directly. The local variables in a function exist and are
valid only when this function is called, and are non-valid when exiting from the function.
If the variable is declared outside of all functions, then it is global to all functions.

The qualifier const can be applied to a declaration of any variable, to specify that the
value of the variable will not be changed. The variables declared with const are placed
within the ROM space. The const qualifier can be used in array variables. A const
variable must be initialized upon declaration, followed by an equal sign and an
expression. Other variables cannot be initialized when declared.

A variable can be declared in a specified RAM address by using the @ character; the
syntax is:

data_type variable_name @ memory_location ;

The memory_location specifies the address variable located. To allocate a variable
above the RAM bank 0 in the multiple RAM banks MCU, you might specify the bank
no. in the high byte of memory_location. You should check the data sheet of the Holtek
MCUs to get the information of the available RAM space.

For example:

int v1 @ 0x40; // declare v1 in the RAM bank 0 offset 0x40
int v2 @ 0x160;// declare v2 in the RAM bank 1 offset 0x60

Also, an array can be declared in a specified location:

int port[8] @ 0x20; // array port takes memory location
// 0x20 through 0x27

All variables implemented by the Holtek C compiler are static unless they are declared
as external variables. Note that both static and external variables will not be initialized

Chapter 1 Holtek C Language

5

to zero by default.

Note: Declaring a variable as unsigned type will get more efficient code than as signed.

Constants

A constant is any literal number, single character or character string.

Integer constants
An integer constant is evaluated as int type, a long constant is terminated with l or L.
Unsigned constants are terminated with a u or U, the suffix ul or UL indicates unsigned
long. The value of an integer constant can be specified with the following forms:

Binary constant: preceding the number by 0b or 0B
Octal constant: preceding the number by 0 (zero)
Hexadecimal constant: preceding the number by 0x or 0X
Others not included above are decimal

Character constants
A character constant is an integer, which is denoted by a single character enclosed by
single quotes. The value of a character constant is the numeric value of the character in
the machine s character set. ANSI C escape sequences are treated as a single character
constant.

Escape Character Description Hex Value

\a alert (bell) character 07
\b backspace character 08
\f form feed character 0C
\n new line character 0A
\r carriage return character 0D
\t horizontal tab character 09
\v vertical tab character 0B
\\ backslash 5C
\? question mark character 3F
\' single quote (apostrophe) 27
\'' double quote character 22

String constants
String constants are represented by zero or more characters (including the ANSI C
escape sequences) enclosed in double quotes. A string constant is an array of characters
and has an implied null (zero) value after the last character. Hence, the total required
storage is one more than the number of the characters within the double quotes.

Enumeration constants
Another method for naming integer constants is called enumeration. For example:

HT-IDE3000 Programmer’s Guide for Holtek C Language

 6

enum {PORTA, PORTB, PORTC} ;
defines three integer constants called enumerators and assigns values to them.

The enumeration constants have type int (-128~127). An explicit integer value might be
associated with an enumberation constants. For example,

enum {BIG=10, SMALL=20} ;

The first enumeration constant has the value 0 if no explicit value is specified.
Subsequent enumeration constants without explicit associations receive an integer value
one greater than the value associated with the previous enumeration constant.

An enumeration can be named. For example:

enum boolean {NO, YES};

The first name (NO) in an enum statement has the value 0, the next has the value 1.

Operators

An expression is a sequence of operators and operands that specifies a computation. An
expression follows the rules of algebra, may result in a value and may cause side effects.
The order of evaluation of subexpressions is determined by the precedence and grouping
of the operators. The usual mathematical rules for associativity and commutativity of
operators may be applied only where the operators are really associative and
commutative. The different types of operators are discussed in the following.

Arithmetic operators
There are five arithmetic operators,

+ addition
- subtraction
* multiplication
/ division
% modulus (the remainder of division, always positive or zero)

The modulus operator %, can only be used with integral data types.

Relational operators
The relational operators compare two values and return either a TRUE or FALSE result
based on the comparison.

> greater than
>= greater than or equal to
< less than
<= less than or equal to

Equality operators
The equality operators are exactly analogous to the relational operators

= = equal to
!= not equal to

Chapter 1 Holtek C Language

7

Logical operators
The logical operators support the logical operations AND, OR and NOT. They create a
TRUE or FALSE value. Expressions connected by && and || are evaluated from left to
right. The evaluation stops as soon as the result is known. The numeric value of a
relational or logical expression is 1 if the relation is true, and 0 otherwise. The unary
negation operator ! converts a non-zero operand into 0 and a zero operand into 1.

&& logical AND
|| logical OR
! logical NOT

Bitwise operators
There are six operators for manipulating bit-by-bit operations. The shift operators >>
and << perform the right and left shifts of the left operand by the number of bit positions
given by the right operand, which must be positive. The unary ~ yields the one's
complement of an integer, converts every 1-bit to a 0-bit and vice versa.

& bitwise AND
| bitwise OR
^ bitwise XOR
~ one's complement
>> right shift
<< left shift

Assignment operators
There are a total of 10 assignment operators for expression statements. For simple
assignment, the equal sign is used with the value of the expression replacing the variable,
in the left operand. This also provides a shortcut for modifying a variable by performing
an operation on itself.

<var> + = <expr> add the value of <expr> to <var>
<var> - = < expr> subtract the value of <expr> from <var>
<var> * = <expr> multiply <var> by the value of <expr>
<var> / = <expr> divide <var> by the value of <expr>
<var> % = <expr> modulus, remainder when<var>is divided

by <expr>
<var> & = <expr> bitwise AND <var> with the value of <expr>
<var> | = <expr> bitwise OR <var> with the value of <expr>
<var> ^ = <expr> bitwise XOR <var> with the value of <expr>
<var> >> = <expr> right shift <var> by <expr> positions
<var> << = <expr> left shift <var> by <expr> positions

Increment and decrement operators
The increment and decrement operators can be used in a statement by themselves, or can
be embedded within a statement with other operators. The position of the operator
indicates whether the increment or decrement is to be performed before (prefix operators)
or after (postfix operators) the evaluation of the statement it is embedded within.

++ <var> pre-increment
<var> ++ post-increment

HT-IDE3000 Programmer’s Guide for Holtek C Language

 8

- -<var> pre-decrement
<var>- - post-decrement

Conditional operators
The conditional operator ?: is a shortcut for executing a statement between two
selectable statements according to the result of the expression.

<expr> ? <statement1> : <statement2>

If <expr> evaluates to a nonzero value, <statement1> is executed. Otherwise,
<satement2> is executed.

Comma operator
A pair of expressions separated by a comma is evaluated from left-to-right and the value
of the left expression is discarded. All side effects of the left expression are performed
before the evaluation of the right expression. The type and value of the result are the
type and value of the right operand. For example,

f (a, (t=3, t+2), c) ;

has three arguments, the second of which has the value 5.

Precedence and associativity of operators
The following table lists the precedence and associativity of operators. The precedence
is from the highest to the lowest. Each box holds operators with the same precedence.
Unary and assignment operators are right associative, all others are left associative.

Operators Description Associativity

[] subscription left to right
() parenthesis
-> structure pointer
. structure member
sizeof size of type

++ increment right to left
- - dcrement
~ complement
! not
- unary minus
+ unary plus
& address of
* dereference

* multiply left to right
/ divide
% modulus (remainder)

+ add (binary) left to right
- subtract (binary)

<< shift left left to right

Chapter 1 Holtek C Language

9

>> shift right
< less than
<= less than or equal to
> greater than
>= greater than or equal to

== equal left to right
!= not equal
& bitwise AND
^ bitwise XOR (exclusive OR)
| bitwise OR
&& logical AND
|| logical OR
?: conditional expression

= simple assignment right to left
*= multiply and assign
/= divide and assign
%= modulus and assign
+= add and assign
= subtract and assign
<<= left shift and assign
>>= right shift and assign
&= bitwise AND and assign
|= bitwise OR and assign
^= bitwise XOR and assign

, comma left to right

Type conversions
The general rule for type conversion is to convert a "narrower" operand into a "wider"
one without losing information, such as converting an integer into a long integer. The
conversion from char to long is sign extension. Explicit type conversion can be forced
in any expression, with a unary operator called a cast. In the example:

(type-name) expression

the expression is converted to the named type

Program Control Flow

The statements in this section are used to control the flow of execution in a program.
The use of relational and logical operators with these control statements and how to
execute loops are also described.

if-else statement
� Syntax

if (expression)
statement1;
[else
statement2;

HT-IDE3000 Programmer’s Guide for Holtek C Language

 10

]
� Description

The if-else statement is a conditional statement. The block of statements executed
depends on the result of the condition. If the result of the condition is nonzero, the
block of its associated statements is executed. Otherwise, the block of statements
associated with the else statement is executed if the else block exists. Note that the
else statement and its block of statements may not exist as it is optional.

� Example

if (word_count > 80)
{

word_count=1;
line++;

}
else

word_count++;

for statement
� Syntax

for (initial-expression; condition-expression;
update-expression) statement;

The initial-expression is executed first and only once. It is used to assign an initial
value to a loop counter variable. This loop counter variable must be declared before
the for loop. The condition-expression is evaluated prior to each execution of the
loop. If the condition-expression is evaluated to be nonzero, the statement in the loop
is executed. Otherwise, the loop exits and the first statement encountered after the
loop is executed next. The update-expression executes after the statement of the loop.

� Description
The for statement is used to execute a statement or block of statements repeatedly.

� Example

for (i=0;i<10;i++)
a[i]=b[i]; // copy elements from an array

// to another array

while statement
� Syntax

while (condition-expression)
statement;

� Description
The while statement is another kind of loop. When the condition- expression is
nonzero, the while loop executes the statement. The condition-expression is checked
prior to each execution of the statement.

� Example

i=0;
while (b[i] !=0)
{

a[i]=b[i];
i++;

}

Chapter 1 Holtek C Language

11

do-while statement
� Syntax

do
statement;

while (condition-expression);
� Description

The do-while statement is another kind of while loop. The statement is always
executed before the condition-expression is evaluated. Hence, the statement executes
at least once, then checks the condition-expression.

� Example

i=0;
do
{

a[i]=b[i];
i++;

}while (i<10);

break and continue statement
� Syntax

break;
continue;

� Description
The break statement is used to force an immediate exit from while, for, do-while
loops and switch. The break statement bypasses normal termination and returns
control to the previous nesting level if a break occurs within a nested loop.

The continue statement orders the program to skip to the end of the loop and begins
the next iteration of the loop. In the while and do-while loops, the continue
statement forces the condition-expression to be executed immediately. In the for loop,
control passes to the update-expression.

� Example

char a[10],b[10],i,j;
for (i=j=0;i<10;i++)// copy data from b[] to a[],

// skip blanks
{

if (b[i]==0) break;
if (b[i]==0x20) continue;
a[j++]=b[i];

}

goto statement and label
� Syntax

goto label;
� Description

A label has the same form as a variable name, but followed by a colon. The scope of
a label is the entire function.

� Example
See the switch statement example

HT-IDE3000 Programmer’s Guide for Holtek C Language

 12

switch statement
� Syntax

switch (variable)
{

case constant1:
statement1;
break;

case constant2:
statement2;
goto Label1;

case constant3:
statement3;
break;

default:
statement;

Labell: statement4;
break;

}
The switch variable is tested against a list of constants. When a match is found, the
statements with that constant are executed until a break statement is encountered. If
no break statement exists, execution flows through the rest of the statements until the
end of the switch routine. If no match is found, the statements associated with the
default case are executed. The default case is optional.

� Description
The if-else statement can be used to select between a pair of alternatives, but becomes
cumbersome when many alternatives exist. The switch statement is an alternative
multi-way decision method that evaluates if an expression matches one of many
alternatives, and branches accordingly. It is equivalent to multiple if-else statements.
The switch statement's limitation is that the switch variable must be an integral data
type, and can only be compared against constant values.

� Example

for (i=j=0;i<10;i++)
{

switch (b[i])
{

case 0: goto outloop;
case 0x20:break;
default:

a[j]=b[i];
j++;
break;

}
}
outloop:

Functions
In the C language, all executable statements must reside within a function. Before a
function is used or called, it must be either defined or declared, otherwise a warning
message will be issued by the C compiler. Two syntax forms, namely classic and
modern, are supported for function declaration and definition. Unlike the variable, there
is no need and no way to assign a function in a specific bank for the MCU having
multi-bank of ROM. The linker will locate functions into a appropriate ROM bank.

Chapter 1 Holtek C Language

13

Classic form

return-type function-name (arg1, arg2,...)
var-type arg1;
var-type arg2;

Modern form

return-type function-name (var-type arg1, var-type arg2, ...)

In both forms, the return-type is the data type of the function returned value. If functions
do not return values, then return-type must be declared as void. The function-name is
the name of this function and is equivalent to a global variable of all other functions.
The arguments, arg1, arg2 etc, are the variables to be used in this function. Their data
type must be specified. These variables are defined as formal parameters to receive
values when the function is called.

