

HT-IDE3000 User’s Guide

April 2010

Copyright © 2009 by HOLTEK SEMICONDUCTOR INC. All rights reserved. Printed in Taiwan. No part

of this publication may be reproduced, stored in a retrieval system, or transmitted in any form by any

means, electronic, mechanical photocopying, recording, or otherwise without the prior written

permission ofHOLTEK SEMICONDUCTOR INC

NOTICE

The information appearing in this User’s Guide is believed to be accurate at the time of publication.

However, Holtek assumes no responsibility arising from the use of the specifications described. The

applications mentioned herein are used solely for the purpose of illustration and Holtek makes no warranty

or representation that such applications will be suitable without further modification, nor recommends the

use of its products for application that may present a risk to human life due to malfunction or otherwise.

Holtek’s products are not authorized for use as critical components in life support devices or systems.

Holtek reserves the right to alter its products without prior notification. For the most up-todate information,

please visit our web site at http://www.holtek.com.tw.

 Contents

Contents

P a r t I Integrated Development Environment ...1

C h a p t e r 1 Overview and Installation .. 3

HT-IDE Development Environment.. 3

Holtek In-Circuit Emulator (HT-ICE & e-ICE) .. 5

HT-ICE Interface Card... 5

MCU Programmer .. 5

MCU Adapter Card .. 6

System Configuration... 6

Installation ... 7

System Requirement ... 7

Hardware Installation ... 8

Software Installation .. 8

C h a p t e r 2 Quick Start ... 13

Step 1：Create a New Project with the CodeWizard ... 13

Step 2：Build the Project.. 13

Step 3：Programming the MCU Device... 14

Step 4：Transmit Code to Holtek... 14

C h a p t e r 3 Menu – File/Edit/View/Tools/Options ... 17

Start the HT-IDE3000 System ... 17

File Menu... 20

Edit Menu .. 20

 i

 Contents

View Menu .. 21

Tools Menu ... 22

Configuration Option .. 23

Diagnose ... 23

Writer ... 24

Library Manager ... 25

Editor.. 26

Voice & Flash Download ... 27

LCD Simulator .. 28

Virtual Peripheral Manager ... 28

Options Menu ... 28

Project Settings .. 29

Editor Settings .. 33

Language .. 34

C h a p t e r 4 Menu - Project .. 37

Create a New Project ... 37

Step1: Project Location ... 38

Step2: Project Option .. 39

Step3: Project Deployment ... 40

Open and Close a Project .. 41

Manage the Source Files of a Project ... 41

To Add a Source File to the Project... 42

To Delete a Source File from the Project.. 42

To Move a Source File Up or Down .. 42

Build a Project’s Task Files .. 43

To Build a Project Task File.. 44

To Rebuild a Project Task File ... 44

Assemble/Compile .. 44

To Assemble or Compile a Program ... 44

Print Option Table Command .. 45

Backup/Restore Project... 45

C h a p t e r 5 Menu - Debug ... 47

Reset the HT-IDE3000 System... 48

To Reset from the HT-IDE3000 Commands .. 49

 ii

 Contents

Emulation of Application Programs .. 49

To Emulate the Application Program... 50

To Stop Emulating the Application Program .. 50

To Run the Application Program to a Line.. 50

To Directly Jump to a Line of an Application Program.............................. 50