� Function declaration
// classic form
return-type function-name (arg1, arg2, ...);
// modern form
return-type function-name (var-type arg1, var-type arg2,...);

� Function definition

// classic form
return-type function-name (arg1, arg2, ...)
var-type arg1;
var-type arg2;
{
statements;
}
// modern form
return-type function-name (var-type arg1, var-type arg2, ...)
{
statements;
}

� Passing arguments to functions

There are two methods for passing arguments to functions.
� Pass by value.

This method copies the argument values to the corresponding formal parameters of
the function. Any changes to the formal parameters will not affect the original values
of the corresponding variables in the calling routine.

� Pass by reference.
In this method, the address of the argument is copied to the formal parameters of the
function. Within the function, the formal parameters can access the actual variables
within the calling routine. Hence, changes to the formal parameters can be made to
the variables.

� Returning values from functions
By using the return statement, a function can return a value to the calling routine.
The returned value must be of a data type specified within the function definition. If

HT-IDE3000 Programmer’s Guide for Holtek C Language

 14

return-type is void, it means no return value, therefore no value should be in the
return statement. When a return statement is encountered, the function returns
immediately to the calling routine. Any statements after the return statement are not
executed.

Pointers and Arrays

Pointers
A pointer is a variable that contains the address of another variable. For ex-ample, if a
pointer variable, namely varpoint, contains the address of a variable var, then varpoint
points to var. The syntax to declare a pointer variable is

data-type *var_name;

The data-type of a pointer is a valid C data type. It specifies the type of variable that
var_name points to. The asterisk (*) prior to var_name tells the C compiler that
var_name is a pointer variable. Two special operators, the asterisk (*) and ampersand
(&), are associated with pointers. The address of a variable can be accessed by
preceding this variable with the & operator. The * operator returns the value stored at
the address pointed to by the variable.

In addition to * and &, there are four operators that can be applied to the pointer
variables: +, ++, -, --. Only integer quantities may be added or subtracted from pointer
variables. An important point to remember when performing pointer arithmetic is that
the value of the pointer is adjusted according to the size of the data type it is pointing to.

Arrays
An array is a list of variables that are of the same type and which can be referenced by
the same name. An individual variable in the array is called an array element. The first
element of an array is defined to be at an index of 0 and the last element is defined to be
at an index of the total elements minus one. C stores one-dimensional arrays in
contiguous memory locations. The first element is at the lowest address. C does not
perform boundary checking for arrays.

Assignment from an entire array to another array is not allowed. To copy, each
individual element must be copied one by one from the first array into the second array.
Any array element can be used anywhere a variable or a constant can be used.

Structures and Unions

Structures
� Syntax

struct struct-name
{

data-type member1;
data-type member2;
...
data-type membern;

} [variable-list] ;
� Description

Chapter 1 Holtek C Language

15

A structure is a collection of one or more variables, possibly of different types,
grouped together under a single name for convenient handling. Structures may be
copied and assigned to, passed to functions and returned by functions. C allows bit
fields. Nested structures are also allowed.

The reserved word struct indicates a structure is to be defined while struct-name is
the name of the structure. Within the structure, data-type is one of the valid data types.
Members within the structure may have different data types. The variable-list
declares variables of the type struct-name. Each item in the structure is referred to as
a member.

After defining a structure, other variables of the same type are declared with the
following syntax:

struct struct-name variable-list;
To access a member of a structure, specify the name of the variable and the name of
member separated by a period. The syntax is

variable.member1
where variable is the variable of structure type and member1 is a member of the
structure. A structure member can have a data type with a previously defined
structure. This is referred to as a nested structure.

� Example

struct person_id
{

char id_num[6];
char name[3];
unsigned long birth_date;

} mark;

Unions
� Syntax

union union-name
{

data-type member1;
data-type member2;
...
data-type memberm;

} [variable-list] ;
� Description

Unions are a group of variables of differing types that share the same memory space.
A union is similar to a structure, but its memory usage is very different. In a structure,
all the members are arranged sequentially. In a union, all members begin at the same
address, making the size of the union equal to the size of the largest member.
Accessing the members of a union is the same as accessing the members of a
structure. union is a reserved word and union-name is the name of the union. The
variable-list, which is optional, contains the variables that have the same data type as
union-name.

� Example

union common_area
{

char name[3];

HT-IDE3000 Programmer’s Guide for Holtek C Language

 16

int id;
long date;

} cdata;

Preprocessor Directives
The preprocessor directives give general instructions on how to compile the source code.
It is a simple macro processor that conceptually processes the source codes of a C
program before the compiler properly parses the source program. In general, the
preprocessor directives do not translate directly into executable code. It removes
preprocessor command lines from the source file and expands macro calls that occur
within the source text and adds additional information, such as the #line command, on
the source file. The preprocessor directives begin with the # symbol. A line that begins
with a # is treated as a preprocessor command, and is followed by the name of a
command. The following are the preprocessor directives:

Macro substitution: #define
� Syntax

#define name replaced-text
#define name [(parameter-list)] replaced-text

� Description
The #define directive defines string constants that are substituted into a source line
before the source line is evaluated. The main purpose is to improve source code
readability and maintainability. If the replaced-text requires more than one line, the
backslash (\) is used to indicate multiple lines.

� Example

#define TOTAL_COUNT 40
#define USERNAME "Henry"
#define MAX(a,b) (((a)>(b))?(a):(b))
#define SWAP(a,b) {int tmp; \

tmp=a; \
b=a; \
a=tmp;}

#error
� Syntax

#error message-string
� Description

The #error directive generates a user-defined diagnostic message, message-string.
� Example

#if TOTAL_COUNT > 100
#error "Too many count."
#endif

Conditional inclusion: #if #else #endif
� Syntax

#if expression
source codes1
[#else
source codes2]
 #endif

Chapter 1 Holtek C Language

17

� Description
The #if and #endif directives pairs are used for conditionally compiling code
depending upon the evaluation of the expression. The #else which is optional
provides an alternative compilation method. If the expression is nonzero, then the
source codes1 will be compiled. Otherwise, the source codes2, if it exists, will be
compiled.

� Example

#define MODE 2
#if MODE > 0
#define DISP_MODE MODE

#else
#define DISP_MODE 7

#endif

Conditional inclusion : #ifdef
� Syntax

#ifdef symbol
source codes1
[#else
source codes2]
#endif

� Description
The #ifdef directive is similar to the #if directive, except that instead of evaluating
the expression, it checks if the specified symbol has been defined or not. The #else
which is optional provides alternative compilation. If the symbol is defined, then the
source codes1 will be compiled. Otherwise, the source codes2, if it exists, will be
compiled.

� Example
#ifdef DEBUG_MODE
#define TOTLA_COUNT 100
#endif

Conditional inclusion : #ifndef
� Syntax

#ifndef symbol
source codes1
[#else
source codes2]
#endif

� Description
The #ifndef directive is similar to the #ifdef directive. The #else which is optional
provides alternative compilation. If the symbol has not been defined, then the source
codes1 will be compiled. Otherwise, the source codes2, if it exists, will be compiled.

� Example

#ifndef DEBUG_MODE
#define TOTAL_COUNT 50
#endif

HT-IDE3000 Programmer’s Guide for Holtek C Language

 18

Conditional inclusion : #elif
� Syntax

#if expression1
source codes1
#elif expression2
source codes2
[#else
source codes3]
#endif

� Description
The #elif directive is accompanied with the #if directive. It provides other
compilation conditions in addition to the usual two. If the expression1 is nonzero,
then the source codes1 will be compiled. If expression1 is zero, then expression2 is
checked to see if it is nonzero. If so then the source codes2 will be compiled.
Otherwise, the source codes3, if it exists, will be compiled.

� Example

#if MODE==1
#define DISP_MODE 1
#elif MODE==2
#define DISP_MODE 7
#endif

Conditional inclusion : defined
� Syntax

#if defined symbol
source codes1
[#else
source codes2]
#endif

� Description
The unary operator defined can be used within the directive #if or #elif.

A control line of the form
#ifdef symbol

is equivalent to
#if defined symbol

A line of the form
#ifndef symbol

is equivalent to
#if !defined symbol

� Example
#if defined DEBUG_MODE
#define TOTAL_COUNT 50
#endif

#undef
� Syntax

#undef symbol
� Description

The #undef directive causes the symbol's preprocessor definition to be erased. Once
defined, a preprocessor symbol remains defined and in scope until the end of the

Chapter 1 Holtek C Language

19

compilation unit or until it is undefined using an #undef directive.
� Example

#define TOTAL_COUNT 100
...
#undef TOTAL_COUNT
#define TOTAL_COUNT 50

File inclusion: #include
� Syntax

#include <file-name>
or
#include ”file-name”

� Description
#include inserts the entire text from another file at this point in the source file. When
<file-name> is used, the compiler looks for the file in the directory specified by the
environment variable INCLUDE. If the INCLUDE is not defined, the C compiler
looks for the file in the path. When ”file-name” is used, the C compiler looks for the
file as specified. If no directory is specified, the current directory is checked.

� Example
#include <ht48c10-1.h>
#include "my.h”

Language Extensions and Restrictions

Holtek C language provides a number of extensions for ANSI C. Most of these provide
support for elements of the Holtek microcontroller architecture. Due to the limited
resource of the microcontroller, there are also some restrictions you should take care.

Keywords
The following is a list of the keywords available in Holtek C.

@ bit norambank rambank0 vector

The following keywords and qualifiers are not supported:
double float register

Memory bank
For variables located in high banks (not bank 0), they should be accessed through
indirect addressing mode. To achieve the efficiencies, you might locate the most used
variables in Ram bank 0. The Holtek C provides you a rambank0 keyword to declare
variables in bank 0.
� Syntax

#pragma rambank0
//data declarations
#pragma norambank

� Description
The rambank0 keyword directs the compiler to declare subsequent variables to
locate in Ram bank 0 until the norambank keyword meets. For the single Ram bank

HT-IDE3000 Programmer’s Guide for Holtek C Language

 20

MCU, these two keywords will be ignored.
� Example

#pragma rambank0
unsigned int i, j; //i, j located in Ram bank 0
long len; //len located in Ram bank 0

#pragma norambank
unsigned int iflag; //iflag's bank number is unknown

#pragma rambank0
int tmp; //tmp located in Ram bank 0

…
i = 1; //MOV A,1

//MOV _i, A

iflag = 1; //MOV A,BANK _iflag
//MOV [04H],A
//MOV A,OFFSET _iflag
//MOV [03H],A
//MOV A,1
//MOV [02H],A

Bit data type
Holtek C provides you with a bit data type which may be used for variable declarations,
argument lists, and function return values. A bit variable is declared just as other C data
types are declared. For the MCU supports multiple RAM banks, you should declare the
bit variables in the RAM bank 0 (using #pragma rambank0) area.
� Example

#pragma rambank0
bit test_flag; //bit var should locate in rambank0

bit testfunc(//bit function
bit f1, //bit arguments
bit f2)

{
...
return 0; //return bit value

}
� Restriction
— To get the benefit of the bit data type, it is not recommended to declare a

bit array variable.
— There is no bit pointer.
— There is no bit data type member in a structure declaration.

Inline assembly
� Syntax

#asm
< [label:] opcode [operands] >
...
#endasm

� Description
The #asm and #endasm are the inline assembly preprocessor directives. The #asm

Chapter 1 Holtek C Language

21

directive inserts Holtek's assembly instruction(s) after this directive (or within the
directive #asm and directive #endasm) into the output file directly.

� Example
// convert low nibble value in the accumulator to ASCII
#asm
; this is an inline assembly comment
and a, 0fh
sub a, 09h
sz c
add a, 40h-30h-9
add a, 30h+9
#endasm

Interrupts
The Holtek C language provides a means for implementing interrupt service routines
(ISRs) through the preprocessor directive #pragma. The directive #pragma vector is
used to declare the name and address of the ISRs. Any function declared later with the
same name as defined with #pragma vector is the ISR for the vector. The return
statement within the ISR generates a RETI instruction.
� Syntax

#pragma vector symbol @ address
� Description
symbol is the name of the interrupt service routine.
address is the interrupt address. The reset vector (address 0) is reserved for main

function and therefore cannot be used.
� Restriction

There are five restrictions to keep in mind when writing an ISR.
— There is no parameter for ISR; the return type is void.
— The ISR is not reentrant. Do not enable the interrupt in the ISR.
— Do not call the ISR explicitly in your programs. It should always be

invoked implicitly by the system while the interrupt coming.
— Do not call the user defined function written in C within the ISR. It is safe

to use the system calls. If a function has to be called within the ISR then it
should be written in assembly. It is safety to call the built-in functions in
the ISR.

— It is the user's responsibility to preserve the affected registers when they
are used in inline assembly in the ISR. The Holtek C compiler will only
preserve the affected registers written in the C statements.

� Example

#pragma vector timer0 @ 0x8
extern void ASM_FUNCTION();
void setbusy(){
...
}

void timer0(){
...
ASM_FUNCTION(); //The ASM_FUNCTION should be

// an assembly function

HT-IDE3000 Programmer’s Guide for Holtek C Language

 22

_delay(3); //OK. built-in function

setbusy(); //Wrong! do not call C function
}

Variables
The operator '@' can be used to specify the address of variables in the data memory.
� Syntax

data_type varaible_name @ memory_location
� Description

The memory_location specifies the address variable located. For single bank of
RAM/ROM, the memory_location is one byte. For multiple banks of RAM/ROM, the
memory_location is two bytes, the high byte is the bank number. You should check the
data sheet of the Holtek MCUs to get the information of the available RAM space.
� Example

int v1 @ 0x5B; // declare v1 in the RAM bank 0 offset 0x5B
int v2 @ 0x2F0;//declare v2 in the RAM bank 2 offset 0xF0

Static Variables
Holtek C supports file scope static variables while local static variables does not.
� Example

static int i; // file scope static
void f1(){

i = 1; //OK
}
void f2(){

static int j; //Wrong. local static variable
// is not supported

...
}

Constants
Holtek C supports binary constants. Any string that begins with 0b or 0B will be treated
as a binary constant.

For example:

0b101= 5
0b1110= 14

Functions
Avoid using reentrant and recursive code.

Function can not return a structure data type.

Arrays
An array should be located in a contiguous block of memory and must not have more
than 256 elements. To speak precisely, the size of an array is limited to the size of the

Chapter 1 Holtek C Language

23

RAM bank of the Holtek MCU you used.

Constant variables
Constant variables must be declared in global scope and be initialized when declared. A
constant variable could not be declared as external.

A constant array should specify the array size otherwise an error generated. The size of
an array is limited to 255 bytes.

const char carray[]= {1,2,3}; //wrong
const char carray[3]= {1,2,3}; //right

A constant string must be used in the C file with the main function.

//test.c
char *str;
void f1(char *s);
void f2(){

f1(“abcd”); //”abcd” is a constant string
// If there is no main() function declared
//intest.cthentheHoltek C compiler would
// generate an error.

str = “1234”; //”1234” is constant string
}
...
void main(){

...
}

Pointer
Pointer cannot be applied to constant and bit variables

Initial value
Global variables cannot be initialized when declared. Local variables do not have this
constraint. Constant variables must be initialized when declared.

For example:

unsigned int i1= 0;//illegal declaration; can not be
//initialized

unsigned int i2;
const unsigned int i3; //illegal declaration; should be

//initialized
const unsigned int i4=5;
const char a1[5]; //illegal declaration; should be

//initialized
const char a2[5]={0x1,0x2,0x3,0x4,0x5};
const char a3[4]="abc"; //={'a', 'b', 'c', 0}
const char a4[3]="abc"; //={'a', 'b', 'c'}
//const char a5[2]=”abc”; //array size mismatched

HT-IDE3000 Programmer’s Guide for Holtek C Language

 24

Multiply/Divide/Modulus
The multiply, divide and modulus ("*", "/", "%") operators are implemented by system
calls.

Chapter 1 Holtek C Language

25

Built-in Function

� WDT & halt & nop

C system call Assembly code

void _clrwdt() CLR WDT

void _clrwdt1() CLR WDT1

void _clrwdt2() CLR WDT2

void _halt() HALT

void _nop() NOP

� Rotate right/left

void _rr(int*); //rotate 8 bits data right
void _rrc(int*); //rotate 8 bits data right through carry
void _lrr(long*); //rotate 16 bits data right
void _lrrc(long*);//rotate 16 bits data right through carry
void _rl(int*); //rotate 8 bits data left
void _rlc(int*); //rotate 8 bits data left through carry
void _lrl(long*); //rotate 16 bits data left
void _lrlc(long*);//rotate 16 bits data left through carry

� swap nibble
void _swap(int *); //swap nibbles of 8 bits data

� delay cycle
void _delay(unsigned long); //delay n instruction cycles

The _delay function forces the MCU to execute the specified cycle count. A value of
zero causes an endless loop. The parameter of the _delay could be constant value only.
It does not accept a variable.

Example :

//assume the watch dog timer is enable
//and using one instruction

void error(){
_delay(0); //infinite loop, same as while(1);

}

void dotest(){
unsigned int ui;
ui = 0x1;
_rr(&ui); //rotate right
if (ui != (unsigned int)0x80) error();
ui = 0xab;
_swap(&ui);
if (ui != (unsigned int)0xba) error();

}

void main(){
unsigned int i;
for(i=0; i<100; i++){

HT-IDE3000 Programmer’s Guide for Holtek C Language

 26

_clrwdt();
_delay(10); //delay 10 instruction cycle
dotest();

}
}

Example :

//assume the watch dog timer is enable
//and using two instructions
void dotest(){

...
}

void main(){
unsigned int i;
for(i=0; i<100; i++){

_clrwdt1();
_clrwdt2();
dotest();

}
}

Stack
Because the Holtek micro-controllers have limited depth stack the programmer needs to
consider the function call depth to avoid stack overflow. The multiply, divide, modulus,
and const variables are implemented by "call" instructions, taking one stack.

Operator/System Function Stack Needed

main () 0
_clrwdt() 0
_clrwdt1() 0
_clrwdt2() 0
_halt() 0
_nop() 0
_rr(int*) 0
_rrc(int*) 0
_lrr(long*) 0
_lrrc(long*) 0
_rl(int*) 0
_rlc(int*) 0
_lrl(long*) 0
_lrlc(long*) 0
_swap(int*) 0
_delay(unsigned long) 1
* 1
/ 1
% 1
constant array 1

Chapter 1 Holtek C Language

27

HT-IDE3000 Programmer’s Guide for Holtek C Language

 28

Chapter 2
Mixed language

The Holtek Cross Tools (Cross Assembler, Cross Linker, Library and Holtek C compiler)
provide methods to program with mixed languages, Holtek assembly language and C
language. That means a project can consist of source files programming with assembly
language and C language. However, the programmer should conform to some rules
when programming with mixed language. In order to facilitate the program coding, this
chapter describes the conventions that Holtek C compiler compiles a C program into the
assembly language, how to define the subroutine name, etc. The following are the
topics:

� Little endian
� Naming rule of functions and parameters
� Parameter passing
� Return value
� Preserving registers
� Calling assembly function from C program
� Calling C function from assembly program
� Programming ISR with assembly language

Little endian
The data format adopted by the Holtek C compiler is Little-Endian, i.e. the low byte of a
WORD is the WORD's least significant byte, and the high byte is the most significant. In
memory allocation, the low byte occupies the lower address and high byte occupies the
higher address.

For example

long var @ 0x40;
var = 0x1234;

Then the address 0x40 contains 0x34, and the address 0x41 contains 0x12.

Naming rule of function and parameters
The Holtek Cross Assembler is non case-sensitive when handling symbol names.
Actually, all symbol names are translated into uppercase no matter what the original
form is. But the Holtek C language is case-sensitive. Due to the difference of these two
languages, the variables and functions which are defined in C source files and referred
by the assembly program should be defined as uppercase.

The names of the global variables and functions in C language are prefixed with
underscore when C compiler translates them into the assembly language. For the local

Chapter 2 Mixed Language

29

variables, if a local variable is declared without referenced, the C compiler won't reserve
memory space for it. By checking the assembly file generated by the Holtek C compiler,
the programmer can find out what the translated name of the C local variable is.

Global variable
A global variable in a C file is translated into the same case letters with a prefixed
underscore.

For example,

TimerCt
TMP

will be translated into

_TimerCt
_TMP

Local variable
If a local variable in a C function is not referenced by other programs, it will not be
translated into assembly language. By checking the assembly file to find out what the
result is.

void main(){
int i, j, k; // k is not used
long m;
char c;
i = j = m = c = 2;
#asm
set CR3[1].2 ;set bit 10 of m => m |= 0x400

#endasm
}

The corresponding part of the assembly file will looks like this:

#line 2 "C:\HT-IDE2000\SAMPLE\NAME.C"
LOCAL CR1 DB ? ; i
#pragma debug variable 2 CR1 i
#line 2 "C:\HT-IDE2000\SAMPLE\NAME.C"
LOCAL CR2 DB ? ; j
#pragma debug variable 2 CR2 j
#line 3 "C:\HT-IDE2000\SAMPLE\NAME.C"
LOCAL CR3 DB 2 DUP (?) ; m
#pragma debug variable 2 CR3 m
#line 4 "C:\HT-IDE2000\SAMPLE\NAME.C"
LOCAL CR4 DB ? ; c
#pragma debug variable 2 CR4 c

The second and third line indicates that the i is translated into CR1 in the assembly file.
By the same way, j is translated into CR2, m is CR3 and c is CR4. The k is not
referenced so it is not translated.

Caution: If the local variables are added to or removed from or arranged the order, then the
translated names might be changed by the C compiler.

HT-IDE3000 Programmer’s Guide for Holtek C Language

 30

For the above sample code, if the micro controller supports multiple RAM banks, then
the instruction

set CR3[1].2

can execute correctly or not. The program will corrupt if the CR3 is allocated in high
bank. But this phenomenon won't happen, because the local variable is defined with
LOCAL directive in the translated assembly file and instructs the assembler to allocate
the variable in the RAM bank 0. Hence it can execute correctly in the way like a variable
does in the single RAM bank.

Function
Like the global variable, a function in a C file is translated into the same case letters with
a prefixed underscore.

For example,

GetKey
IsBusy

will be translated into

_GetKey
_IsBusy

Function parameters
The names of the function parameters in a C file are translated into the function name
following the number of the parameters occurring, indexed from 0.

For example,

GetKey(int row, long col)

row is translated into GetKey0
col is translated into GetKey1

Parameter passing

Due to the micro controller resource's limitation, the Holtek C compiler passes
parameters to function via the RAM space instead of the stack. The naming of the
function parameters are the function name appending the number of the parameters
occurring, indexed from 0. Like the local variable, the function parameters are also
allocated in the RAM bank 0.

For example:

void function (int a, int b)

Then the parameter a will be translated into function0, b will be function1.

For mixed language, the data type of function parameters should always declares as
BYTE in assembly, if it's more than one byte, e.g. WORD (2 bytes), programmer should
use the instruction “DB n DUP(?) “ to declare it.

Chapter 2 Mixed Language

31

Return value

The return value of a C function is located in the A register or in the RH system variable.
If the size of the return value is one byte (e.g. char, unsigned char, int, unsigned int,
short, unsigned short), then the value is stored in the A register. If it is two bytes (e.g.
long, unsigned long, pointer), then the high byte is stored in the RH and the low byte is
stored in the A register.

Note: The RH variable is located in RAM bank 0.

Preserving registers

Except the ISR, there is no need to preserve the registers when writing a function in
assembly. If a user writes an ISR in assembly language, then it is his responsibility to
preserve the registers used in the ISR.

Calling assembly function from C program
This section describes the steps to call an assembly function from a C program. The
steps are divided into two parts, one is for the assembly file, the other is for C file.

� In Assembly File
� Declare RH as external byte variable if the return value is two bytes.
� Declare the function name with prefixed underscore as public.
� Declare the function parameters, if there is, in the RAM bank 0 as public. Be

aware of the naming of parameters.
� Put the return values into A or RH.

� In C File
� Declare the prototype of the external function name with uppercase
� Call it

Example
The following function is defined in assembly file and called by a C program,

long KEYIN(int row, long col);

In assembly file

;;Declare external byte variable RH
EXTERN RH:BYTE

;;Declare function name & parameters as public
PUBLIC _KEYIN, KEYIN0, KEYIN1

;;Declare parameters
RAMBANK 0 KEYINDATA ;suppose the MCU has multiple ram banks
KEYINDATA .section 'data'
KEYIN0 DB ? ;row
KEYIN1 DB 2 DUP (?) ;col, don't use “KEYIN1 DW ?”

;function body
CODE .section 'code'
_KEYIN:

HT-IDE3000 Programmer’s Guide for Holtek C Language

 32

. . .
 MOV A, KEYIN0 ;retrieve row
. . .
 MOV A, KEYIN1 ;retrieve low byte of col
. . .
 MOV A, KEYIN1[1] ;retrieve high byte of col
. . .
;; Put the return values into A and RH
 MOV A,0A0H ;suppose the return value is 0xA010
 MOV RH,A ; store high byte 0xA0 to RH
 MOV A,10H ; store low byte 0x10 to A
 RET

In C file

// Declare the external function name with uppercase
extern long KEYIN(int row, long col);
long rc;
. . .
// Call it
 rc = KEYIN(10, 20L);

Calling C function from assembly program
This section describes the steps to call a C function from an assembly program. For the
micro controller with multiple ROM banks, it is important to set the BP (bank pointer)
before calling the function.

� In C File
� Declare the function name with uppercase

� In Assembly File
� Declare RH as external byte variable if the return value is two bytes.
� Declare the external function name with prefixed underscore
� Declare the function parameters as external if there is. Be aware of the naming

of parameters.
� Set function parameters if there is
� Call C function

Call the C function directly if the micro controller supports single
RAM/ROM bank.

 Set BP to the bank of function first, then calls the C function if the micro
 controller supports multiple RAM/ROM banks.

� Get return value from A or RH

Example 1
The following function is defined in C language and called by assembly program

long KEYIN(int row, long col);

and the micro controller has single ROM bank.

Chapter 2 Mixed Language

33

//--
// In C file, function definition
//--
long KEYIN(int row, long col){
. . .
}

;;----------------------------
;; In assembly file
;; ----------------------------
;;Declare external byte variable RH
EXTERN RH:BYTE

;;Declare the external function name with prefixed underscore
extern _KEYIN: near ;; underscore and function name

;;Declare the function parameters as external variables
extern KEYIN0:byte ; function parameter : row
extern KEYIN1:byte ; function parameter : col, although it's 2 bytes,

 ; to declare it as BYTE
code_ki .section 'code'

;; Set function parameters for calling KEYIN(0x10, 0x200L)
mov a,10H
mov KEYIN0,a ; put value to function parameter : row
mov a,2H
mov KEYIN1[1],a ; put value to high byte of parameter : col
clr KEYIN1 ; put value 0 to low byte of parameter : col

;; Call C function
call _KEYIN

;; Get return value from A or RH
;; A register keeps low byte of return value
;; RH keeps high byte of return value

Example 2
The following function is defined with C language and called by assembly program,

long KEYIN(int row, long col);

and the micro controller supports multiple ROM banks

//--------------------------------------
// In C file
//--------------------------------------
long KEYIN(int row, long col){
. . .
}

;--------------------------
; In assembly file

HT-IDE3000 Programmer’s Guide for Holtek C Language

 34

;----------------------------

;;Declare external byte variable RH
EXTERN RH:BYTE

;; Declare the external function name with prefixed underscore
extern _KEYIN:near

;; Declare the function parameters as external variables
extern KEYIN0:byte ; parameter : row
extern KEYIN1:byte ; parameter : col, although it's 2 bytes,

 ; only declare one BYTE

code_ki .section 'code'

;;Set function parameters for calling KEYIN(0x10, 0x200L)
mov a,10
mov KEYIN0,a ; parameter : row
mov a ,2
mov KEYIN1[1],a ; high byte of the parameter : col
clr KEYIN1 ; low byte of the parameter : col

;; Call C function in multiple ROM banks
;; Set BP to the bank of function first

mov a, bank _KEYIN
mov bp , a ; change the bank number
call _KEYIN

;; Get return value from A or RH
;; A register keeps low byte of return value
;; RH keeps high byte of return value

Programming ISR with assembly language
An ISR (Interrupt Service Routine) is invoked by hardware interrupt. It should not be
explicitly called by user, hence it doesn’t have parameters passing nor return value..
When you write an ISR in assembly, there is nothing to do with the other c files. All you
need to do is to add the assembly file into the project. Please refer to the assembly
language user’s guide for more information about ISR programming.

Do not call a C function from an ISR, no matter the ISR is written in assembly or C.

Chapter 2 Mixed Language

35

HT-IDE3000 Programmer’s Guide for Holtek C Language

 36

Chapter 3
Programming With C
Language

This chapter covers the following sections:
� Start a C Program
� Define the Interrupt Service Routines
� Define Tables and Symbols in Program Memory
� Define Variables in Data Memory
� MCU Special Function Registers
� Built-in Functions
� Programming Tips
� Serial Port Transmitting Example
� Skeleton Program Example
� Data Type

Start a C Program

The source files of a project in HT-IDE3000 may be written by Holtek assembly
language or C language. After a chip reset, the program always begins execution at
address 0 of Program Memory. When there is at least one source file is programming
with C language and the program entry point is the C program, then the function main is
forced to be located on address 0 of Program Memory by C compiler. Also, the
following rules must be followed,
� A main function has been defined in a source file and all other source files can

not define it. The main function is the entry point of program execution.
� The address 0 of Program Memory can not be used for other functions, tables

or Code sections . This address is used by main function only. The following
statement will cause an error when building the project.

 #pragma vector ResetFunction @ 0x00

The function ResetFucntion can not be defined at address 0

Example

void test(){
}

void main(){ // define the main function
test();

}

Chapter 3 Programming With C Language

37

Define the Interrupt Service Routines

When a project needs to handle the MCU interrupts and the corresponding interrupt
service routines (ISR) are going to program with C language, then the proper usage and
restrictions should be noticed.

It is not necessary to preserve the system registers explicitly, the Holtek C compiler
preserves the used registers automatically.

Declare the name and address of ISR in C source file
To declare the name and address by using the pragma vector statement as follow,

#pragma vector IsrRoutineName @ address

pragma and vector are keywords.
IsrRoutineName is the name of the interrupt service routine.
address is the memory address of the interrupt service routine. The address 0 is
reserved for the main function and cannot be used.

Define the ISR in C source file
To define a function with the same name as IsrRoutineName in above #pragma
vectorvectorvectorvector.

#pragma vector _ExternISR @ 0x04

void _ExternISR(void){

}

Restriction
There are some restrictions to keep in mind when writing an ISR with C language.
� There is no parameter for ISR and the return type is void.
� The ISR is not reentrant. Do not enable the interrupts in ISR.
� Do not call the ISR explicitly within the programs. It should always be

invoked implicitly by the system when the interrupt occurs.
� Do not call any user defined C function in ISR. But calling the built-in

functions is safe. If ISR wants to call a function, the function should be written
with assembly language.

� If ISR contains inline assembly instructions, then the affected registers due to
these instructions execution should be preserved before execution and restored
after execution . The Holtek C compiler only preserves the affected registers
caused by C statements.

Example

#include <ht47c20.h>
#pragma vector _ExternISR @ 0x4
#pragma vector _TimeBaseISR @ 0x8

HT-IDE3000 Programmer’s Guide for Holtek C Language

 38

#pragma vector _RTCISR @ 0xc
#pragma vector _TimerISR @ 0x10

unsigned count;

void _ExternISR(void){
}

void _TimeBaseISR(void){
count=count>>7|count<<1;
_pa = count;

}

void _RTCISR(void){
}

void _TimerISR(void){
}

void main()
{

count=0xee;
_intc0=0x05; //EMI&ETBI ENABLE
while(1);

}

Define Tables and Symbols in Program Memory
The Holtek C compiler allocates program memory for those tables and symbols with
fixed value. When a table (array) or a symbol with the fixed value, then it can be located
in program memory by declaring its type as const. The usage of this symbol or array is
the same as those symbols or array defined in Data Memory. The difference is the
symbol or array in Program Memory can not be modified. The maximum value of these
constants is 255, however if higher values are needed they can be separated into several
constants.

Example

// below three variables are in Program Memory
const unsigned char ascii[16]=”0123456789ABCDEF”;
const unsigned char pattern[16]={0,1,2,3,4,5,6,7,8,

9,10,11,12,13,14,15};
const unsigned int cl = 0x8B;

// below variables are in Data Memory
#pragma rambank0
unsigned char str[2];

void itoa(unsigned int v, unsigned char *s){
*s = ascii[v & 0xf];
_swap(&v); //swap nibble
*(s+1) = ascii[v & 0xf];

}

void main(){
unsigned int val;
val = cl;
itoa(val, str);

}

Note: The symbols or array of type const should be initialized when declared. The size

Chapter 3 Programming With C Language

39

of a const array should also be specified.

HT-IDE3000 Programmer’s Guide for Holtek C Language

 40

Define Variables in Data Memory
There are two or three functional groups in Holtek MCU Data Memory, the register
area, the general data area and the LCD data area. The Data Memory may consists of
more than one bank, the RAM bank 0 and other RAM bank area.

The register area is the memory resident MCU function registers. The LCD data area
stores the data which are used for LCD display. The general data area applies for the
variables when programs execute. All Holtek’s MCUs have the register area and the
RAM bank 0 data area. But only some of them have more than one RAM bank. Please
refer to corresponding data sheet for more information.

If not explicitly specified address, a variable will be allocated to the general data area by
C compiler, it is relocatable. As for registers and the LCD data area, a proprietary
address should be specified explicitly, otherwise it will be taken as a relocatable
variable.

Specify Address to a Variable
The operator '@' is used to specify the address of variables in Data Memory.

� Syntax

data_type varaible_name @ memory_address

� Description

The memory_address specifies the address at which the variable variable_name is
located. It is comprised of RAM bank number and the address within the RAM
bank. The high byte of memory_address is the RAM bank number and the low byte
is the address within this RAM bank. The data_type is the allowed the data type.

� Example

int v1 @ 0x50; // v1 is in address 0x50 of RAM bank 0
int v2 @ 0x380; // v2 is in address 0x80 of RAM bank 3
int v3 @ 0xef0; // v3 is in address 0xf0 of RAM bank 14

Access Variables in Multiple RAM Banks
In assembly language it is necessary to set the bank pointer and use the indirect
addressing mode to access the high RAM bank memory. Holtek C compiler has done
these works automatically, users don’t have to do any effort.
� Example

int v1 @ 0x5B; // v1 is in address 0x5B of RAM bank 0
int v2 @ 0x2F0; // v2 is in address 0xF0 of RAM bank 2
int v3; // bank number is unknown

void main(){
v1 = 10; //access bank 0 variable
v2 = 10; //access high bank variable
v3 = 10;

}

Chapter 3 Holtek C ProgrammingChapter 3 Holtek C ProgrammingChapter 3 Holtek C ProgrammingChapter 3 Holtek C Programming

41

Specify Variables In RAM Bank 0 (Improve the Performance)
For MCU with multiple RAM banks, it must use indirect access instructions to access
the variables in high RAM banks. The more of these accesses, the more instructions are
executed. The result is to reduce the program performance. Hence, it had better to define
those frequently used variables in RAM bank 0. By using C preprocessor pragma
rambank0, the frequently used variables can be defined in RAM bank 0. It forces the
Holtek Linker to find memory from the RAM bank 0 for the specified variables. If the
RAM bank 0 has no enough memory to hold the variables, the Linker will issue an
error even if there is enough memory in other bank. For this situation, user should
rearrange the variables in the rambank0 block. The preprocessor pragma norambank
will end the rambank0 function. All variables declared between rambank0 and
norambank0 will be allocated to the RAM bank 0 unless RAM bank 0 has exhausted
the space.

� Syntax

#pragma rambank0
//data declarations : variables defined in this block will be in RAM bank 0

#pragma norambank
//data declarations : variables defined in here are not necessary in RAM bank 0

� Description
The rambank0 keyword directs the compiler to declare subsequent variables to be
located in the RAM bank 0 until the norambank keyword or end of file is
encountered. For MCU with the single RAM bank, these two keywords will be
ignored.

� Example

// default is norambank
unsigned int v1; //v1’s bank number is unknown

//switch to rambank0
#pragma rambank0
unsigned int i, j; //i, j located at RAM bank 0
long len; //len located at RAM bank 0

//In rambank0 area the address cannot be larger than 0x100
unsigned char uc0 @ 0x83;

// back to norambank
#pragma norambank
unsigned int iflag; //bank number of iflag is unknown
unsigned char uc @ 0x140;

//switch to rambank0 linking mode
#pragma rambank0
bit bitflag; //bit variable should always be

// declared in rambank0 block

void main(){
i = 1; //MOV A,1

//MOV _i, A

HT-IDE3000 Programmer’s Guide for Holtek C Language

 42

iflag = 1; //MOV A,BANK _iflag
//MOV [04H],A
//MOV A,OFFSET _iflag
//MOV [03H],A
//MOV A,1
//MOV [02H],A

uc0 = uc = 0;
bitflag = 1;

}

Pointer boundary
The address pointed by a pointer cannot cross the bank boundary while doing the
pointer arithmetic. It will wrap when it overflows or underflows.

� Example :

#pragma rambank0
unsigned char *p1;
unsigned long *p2;

void main(){
p1 = (unsigned char *)0x2f0;
p1 += 0x20; //now p1 points to address 0x210, not 0x310

p1 = (unsigned char *)0x100;
p1--; //now p1 points to address 0x1ff, not 0xff

p2 = (unsigned long*)0x3fe;
p2++; // ’long’ occupies two bytes.

// now p2 is pointed to 0x300 not 0x400.
}

Because a pointer cannot cross the bank boundary, the Holtek C does not support long
integer pointer arithmetic.
.
� Example :

#pragma rambank0
unsigned char *p1, *p2;
unsigned int i;
unsigned long len;

void main(){
p1 = p2+10; //ok
p1 = p2+0x100; //error, 0x100 is a long integer
p1 += i; //ok
p1 += len; //error, len is a long integer

}

Access the LCD data area
Holtek C provides an easy way to access the LCD data area. To declare variables
corresponding to LCD data memory address by using the '@' operator described in
section Specify Address To a Variable. The following example demonstrates how to
declare the LCD variables and how to access them.
.

Chapter 3 Holtek C ProgrammingChapter 3 Holtek C ProgrammingChapter 3 Holtek C ProgrammingChapter 3 Holtek C Programming

43

� Example :
// LCD data memory is at RAM bank 14 (0x0e)
// lcd_day is at address 0x80 of RAM bank 14
// lcd_mon is at address 0x82 of RAM bank 14

 #include <HTG2190.H>

// delcared lcd_day at LCD data area
unsigned char lcd_day @ 0xe80;

//declared lcd_mon at LCD data area
unsigned char lcd_mon @ 0xe82;

#pragma rambank0
unsigned int i, j;
unsigned char *lcd_ptr;

/*
Delcared non RAM bank 0 variables
A realistic scenario is that the variables are declared within the rambank0 block
if the memory is available.
*/

#pragma nonrambank0
unsigned int tmp;

void main(){
lcd_mon = 0x10; // put value 0x10 to LCD data memory 0xe82
lcd_ptr = &lcd_day; // lcd_ptr points to LCD data memory 0xe80
* lcd_ptr = 0xff; // put value 0xff to LCD data memory 0xe80
*(lcd_ptr+1) = 0xa0; // put value 0xa0 to LCD data memory 0xe81

}

MCU Special Function Registers

The Holtek MCU special function registers reside in the leading area of RAM bank 0.
This data memory will not be used for general variables.

Access the function registers
To access the special function registers, it is necessary to bind a variable to the register.
Holtek C provides an easy way to access the byte or bit of all registers.

� Byte variable

The syntax of defining a byte variable of the special function register is the same as the
data variable with a specific address.

data_type varaible_name @ memory_location

It is recommended to declare the data_type as ‘unsigned char’. For example,
unsigned char _a @ 0x05;
unsigned char _pcl @ 0x06;
unsigned char _tblp @ 0x07;
unsigned char _tblh @ 0x08;

HT-IDE3000 Programmer’s Guide for Holtek C Language

 44

unsigned char _wdts @ 0x09;
unsigned char _status @ 0x0a;
unsigned char _intc @ 0x0b;
unsigned char _tmr0h @ 0x0c;
unsigned char _pa @ 0x12;
unsigned char _pb @ 0x14;

The usage of the special function registers is the same as that of the ordinary data
variables. For example

_pa = 0xff; //set PA
if (_pb == (unsigned char)0x80){
...
}

� Bit variable

Holtek C compiler provides built-in bit variables for the special function registers. The
naming rule of these bit variables is:

_xx_n

xx: the memory address of the function register by two hexadecimal digits.

n: the bit number of the function register

Example
_0a_0 is the bit variable of bit 0 of address 0aH, the carry flag of status register
_12_1 is the bit variable of bit 1 of address 12H, port A

It is not necessary to declare these built-in bit variables before using them, for example,
user may assign a meaningful name for each of these bit variables by #define directive
as follow.

// The HT48C50-1
#define _c _0a_0
#define _ac _0a_1
#define _emi _0b_0
#define _eei _0b_1
#define _et0i _0b_2
#define _et1i _0b_3
#define _eif _0b_4
#define _t0f _0b_5
#define _t1f _0b_6
#define _pa0 _12_0
#define _pa1 _12_1
#define _pa2 _12_2

The data type of these variables is bit. The usage is the same as that of the ordinary bit
data variables. For example:

bit bflag;
...
_emi = 1; //enable interrupt
_c = 1; //set carry
if (_pa0){ //if port A bit 0 set
...
}
bflag = _eei ;
_pa0 = _pa2; //bit assignment
_pa1 = bflag;

Chapter 3 Holtek C ProgrammingChapter 3 Holtek C ProgrammingChapter 3 Holtek C ProgrammingChapter 3 Holtek C Programming

45

For each Holtek MCU, there is a corresponding include file which declares the MCU
special function registers. The file name of the include file is the same as the MCU name.
For example, the HT48C10-1.H is the include file for HT48C10-1 MCU. To access a
special function register, either to include the correct MCU include file or to declare the
special function register alone.

The following example demonstrates how to access the special function registers. The
MCU is HT48C10-1.

#include <HT48C10-1.H>

void main(){
int i;
_intc = 0;
_tmrc = 0;
_tmr = 0;
_c = 0; //clear carry flag
_rrc(&i); //rotate right through carry
...

}

Access the IO ports
User can access the Holtek MCU I/O ports by using the same access method of the
special function registers. It includes byte variables and bit variables.

Example :

unsigned char _pac @ 0x13;
unsigned char _pbc @ 0x15;
#define _pa0 _12_0
#define _pa3 _12_3
#define _pa5 _12_5
#define _pb3 _14_3
#define _pc2 _16_2
#define _pc5 _16_5

void main(){
_pac = 0xff; // set port A control register
_pbc = 0x40; // set port B control register
_pa0 = 1; // set port A bit 0
_pb3 = 0; //clear port B bit 3
_pc5 = _pa3;
if (_pa5){ //if bit 5 of port A == 1
...
}
while(! _pc2){ //while bit 2 of port C == 0
...
}

}

Built-in Functions
The Holtek C compiler provides some built-in functions which is similar to write
assembly instruction directly. Some of these built-in functions are translated to only one
assembly instruction. Other built-in functions will facilitate to program with C language.

HT-IDE3000 Programmer’s Guide for Holtek C Language

 46

Assembly-like built-in functions
The following built-in functions will be translated to corresponding assembly instruction
by Holtek C compiler.

C Subroutine Assembly Instruction

void _clrwdt() CLR WDT

void _clrwdt1() CLR WDT1

void _clrwdt2() CLR WDT2

void _halt() HALT

void _nop() NOP

� Example :

//assume the watchdog timer is enabled
//and use one clear WDT instruction

void dotest(){
...
}

void main(){
unsigned int i;
for(i=0; i<100; i++){

_clrwdt(); // CLR WDT
dotest();

}
}

� Example :

//assume the watchdog timer is enabled
//and use two clear WDT instructions

void dotest(){
...
}

void main(){
unsigned int i;
for(i=0; i<100; i++){

_clrwdt1(); // CLR WDT1
_clrwdt2(); // CLR WDT2
dotest();

}
}

Rotate functions
There is no rotate operator within the C language, however the Holtek C compiler
provides a built-in function for data rotation.

void _rr(int*); //rotate 8 bits data right
void _rrc(int*); //rotate 8 bits data right through carry

Chapter 3 Holtek C ProgrammingChapter 3 Holtek C ProgrammingChapter 3 Holtek C ProgrammingChapter 3 Holtek C Programming

47

void _lrr(long*); //rotate 16 bits data right
void _lrrc(long*); //rotate 16 bits data right through carry
void _rl(int*); //rotate 8 bits data left
void _rlc(int*); //rotate 8 bits data left through carry
void _lrl(long*); //rotate 16 bits data left
void _lrlc(long*); //rotate 16 bits data left through carry

For example,
#include <HT48C50-1.h>
unsigned int ui;
unsigned long ul;

void error(){
while(1);

}

void main(){
ui = 0x1;
_rr(&ui); //rotate right
if (ui != (unsigned int)0x80) error();
_c = 1; //set carry
_rrc(&ui); //rotate right through carry
if (ui != (unsigned int)0xc0) error();
ul = 0xc461;
_lrl(&ul); //long rotate left
if (ul != 0x88c3) error();
_c = 0; //clear carry
_lrlc(&ul); //long rotate left through carry
if (ul != 0x1186) error();

}

Swap function
void _swap(int *); //swap nibbles of 8 bit data

For example,
unsigned int ui;

void error(){
while(1);

}

void main(){
ui = 0xab;
_swap(&ui);
if (ui != (unsigned int)0xba) error();

}

Delay cycle function
void _delay(unsigned long)

The _delay function forces the MCU to execute the specified cycle count. A value of
zero causes an endless loop. The parameter of the _delay could be constant value only.
It does not accept a variable.

For example,
#define _pa0 _12_0 //port A bit 0
unsigned char _pb @ 0x14 //port B

void error(){

HT-IDE3000 Programmer’s Guide for Holtek C Language

 48

_delay(0); //infinite loop. same as while(1);
}

void main(){
unsigned long time;
//wrong, parameter should be constant value only
//_delay(time);

_pa0 = 1;
_delay(1); //delay 1 instruction cycle
_pa0 = 0;
_delay(15); //delay 15 instruction cycle
if (_pb != (unsigned int)0x8f) error();

}

Programming Tips

Declare variables as unsigned data type
Generally, the operations for unsigned variables are simpler than those for signed
variables. It is recommended to declare a variable as an unsigned data type if it does not
have a negative value.

Example
int i,j;
unsigned int ui, uj;

void test(){
if (i >= j); // translate to 8 instructions

if (ui >= uj); // translate to 4 instructions
}

The first signed comparison is translated into 8 instructions while the second one is
translated to only 4 instructions.

Declare variables to be within RAM bank 0
Data located above RAM bank 0 requires indirect accessing which generates some
inefficient codes. For those MCUs with multiple RAM banks, it had better to declare the
frequently used variables to be within RAM bank 0.

Example

//file RAMBANK0.C
//assume the MCU has multiple RAM banks

#pragma rambank0
unsigned int ui0; // ui0 is in RAM bank 0

#pragma norambank
unsigned int ui; // ui is relocatable, may not in RAM

// bank 0

void test(){
ui0++; // translate to 1 instruction
ui++; // translate to 5 instructions

}

Chapter 3 Holtek C ProgrammingChapter 3 Holtek C ProgrammingChapter 3 Holtek C ProgrammingChapter 3 Holtek C Programming

49

Be care for using the variable declared in RAM bank 0 when a program in other source
file wants to access this variable. If a variable is declared to be within RAM bank 0 in
file RAMBANK0.C, it could be accessed by programs in other files, ACCESS0.C and
ACCESS1.C. But this variable has to be declared as an external and within RAM bank 0
also, otherwise redundant codes or improper codes will be generated. The execution
result is unpredictable.

Example

// assume the ui0, ui are declared in the above example
// file RAMBANK0.C

// file ACCESS0.C
// declare variables to be the same as RAMBANK0.C

#pragma rambank0
extern unsigned int ui0; // declare ui0 in RAM bank 0

#pragma norambank
extern unsigned int ui;

void testB(){
ui0++; // translate to 1 instruction; correct
ui++; // translate to 5 instructions; correct

}

// file ACCESS1.C
// declare variables to be not the same as RAMBANK0.C

#pragma rambank0
extern unsigned int ui; // declared ui in rambank0

#pragma norambank
extern unsigned int ui0;

void testC(){
ui0++; // 5 instructions; correct
ui++; // 1 instruction; wrong

}

In file ACCESS1.C, the ui0++ statement translated into five instructions, four more
instructions than the one in the file ACCESS0.C. However this statement is executed
correctly. But the ui++ statement is translated to only one instruction and the execution
result is unpredictable. The reason is that ui is not defined in RAM bank 0 in file
RAMBANK0.C, it should be accessed by the indirect method.

Declare a variable to be Bit type
The bit data variable occupies one bit of memory. If a variable has only two possible
values then the bit data type is suitable. Besides the smaller data size to be used, it also
generates more compact code.

Example

//assume the MCU has single RAM bank
bit bitflag;
unsigned int intflag;

HT-IDE3000 Programmer’s Guide for Holtek C Language

 50

void test(){
bitf = 1; // 1 instruction
intflag = 1; // 2 instructions

if (bitflag); // 2 instructions
if (intflag); // 3 instructions

}

Assign an address to a pointer
To assign a constant address to a pointer, the type casting needs to be done explicitly,
otherwise the compiler will issue an error.

Example

//assume the MCU has multiple RAM banks
int *p1;
unsigned char *p2;
long *p3;

void main(){
//point to RAM bank 0, offset 0x50
p1 = (int*)0x50;
p1 = 0x50; // error, no casting

//point to RAM bank 1, offset 0x60
p2 = (unsigned char *)0x160;

//point to RAM bank 2, offset 0x30
p3 = (long *)0x230;

}

Get the modulus by more effective method
When you want to get the quotient and the remainder of a division, the following are the
most popular statements.

q = d1 / d2;
r = d1 % d2;

The division subroutine is called by each statement and total is twice. Another effective
method to get the quotient and the remainder is to use in-line assembly. The quotient
statement is the same, but the remainder is changed to in-line assembly. For 8-bit
signed/unsigned division, the remainder will be stored in system variable T3. For 16-bit
signed/unsigned division, the remainder will be stored in system variables T4 and T5.
T4 is the high byte, T5 is the low byte.

� MCU with single RAM bank
� 8 bits division

unsigned int d1, d2;
unsigned int q, r;
q = d1 / d2; // get quotient
#asm
MOV A, T3 ; get remainder
MOV _r,A
#endasm

Chapter 3 Holtek C ProgrammingChapter 3 Holtek C ProgrammingChapter 3 Holtek C ProgrammingChapter 3 Holtek C Programming

51

� 16 bits division
unsigned long d1, d2;
unsigned long q, r;
q = d1 / d2;
#asm
MOV A, T5
MOV _r,A ; get low byte remainder
MOV A, T4
MOV _r[1], A ; get high byte remainder
#endasm

� MCU with multiple RAM banks.
� 8 bits division, r is in ram bank 0

unsigned int d1, d2;
unsigned int q;
#pragma rambank 0
unsigned int r;
#pragma norambank

q = d1 / d2;
#asm
MOV A, T3
MOV _r,A
#endasm

� 16 bits division, r is in ram bank 0
unsigned long d1, d2;
unsigned long q, r;
q = d1 / d2;
#asm
MOV A, T5
MOV _r,A ;get low byte remainder
MOV A, T4
MOV _r[1], A ;get high byte remainder
#endasm

� 8 bits division, r is not in ram bank 0
unsigned int d1, d2;
unsigned int q;
unsigned int r;

q = d1 / d2;
#asm
MOV A, 0E0H
AND [04H],A ;BP, clear RAM bank and preserve ROM bank
MOV A, BANK _r
OR [04H], A ; set bank pointer
MOV A, OFFSET _r
MOV [03H], A ; move offset to MP1
MOV A, T3
MOV [02H], A ; move T3 to R1
#endasm

� 16 bits division, r is not in ram bank 0
unsigned long d1, d2;
unsigned long q, r;
q = d1 / d2;
#asm

HT-IDE3000 Programmer’s Guide for Holtek C Language

 52

MOV A, 0E0H
AND [04H],A ;BP, clear RAM bank and preserve ROM bank
MOV A, BANK _r
OR [04H], A ; set bank pointer
MOV A, OFFSET _r
MOV [03H], A ; move offset to MP1
MOV A, T5
MOV [02H], A ; store to low byte of remainder
INC [03H] ; point to high byte of remainder
MOV A, T4
MOV [02H], A ; store to high byte of remainder
#endasm

Constant value conversion / casting
The Holtek C compiler is an 8-bit compiler. Note that int is equivalent to char data type
with a range from –128 to +127. If the application operations deals with eight bits
constant integers, it is required to cast it into int/char (or unsigned int / unsigned char),
otherwise an eight bit hexadecimal integer might be erroneously converted into a 16 bits
integer. The constants between 0x80 and 0xff will be converted into the corresponding
16 bit integer without sign extension if no explicit type casting.

Example:
� with explicit type casting, (unsigned int)0xff is equal to an unsigned 8 bits

integer with value 255
� with explicit type casting, (int)0xff is equal to a signed 8 bits integer with

value –1
� without explicit type casting, 0xff will be implicitly converted into a 16 bit

long integer with value 255

Example
//assume the MCU has a single RAM/ROM bank
unsigned int ui;
int i;

void main(){
//8 bit signed comparison
//5 instructions
if (i >= 0x7f){

//equals to if (i >= 127)
}

//0x80 implicitly converted to (long)128
//16 bit signed comparison
//16 instructions
if (i >= 0x80){

// equals to if (i >= 128)
//always false

}

//explicitly casting 0x80 to (int)-128
//8 bit signed comparison
//5 instructions
if (i >= (int)0x80){

// equals to if (i >= -128)
//always true

}

Chapter 3 Holtek C ProgrammingChapter 3 Holtek C ProgrammingChapter 3 Holtek C ProgrammingChapter 3 Holtek C Programming

53

//8 bit unsigned comparison
//4 instructions
if (ui >= 0x7f){

// equals to if (ui >= 127);
}

//0x80 implicitly converted to (long)128
//16 bit signed comparison
//14 instructions
if (ui >= 0x80){

//equals to if (ui >= 128L)
}

//explicitly casting 0x80 to (unsigned int)128
//8 bit unsigned comparison
//4 instructions
if (ui >= (unsigned int)0x80){
}

}

Serial Port Transmitting Example

This example shows you how to use the Holtek C language to write the time sensitive
program. Since the instruction codes translated from the C statements are compiler
dependent, the delay constant in the following example might be different under
different version compiler. You MUST examine the delay constant when you use it in
the first time, update the C compiler or change the MCU. The instructions generated by
C compiler are dependent on ROM/RAM single bank or multiple banks.

Preliminary Program
The serial port transmitting protocol is one start bit 0, eight bits data, one stop bit 1.
Below is the preliminary program for single RAM bank MCU.

// set address 0x12 bit 1 to be output pin (PA1)
#define tx _12_1

unsigned char sent_val;

void main(){
_13_1 = 0; //set PA1 as output pin
sent_val = ‘a’;
transmit();

}

void transmit(){
unsigned char sent_bit;
unsigned char i;

tx = 0; // L1 start bit
for(i=0; i<8; i++){

sent_bit = sent_val & 0x1;
sent_val >>= 1;

HT-IDE3000 Programmer’s Guide for Holtek C Language

 54

if (sent_bit){
tx = 1; // L2

}
else {

tx = 0; // L3
}

}
tx = 1; // L4 stop bit

}

The function transmit() in above example is not correct due to the transmission baud
rate. In order to match the transmission baud rate, a proper delay time should be
calculated and inserted before or after each transmitting bit. Because the assembly
instructions for output 0 and 1 are different, it has better to use different C statement to
output 0 and 1 individually. Hence, it is recommended to replace the statement

tx = sent_bit;

with
if (sent_bit){

tx = 1; // L2
}
else {

tx = 0; // L3
}

The statement tx = sent_bit can not determine when it sends 0 or 1.

Adjust Transmitting Timing
Now we need to adjust the timing in order that the instruction cycles between all
transmitting (L1 to L2, L1 to L3, L2 to L3, L3 to L2, L2 to L4 or L3 to L4) are the same.
After building the program under HT-IDE3000, the Debug window is active.

� Adjust L1 to L2 and L1 to L3
� Set Break Points at L1, L2, L3, Open the Cycle Count Window in View menu
� Free Run. ICE will stop at L1
� Modify the sent_val’s value to 1 in the Watch Window1 in Windows menu
� Reset Cycle Count
� Free Run. ICE will stop at L2. cycle count = 0x11
� Reset ICE.
� Free Run. ICE will stop at L1.
� Modify the sent_val’s value to 0 in the Watch Window.
� Reset Cycle Count
� Free Run. ICE will stop at L3. cycle count = 0x12
Now, we know the instruction cycles between L1 and L2 is one more than that
between L1 and L3. Hence, it should delay one cycle before L2, then both of the
instruction cycles from L1 to L2 and from L1 to L3 are all equals to 0x12.

if (sent_bit){

1 In the HT-IDE3000 Watch Window, write dot sent_val (.sent_val) and press Enter.
You will see something like “.sent_val :[xxH] = nn”. Now you could modify nn to 01.
Do not forget to press Enter after your modify otherwise the value will not be modified.

Chapter 3 Holtek C ProgrammingChapter 3 Holtek C ProgrammingChapter 3 Holtek C ProgrammingChapter 3 Holtek C Programming

55

_delay(1); // add this statement
tx = 1; // L2

}

� Adjust L2 to L3 and L3 to L2
Using the modified code to do below test.
� Set Break Points at L1, L2, L3
� Free Run. ICE will stop at L1.
� Modify the sent_val’s value to 5 (00000101b) in the Watch Window.
� Free Run. ICE will stop at L2.
� Reset Cycle Count
� Free Run. ICE will stop at L3. cycle count = 0x12
� Reset Cycle Count
� Free Run. ICE will stop at L2. cycle count = 0x10
Now, the cycle count between L2 and L3 is 0x12, the cycles count between L3
and L2 is 0x10. Hence, it should delay two cycles after L3.

else {
tx = 0; // L3
_delay(2); // add this statement

}
It is wrong to delay the cycles before L3. Because, it will prolong the period of L1
to L3.

� Adjust L2 to L4 and L3 to L4
At this moment, the cycle count of the (L1,L2), (L1,L3), (L2,L3), (L3,L2) are all
the same. The rest is to check L2 and L4. Using the modified code to do below
test.
� Set Break Points at L1, L2,L4
� Free Run. ICE will stop at L1.
� Modify the sent_val’s value to 0x80 in the Watch Window.
� Free Run. ICE will stop at L2. (the last loop)
� Reset Cycle Count
� Free Run. ICE will stop at L4. cycle count = 0x8
The delay cycle count should be 10 (0x12-0x8) before L4.

_delay(10); // add this statement
tx = 1; // L4 stop bit

Now all the transmission cases have the same period, 18 cycles.

Adjust to Meet the Baud Rate
Baud Rate = SysClk / 4 / (cycle count for transmitting one bit)
Transmit one bit cycle = X+18, X is the additional delay cycle count.
Then the formula of X is

X = (SysClk / Baud Rate / 4) – 18

For example, SysClk = 4MHz and Baud Rate = 9600 then X is equal to 86
The following is the final program.

// This function depends on compiler and MCU.
// You MUST adjust the delay constants when different
// compiler or MCU are used

// suppose address 0x12 bit 1 is the output pin (PA1)

HT-IDE3000 Programmer’s Guide for Holtek C Language

 56

#define tx _12_1

unsigned char sent_val;

void transmit(){
unsigned char sent_bit;
unsigned char i;

tx = 0; // L1 start bit
for(i=0; i<8; i++){

sent_bit = sent_val & 0x1;
sent_val >>= 1;
_delay(86); // add this statement
if (sent_bit){

_delay(1); // add this statement
tx = 1; // L2

}
else {

tx = 0; // L3
_delay(2); // add this statement

}
}
_delay(86+10); // add this statement
tx = 1; // L4 stop bit
_delay(86); // add this statement

}

The receiving part is similar to the above.

Skeleton Program Example

//include files
#include <ht49C50-1.h>

//Interrupt service routines declaration
#pragma vector external_isr @ 0x4
#pragma vector timer0_isr @ 0x8
#pragma vector timer1_isr @ 0xc

//RAM bank undefined variables
unsigned int uia, uib;
unsigned long ula, ulb;

//RAM bank 0 variables
#pragma rambank0
unsigned int uia0, uib0;
unsigned long ula0, ulb0;
bit flag;

//ISR
void external_isr(){
}

void timer0_isr(){
}

void timer1_isr(){

Chapter 3 Holtek C ProgrammingChapter 3 Holtek C ProgrammingChapter 3 Holtek C ProgrammingChapter 3 Holtek C Programming

57

}

//main function
void main(){
}

Data Type

Data types
The following table lists the data types, sizes and their range

Data Type Size (bits) Range

bit 1 0,1

char 8 -128~127

unsigned char 8 0~255

short int 8 -128~127

unsigned short int 8 0~255

int 8 -128~127

unsigned 8 0~255

long 16 -32768~32767

unsigned long 16 0~65535

The floating point data type is not supported.

HT-IDE3000 Programmer’s Guide for Holtek C Language

 58

Chapter 4 C ExamplesChapter 4 C ExamplesChapter 4 C ExamplesChapter 4 C Examples

59

Chapter 4
C Examples

In the HT-IDE’s installation path, you could find below examples’ source projects under
the <Sample\C Example> sub-directory.

Input/Output Applications

Scanning Light
This example gives a functional emulation of a scanning LED array. Here a row of
LEDs will light in turn one after the other. The circuit uses the PA port PA0~PA7, each
bit of which is connected via a 240Ω series resistor to an LED.

� Circuit design

The I/O port bits PA0~PA7 are the outputs, with each output bit controlling a single
LED via a 240Ω series resistor. By using the shift right and shift left operator the
illuminated LED can be made to move from left to right and vice versa. See the circuit
diagram for more details.

� � �

� � �

� � � � � � � � �

� � �

� � �

� � �

	
 �

	
 �

	

	
 �

	
 �

	
 �

	
 �

	
 �

� � � �

� � � � �

� � � �

� � �

 � � �

 � � �

� � �

 � � �

 � � �

 � � �

 � � �

 � � �

 � � �

 � � �

� Program

//Scan.c
//
//Body: HT48C10-1
//Mask option
//All the mask options use the default value.

HT-IDE3000 Programmer’s Guide for Holtek C Language

 60

#include <ht48c10-1.h>

bit direction;
unsigned char lamp;

#pragma vector isr_4 @ 0x4
#pragma vector isr_8 @ 0x8
#pragma vector isr_c @ 0xc

//ISR for safequard
void isr_4(){} // external ISR
void isr_8(){} // timer/event 0
void isr_c(){} // timer/event 1

//initialize registers for safeguard
void safeguard_init(){

_intc = 0;
_tmrc = 0;
_tmr = 0;
_pac = 0xff; //input mode
_pbc = 0xff;
_pcc = 0xff;

}

void main(){

safeguard_init();

direction = 0; //shift left direction
_pac = 0; //set port A as output port
lamp = 1; //set initial lamp light up

while(1) {
_pa = lamp; //output lamp value to port A

_delay(50000);

if(!direction)
lamp <<= 1;

else
lamp >>= 1;

if(lamp & (unsigned char)0x80)
direction = 1; //shift right

else if(lamp & 0x01)
direction = 0; //shift left

//else, don't change the direction
}

}

� Mask option

All the mask options use the default value.

Traffic Light
This application uses red, green and yellow LEDs to simulate a crossroads traffic light
function. Initially R1 and G2 are illuminated. After a delay the green light flashes
followed by the yellow light. After another delay R2 and G1 are illuminated. This cycle
will continue in this way indefinitely in the application the different time durations for

Chapter 4 C ExamplesChapter 4 C ExamplesChapter 4 C ExamplesChapter 4 C Examples

61

the red and green light as well as the flashing time can be programmed.

� Circuit design

The circuit uses the two port sections PA0~PA2 and PA4~PA6 with each one
representing a set of traffic lights on each road at a crossroad intersection. The operation
of the circuit will be self explanatory from the contents of the program. See the circuit
diagram for more details of the hardware.

� � �

� � �

� � � � � � � � �

� � �

� � �

� � �

	
 �

	
 �

	

	
 �

	
 �

	
 �

� � � �

� � � � �

� � � �

� � �

 � � �

 � � �
� �

� �

� �

�

�

�

� � �

 � � �

 � � �

 � � �

 � � �

 � � �

� Program

//Traffic.c
//
//Body: HT48C10-1
//Mask option
//All the mask options use the default value.

#include <ht48c10-1.h>
const unsigned char table[16]={
0x14, 0x4, 0x14, 0x4, 0x14, 0x4, 0x14, 0x24,
0x41, 0x40, 0x41, 0x40,0x41, 0x40, 0x41, 0x42 };

#pragma vector isr_4 @ 0x4
#pragma vector isr_8 @ 0x8
#pragma vector isr_c @ 0xc

//ISR for safequard
void isr_4(){} // external ISR
void isr_8(){} // timer/event 0
void isr_c(){} // timer/event 1

//initialize registers for safeguard
void safeguard_init(){

_intc = 0;
_tmrc = 0;
_tmr = 0;
_pac = 0xff; //input mode
_pbc = 0xff;
_pcc = 0xff;

}

HT-IDE3000 Programmer’s Guide for Holtek C Language

 62

//a long time delay
void mydelay(unsigned int times){

while(times--) _delay(65000);
}

void main(){
unsigned char i, j, idx;

safeguard_init();

_pac = 0; //set port A to output port
_pa = 0; //zero port A (all light on)
while(1) {

idx = 0;
for(i=0; i!=2; i++) {

_pa = table[idx];
idx++;
mydelay(8);
for(j=0; j!=6; j++) {

_pa = table[idx];
idx++;
mydelay(1);

}
_pa = table[idx];
idx++;
mydelay(4);

}
}

}

� Mask option

All the mask options use the default value.

Keyboard Scanner
This application uses a 4x4 keyboard matrix, giving a total of 16 keys with each key
representing a single hexadecimal value as shown in the diagram. The program scans the
keyboard matrix to detect which key was pressed and after detection displays on the
LED display the corresponding hex code. There are 4 LEDs, so a range of values from
0000 to 1111 can be displayed. During the scanning process, if two keys are pressed
simultaneously only the first key scanned will be detected and displayed. By using this
method 8 logic lines can control up to 16 switches with required values assigned to each
key.

� Circuit design

PA0~PA3 are assigned as outputs and PA4~PA7 assigned as inputs, together forming a
4x4 matrix. Note that during creation of the project, PA/PA should have the pull-high
option selected from the mask option and the BZ/BZB should select “All Disable”. The
program detects which key was pressed while a look up table defines the value of each
key. PB0~PB3 are defined as outputs and represent a 4 bit hex code giving 16 different
values with each value representing a single key.

Chapter 4 C ExamplesChapter 4 C ExamplesChapter 4 C ExamplesChapter 4 C Examples

63

� � �

� � �

� � � � � � � � �

� � �

� � �

� � �

	
 �
	
 �
	

	
 �
	
 �
	
 �
	
 �
	
 �

� � � �

� � � � �

� � � �

� � �

 � � �

 � � �
	 � �

	 � �

	 �

	 � �

�

�

�

� �
 �

� � � �

� �
 �

� � � �

� � �

 � � �

 � � �

 � � �

� Program

//Keyboard.c
//
//Body: HT48C10-1
//Mask option
//BZ/BZB : All Disable
//the others use the default value

#include <ht48c10-1.h>

#pragma vector isr_4 @ 0x4
#pragma vector isr_8 @ 0x8
#pragma vector isr_c @ 0xc

//ISR for safequard
void isr_4(){} // external ISR
void isr_8(){} // timer/event 0
void isr_c(){} // timer/event 1

//initialize registers for safeguard
void safeguard_init(){

_intc = 0;
_tmrc = 0;
_tmr = 0;
_pac = 0xff; //input mode
_pbc = 0xff;
_pcc = 0xff;

}

const unsigned char led_code[16]=
{0xff, 0xfe, 0xfd, 0xfc, 0xfb, 0xfa, 0xf9, 0xf8,
0xf7, 0xf6, 0xf5, 0xf4, 0xf3, 0xf2, 0xf1, 0xf0};

const unsigned char scan[4] = {0xfe, 0xfd, 0xfb, 0xf7};

HT-IDE3000 Programmer’s Guide for Holtek C Language

 64

//return the row number of the pressed key
unsigned char wait_key_pressed(){

unsigned char i;
i=0;
while(1){

_pac = scan[i]; //output scan code to port A
if ((~_pa) & (unsigned char)0xf0){ //key pressed

_delay(2000); //debounce
//after debounce, if the key is still pressed
//we claim it a key pressed, otherwise ignore it
if ((~_pa) & (unsigned char)0xf0)

return i; //row i, key pressed
}
i++;
if (i > 3) i = 0;

}
}

// return the column number of the pressed key
unsigned char wait_key_released(){

unsigned char i;
unsigned char key;

key = _pa; //keep the pressed key

// wait until key released
while((~_pa) & (unsigned char)0xf0);

//find out which column key pressed
//no debouce needed
for(i=0; i<4; i++)

if ((~key) & (0x10<<i))
break; //column i, key pressed

return i;
}

unsigned char get_key(){
unsigned char row, col;
row = wait_key_pressed();
col = wait_key_released();
return (row << 2) + col;

}

void main(){
unsigned char index;

safeguard_init();

_pac = 0xff; //set port A as input port
_pbc = 0x00; //set port B as output port
_pa = 0; //zero port A
_pb = 0xff; //off LEDs

while(1){
index = get_key();
//the key value won't be displayed until
// the key is released
_pb = led_code[index];

}
}

� Mask option

Chapter 4 C ExamplesChapter 4 C ExamplesChapter 4 C ExamplesChapter 4 C Examples

65

The BZ/BZB mask option selects All Disable, the others use the default value.

LCM
This application describes the use of an 8-bit microcontroller used in conjunction with a
DV16100NRB liquid crystal display. This LCM is driven and controlled by an internal
Hitachi HD44780 device. In this application only the timing requirements of the LCM
need to be considered to produce the correct microcontroller signals. for more detailed
timing and instruction information, the LCM manufacturer’s data should be consulted
first.

LCMs can operate in either 4 bit or 8 bit mode. Using a 4 bit mode of operation,
transmitting a character or an instruction to the module requires two transmission events
to complete the operation. With an 8-bit mode of operation only one transmit event is
required, however an extra 4 I/O lines are required.

� Circuit design

PB0~PB7 are setup as I/O bits while PC0~PC2 as the LCM control lines are setup as
outputs. These can be setup according to the specific user requirements.

� � �

� � �

� � � � � 	 � � �

� � �

� � �

� � �

� � � �

� � � � �

� � � �

� � �

 � � �

 � � �
 � � � � � � �
� � �
 � � � � � � � � � � �

� � �
� � � �

	 � �

	 � �

	 �

� � ! � � � � � � � � � �

� � � � �

	 � � 	 � �

� Program

//Lcm.c
//
//Body: HT48C30-1
//Mask option
//BZ/BZB : All Disable
//the others use the default value

#include <ht48c30-1.h>

#pragma vector isr_4 @ 0x4
#pragma vector isr_8 @ 0x8
#pragma vector isr_c @ 0xc

//ISR for safequard

HT-IDE3000 Programmer’s Guide for Holtek C Language

 66

void isr_4(){} // external ISR
void isr_8(){} // timer/event 0
void isr_c(){} // timer/event 1

//initialize registers for safeguard
void safeguard_init(){

_intc = 0;
_tmrc = 0;
_tmr = 0;
_pac = 0xff; //input mode
_pbc = 0xff;
_pcc = 0xff;

}

//#define FOUR_BIT
//#define ONE_LINE

//for DV-16100NRB
// port B : LCM data port
// port C : LCM control port
#define LCM_CLS 0x1
#define CURSOR_HOME 0x2
#define CURSOR_SR 0x14
#define CURSOR_SL 0x10
#define INCDD_CG_SHF_C 0x6
#define TURN_ON_DISP 0xf
#define LCD_ON_CSR_OFF 0xc

#define LCM_DATA _pb
#define LCM_DATA_CTRL _pbc
#define LCM_CTRL _pc
#define LCM_CTRL_CTRL _pcc

#define LCM_CTRL_E _pc0
#define LCM_CTRL_RW _pc1
#define LCM_CTRL_RS _pc2

#define WRITE(a) { \
LCM_DATA = (a); \
LCM_CTRL_E = 1; \
LCM_CTRL_E = 0;}

const unsigned char msg[16] = "HOLTEK 8 bit MCU";

void mydelay(unsigned char ct);
void LCM_initialize();
void send_cmd(unsigned char);
void write_char(unsigned char);
void busy_check(void);
void lcm_delay(void);

void main(){
unsigned int i;

safeguard_init();
LCM_initialize();

while(1){
send_cmd(LCM_CLS);
mydelay(2);
send_cmd(CURSOR_HOME);
for(i = 0; i<sizeof(msg); i++){

if (i == 8)
send_cmd(0xc0); //move cursor

//to 2nd line

Chapter 4 C ExamplesChapter 4 C ExamplesChapter 4 C ExamplesChapter 4 C Examples

67

write_char(msg[i]); //(1st line:00h~,
// 2nd line:40h~)

}
send_cmd(LCD_ON_CSR_OFF);
mydelay(5);

}
}

void mydelay(unsigned char ct){
while(ct--) _delay(65535);

}

void LCM_initialize(){
LCM_DATA_CTRL = 0;//setup LCM data port as output port
LCM_CTRL_CTRL = 0;//setup LCM control port as output port
LCM_DATA = 0; //clear LCM data port
LCM_CTRL = 0; //clear LCM control port

#ifdef FOUR_BIT
WRITE(0x20); //4 bit mode

#else
WRITE(0x30); //8 bit mode

#endif

//According to the data for the HD44780, there needs to be at
//least 4.5 ms delay between each program.

mydelay(1);

#ifdef FOUR_BIT
#ifdef ONE_LINE

WRITE(0x20); //4-bit 1-line
#else

WRITE(0x28); //4-bit 2-line
#endif
#else
#ifdef ONE_LINE

WRITE(0x30); //8-bit 1-line
#else

WRITE(0x38); //8-bit 2-line
#endif
#endif

#ifdef FOUR_BIT
WRITE(0x80); //4-bit high nibble (2nd pass)

#endif
send_cmd(LCM_CLS); //clean display
send_cmd(TURN_ON_DISP); //turn on display
send_cmd(INCDD_CG_SHF_C); //auto increment mode

//cursor left and DD RAM address+1
}

// send command to LCM
void send_cmd(unsigned char c){
#ifdef FOUR_BIT

unsigned char tmp;
tmp = c << 4;
c &= (unsigned char)0xf0;

#endif
busy_check();
LCM_DATA = c;
LCM_CTRL_RW = 0;
LCM_CTRL_RS = 0;
LCM_CTRL_E = 1;

HT-IDE3000 Programmer’s Guide for Holtek C Language

 68

LCM_CTRL_E = 0;
#ifdef FOUR_BIT

WRITE(tmp);
#endif
}

// write character to LCM
void write_char(unsigned char c){
#ifdef FOUR_BIT

unsigned char tmp;
tmp = c<<4;
c &= (unsigned char)0xf0;

#endif
busy_check();
LCM_DATA = c;
LCM_CTRL_RW = 0;
LCM_CTRL_RS = 1;
LCM_CTRL_E = 1;
LCM_CTRL_E = 0;

#ifdef FOUR_BIT
WRITE(tmp);

#endif
}

// Wait until the busy flag is not busy
void busy_check(void){

unsigned char val, tmp;
do{

LCM_CTRL_E = 0;
LCM_DATA_CTRL = 0xff;
LCM_CTRL_RS = 0;
LCM_CTRL_RW = 1;
LCM_CTRL_E = 1;
val = LCM_DATA;
LCM_CTRL_E = 0;

#ifdef FOUR_BIT
tmp=val&(unsignedchar)0xf0;//4-bithighnibble
LCM_CTRL_E = 1; //pulse high
val = LCM_DATA; //4-bit low nibble (2nd pass)
LCM_CTRL_E = 0; //pulse low
val = (val>>4) | tmp; //combine 2 pass

#endif
}while(val & (unsigned char)0x80);
LCM_CTRL_RW = 0;
LCM_DATA_CTRL = 0; //LCM not busy, then set LCM data

//bus to input port
}

� Mask option

The BZ/BZB mask option selects All Disable, the others use the default value.

Using an I/O Port as a Serial Application
This application shows code to simulate serial port operation. This can be used as a
basis for the development of simple serial port applications such as 8-bit communication,
non-parity, single stop bit applications.

� Program

//Serial.c
//

Chapter 4 C ExamplesChapter 4 C ExamplesChapter 4 C ExamplesChapter 4 C Examples

69

//Body: HT48C70-1
//Mask option
//WDT : Disable
//the others use the default value

#include <ht48c70-1.h>

#pragma vector isr_4 @ 0x4
#pragma vector isr_8 @ 0x8
#pragma vector isr_c @ 0xc

//ISR for safequard
void isr_4(){} // external ISR
void isr_8(){} // timer/event 0
void isr_c(){} // timer/event 1

//initialize registers for safeguard
void safeguard_init(){

_intc = 0;
_tmr0c = 0;
_tmr0h = 0;
_tmr0l = 0;
_tmr1c = 0;
_tmr1h = 0;
_tmr1l = 0;
_pac = 0xff;
_pbc = 0xff;
_pcc = 0xff;
_pdc = 0xff;
_pec = 0xff;
_pfc = 0xff;
_pgc = 0xff;

}

#define tx _pa3 //transmit pin
#define rx _pa2 //receive pin
#define _pac3 _13_3
#define _pac2 _13_2

unsigned char data;

void transmit(unsigned char);
void receive(unsigned char *);

//system frequency: 4MHz
//#define T 38 //baudrate 19200 = 4M/4/(T+14) => T = 38
#define T 90 //baudrate 9600 = 4M/4/(T+14) => T = 90
//#define T 194 //baudrate 4800 = 4M/4/(T+14) => T = 194
//#define T 402 //baudrate 2400 = 4M/4/(T+14) => T = 402

void main(){
safeguard_init();

_pac2 = 1; //set receive pin to input mode
_pac3 = 0; //set transmit pin to output mode

while(1){
receive(&data);
transmit(data);

}
}

void transmit(unsigned char val){

HT-IDE3000 Programmer’s Guide for Holtek C Language

 70

unsigned char i;

tx = 0;
for(i=0; i<8; i++){

_delay(T);
if (val & 1) tx = 1;
else tx = 0;
val >>= 1;

}
_delay(T);
tx = 1;
_delay(T);

}

void receive(unsigned char *val){
unsigned char i, v;

v = 0;
while(rx); //wait start bit
for(i=0; i<8; i++){

_delay(T);
if (rx) v |= (unsigned char)0x80;
v >>= 1;

}
_delay(T);//skip stop bit
_delay(T);
*val = v;

}

� Mask option

The WDT mask option selects Disable, the others use the default value.

Interrupt and Timer/Counter Applications

Electric Piano
This example describes how to implement a scanning keyboard and then from the
pressed key generate a corresponding defined sound frequency. Each time a key is
pressed the corresponding frequency value is placed into the timer/counter register.
When this counter counts to its maximum value an internal interrupt is generated and the
interrupt routine is run. At this point the timer/counter register value is reloaded and the
counting continues. In this way, by programming different values into the timer/counter
register, different values of frequency can be generated. The internal interrupt routine
contains code to change the state of the output port and thus generate the required
frequency on a corresponding pin and create the desired note. By adding a suitable
amplifier and speaker the system is complete. The important point of the software is to
use the timer/counter as a counter to control the output frequency. This frequency has to
be calculated.

� Circuit design

The I/O port bits PA0~PA7 are the outputs, with each output bit controlling a single
LED via a 240Ω series resistor. By using the shift right and shift left operator the
illuminated LED can be made to move from left to right and vice versa. See the circuit
diagram for more details.

Chapter 4 C ExamplesChapter 4 C ExamplesChapter 4 C ExamplesChapter 4 C Examples

71

� Program

//Piano.c
//
//Body: HT48C50-1
//Mask option
//BZ/BZB : All Disable
//the others use the default value

#include <ht48c50-1.h>

#pragma vector isr_4 @ 0x4
#pragma vector isr_8 @ 0x8
#pragma vector isr_c @ 0xc

//ISR for safequard
void isr_4(){} // external ISR
void isr_8(){} // timer/event 0

//initialize registers for safeguard
void safeguard_init(){

_intc = 0;
_tmr0c = 0;
_tmr0 = 0;
_tmr1c = 0;
_tmr1h = 0;
_tmr1l = 0;
_pac = 0xff;
_pbc = 0xff;
_pcc = 0xff;
_pdc = 0xff;

}

#define _tmr1c4 _11_4 //timer1 enable bit

HT-IDE3000 Programmer’s Guide for Holtek C Language

 72

const unsigned char frq[16] = {
0x21, 0xfe, 0x58, 0xfe, 0x84, 0xfe, 0x99, 0xfe,
0xc1, 0xfe, 0xe3, 0xfe, 0x2, 0xff, 0x11, 0xff};

unsigned char frq_idx;

void initial();
void wait_key_press();
void wait_key_release();
void start_sound();
void stop_sound();

void main(){

safeguard_init();
initial();

while(1){
wait_key_press();
start_sound();
wait_key_release();
stop_sound();

}
}

void wait_key_press(){
unsigned char i, key;

key = 0;
while(!key)

key = ~_pa;

for(i=0; i<8; i++){
if (key & 0x1){

frq idx = i << 1;
break;

}
key >>= 1;

}
}

void wait_key_release(){
unsigned char key;
key = 1;
while(key)

key = ~_pa;
}

void start_sound(){
_intc = 9; //enable timer1
_tmr1c = 0x80; //timer mode
_tmr1l = frq[frq_idx]; //load sound freq.
_tmr1h = frq[frq_idx+1];
_tmr1c4 = 1; //start timer1

}

void stop_sound(){
_tmr1c4 = 0; //stop timer1
_pb = 0;

}

void isr_c(){ // timer1
_pb = ~_pb; // generate square wave

}

Chapter 4 C ExamplesChapter 4 C ExamplesChapter 4 C ExamplesChapter 4 C Examples

73

void initial(){
_pac = 0xff; //set port A to input port
_pbc = 0; //set port B to output port
_pb = 0;

}

� Mask option

The BZ/BZB mask option selects All Disable, the others use the default value.

Clock
This application shows the use of the 16 bits of the timer counter to generate internal
interrupts and consequently generate a timing function. This application depends upon
the system clock frequency as a basis for its timing. The application shown here uses a
400KHz system clock which will generate a 100KHz timer/counter clock due to the
internal divide by four operation. With a 16 bit counter the maximum count is 65536,
this would generate an internal interrupt every 0.65536 seconds. However for a clock
function a basic time unit of 1 second is required so for this reason the timer/counter is
setup to record a basic timing of 0.5 seconds. In this case an interrupt will be generated
every 0.5 seconds, so by counting two interrupts a means of obtaining the basic timing
unit of 1 second is obtained. The application shown uses a 4 seven segment displays to
display a clock in 24 hour format, displaying both hours and minutes. Two keys are
provided to provide for adjustment of hours and minutes.

� Circuit design

PA0~PA7 are setup as outputs with PA0~PA3 setup as the display data. PA4~PA7
provide scanning inputs to the control transistors for the segment displays. These will
scan the individual displays one after the other. PB0 and PB1 are setup as inputs for the
switches which enable the hours and minutes to be preset.

� � �

� � �

� � � � � � � � �

� � �

� � �

� � �

	
 �
	
 �
	

	
 �

	
 �
	
 �
	
 �

� � � �

� � � � �

� � � �

� � �

� � � � � �

	 � �

�
�
�
�
�
�

�

�
�

� � � �

� � " � � �
� � �
�

�
�
�
�
�
�

�
�
�
�
�
�

�
�
�
�
�
�

�
�
�
�
�
�

	 	 	 	

� � � �� � � �� � � �� � � �

� � � � � � � � � � � �

	
 �
	 � �

	 � �

� � � � � �
� � �

� $ % � &
 ' (�

� � �

�) * + &
 ' (�

� � � � � �

� � �

HT-IDE3000 Programmer’s Guide for Holtek C Language

 74

� Program

//Clock.c
//
//Body: HT48C50-1
//Mask option
//BZ/BZB : All Disable
//SysFreq: 400KHz
//the others use the default value

#include <ht48c50-1.h>

#define _tmr1c4 _11_4 //timer4 enable bit
#define min_adj_button _pb0
#define hour_adj_button _pb1

#pragma vector isr_4 @ 0x4
#pragma vector isr_8 @ 0x8
#pragma vector isr_c @ 0xc

//ISR for safequard
void isr_4(){} // external ISR
void isr_8(){} // timer/event 0

//initialize registers for safeguard
void safeguard_init(){

_intc = 0;
_tmr0c = 0;
_tmr0 = 0;
_tmr1c = 0;
_tmr1h = 0;
_tmr1l = 0;
_pac = 0xff;
_pbc = 0xff;
_pcc = 0xff;
_pdc = 0xff;

}

void initial();
void check_time();
void show_clock();
unsigned char min_adj_pressed();
unsigned char hour_adj_pressed();
void min_adjust();
void hour_adjust();
void arrange_hour();
void set_timer();

unsigned char half_second;
unsigned char min_l, min_h;
unsigned char hour_l, hour_h;

void main(){

safeguard_init();
initial();

while(1){
check_time();
show_clock();
if (min_adj_pressed()) min_adjust();
if (hour_adj_pressed()) hour_adjust();

}
}

Chapter 4 C ExamplesChapter 4 C ExamplesChapter 4 C ExamplesChapter 4 C Examples

75

void isr_c(){ //timer1
half_second++;
_pb = ~_pb; //flash 'dot' every 0.5 second

}

void initial(){
_pac = 0; //set port A to output port
_pbc = 0x7f; //set port B to input port exclude pb7
_pb = 0;
_pa = 0;

min_l = 0;
min_h = 0;
hour_l = 0;
hour_h = 0;
half_second = 0;

_intc = 0x9; //enable timer1
_tmr1c = 0x80; //timer1 mode (internal clock)
set_timer();

}

//check if the min_adj_button is pressed or not
//return 1: if the min_adj_button is pressed
// 0: otherwise
unsigned char min_adj_pressed(){

if (min_adj_button == 0){//pressed
_delay(2000); //debounce
if (min_adj_button == 0)

return 1; //still pressed, recognize it
}
return 0;

}

//check if the hour_adj_button is pressed or not
//return 1: if the hour_adj_button is pressed
// 0: otherwise
unsigned char hour_adj_pressed(){

if (hour_adj_button == 0){//pressed
_delay(2000); //debounce
if (hour_adj_button == 0)

return 1; //still pressed, recognize it
}
return 0;

}

void check_time(){
if (half_second >= 120){

half_second -= 120;
min_l++;
if (min_l >= 10){

min_l = 0;
min_h++;
if (min_h >= 6){

min_h = 0;
hour_l++;
arrange_hour();

}
}

}
}

//This function is to arrange the hour value
void arrange_hour(){

HT-IDE3000 Programmer’s Guide for Holtek C Language

 76

if (hour_h == 2 && hour_l == 4){
hour_h = 0;
hour_l = 0;

}
else if (hour_l == 10){

hour_l = 0;
hour_h++;

}
}

void show_clock(){
_pa = min_l | 0x10;
_pa = min_h | 0x20;
_pa = hour_l | 0x40;
_pa = hour_h | 0x80;

}

//This function is to adjust the minute.
//The minute will increase 1 when the min_adj_button is pressed .
//If the button is held longer than 1.5 seconds, the minute will
//increase 1 every 0.5 second
void min_adjust(){

bit held_long_time = 0;

repeat_inc:
min_l++;
if (min_l >= 10){

min_l = 0;
min_h++;
if (min_h >= 6) //don't care hour

min_h = 0;
}
half_second = 0;
while(min_adj_button == 0){//while min_adj_button

show_clock(); // is held
if (!held_long_time){

if (half_second>2){//longer than 1.5 sec
held_long_time = 1; //set flag
goto repeat_inc; //increase minute

}
//less than 1.5 seconds, do nothing

}
else{

if (half_second)
goto repeat_inc; //inc 1, 0.5 sec

//less than 0.5 second, do nothing
}

}
half_second = 0;
set_timer();

}

//This function is to adjust the hour.
//The hour will increase 1 when the hour_adj_button is pressed .
//If the button is held longer than 1.5 seconds, the hour will
//increase 1 every 0.5 second
void hour_adjust(){

bit held_long_time = 0;

repeat_inc:
hour_l++;
arrange_hour();
half_second = 0;
while(hour_adj_button == 0){

show_clock();

Chapter 4 C ExamplesChapter 4 C ExamplesChapter 4 C ExamplesChapter 4 C Examples

77

if (!held_long_time){
if (half_second>2){//longer than 1.5 sec

held_long_time = 1; //set flag
goto repeat_inc;//increase hour

}
//less than 1.5 seconds, do nothing

}
else{

if (half_second)
goto repeat_inc;//inc 1, 0.5 sec

//less than 0.5 second, do nothing
}

}
half_second = 0;
set_timer();

}

void set_timer(){
_tmr1c4 = 0;
_tmr1l = 0xb0;
_tmr1h = 0x3c;
_tmr1c4 = 1; //start timer1

}