Single Step.. 51

Breakpoints ... 52

Breakpoint Features .. 52

Description of Breakpoint Items ... 53

How to Set Breakpoints... 55

Trace the Application Program.. 57

Initiating the Trace Mechanism .. 57

Stopping the Trace Mechanism ... 59

Trace Start/Stop Setup .. 59

Trace Record Format .. 62

Debugger Command Mode .. 64

Enter/Quit the Command Mode ... 64

Functions Supported by the Command Mode ... 65

Log File Format .. 72

HT-COMMAND Error Messages.. 73

C h a p t e r 6 Menu - Window .. 75

Window Menu Commands ... 76

C h a p t e r 7 Simulation .. 85

Start the Simulation .. 85

C h a p t e r 8 MCU Programming ... 87

Introduction ... 87

Installation ... 88

Adapter Card .. 88

Programming an MCU Device with the EverPro K1000 .. 89

Run the EverPro K1000 Software.. 89

EverPro K1000 Programming Functions .. 90

EverPro K1000 Additional Functions... 91

 iii

 Contents

P a r t I I Development Language and Tools...97

C h a p t e r 9 Assembly Language and Cross Assembler ... 99

Notational Conventions ... 99

Statement Syntax.. 100

Name ... 100

Operation... 101

Operand... 101

Comment ... 101

Assembly Directives ... 101

Conditional Assembly Directives.. 101

File Control Directives ... 102

Program Directives .. 104

Data Definition Directives.. 107

Macro Directives... 109

Assembly Instructions .. 111

Name ..111

Mnemonic .. 112

Operand, Operator and Expression... 112

Miscellaneous .. 114

Forward References .. 114

Local Labels .. 114

Reserved Assembly Language Words.. 115

Cross Assembler Options ... 116

Assembly Listing File Format... 116

Source Program Listing... 116

Summary of Assembly... 117

Miscellaneous ... 117

C h a p t e r 10 Cross Linker... 119

What the Cross Linker Does .. 119

Cross Linker Options.. 119

Libraries ... 119

Section Address ... 120

Generate Map File ... 120

Map File ... 120

 iv

 Contents

Cross Linker Task File and Debug File... 122

P a r t I I I Utilities..125

C h a p t e r 11 Library Manager... 127

What the Library Manager Does ... 127

To Setup the Library Files... 127

Create a New Library File ... 128

Add a Program Module into a Library File .. 129

Delete a Program Module from a Library File .. 129

Extract a Program Module from Library and Create An Object File 129

Object Module Information.. 130

C h a p t e r 12 LCD Simulator .. 131

Introduction ... 131

LCD Panel Configuration File .. 131

Relationship Between the Panel File and the Current Project............... 132

Selecting the HT-LCDS ... 132

LCD Panel Picture File .. 133

Setup the LCD Panel Configuration File... 134

Setup the Panel Configurations ... 134

Select the Patterns and Their Positions.. 135

Add a New Pattern ... 135

Delete a Pattern ... 136

Change the Pattern.. 136

Change the Pattern Position... 137

How to Add a User-define Matrix ... 137

Define the Pattern Using the Panel Editor .. 138

Add New Pattern Items Using a Batch File .. 138

Selecting Color for an LCD Panel .. 139

Setting Pattern Color for VFD Panel ... 139

Simulating the LCD... 140

Stop the Simulation.. 141

C h a p t e r 13 Virtual Peripheral Manager... 143

 v

 Contents

Introduction ... 143

The VPM Window ... 143

VPM Menu .. 144

File Menu... 144

Function Menu .. 145

The VPM Peripherals ... 148

LED .. 148

Button/Switch .. 148

Seven Segment Display .. 149

Quick Start Example .. 151

Scanning Light .. 151

C h a p t e r 14 Hi-Tech C MCU Converter ... 154

Hi-Tech C MCU Converter Function.. 154

Using the Hi-Tech C MCU Converter .. 154

P a r t I V Appendix..157

A p p e n d i x A Reserved Words Used By Cross Assembler....................................... 159

Reserved Assembly Language Words.. 159

Instruction Sets .. 161

 vi

 Contents

 vii

 Part I Integrated Development Environment

P a r t I

Integrated Development

Environment

 1

 Part I Integrated Development Environment

 2

 Chapter 1 Overview and Installation

1
C h a p t e r 1

Overview and Installation

To ease the process of application development, the importance and availability of

supporting tools for microcontrollers cannot be underestimated. To support its range of

MCUs, Holtek is fully committed to the development and release of easy to use and fully

functional tools for its full range of devices. The overall development environment is

known as the HT-IDE, while the operating software is known as the HT-IDE3000. The

software provides an extremely user friendly Windows based approach for program

editing and debugging while the HT-ICE and e-ICE emulator hardware provides full real

time emulation with multi functional trace, stepping and breakpoint functions. With a

complete set of interface cards for its full device range and regular software Service Pack

updates, the HT-IDE development environment ensures that designers have the best

tools to maximize efficiency in the design and release of their microcontroller applications.

HT-IDE Development Environment

The Holtek Integrated Development Environment, otherwise known as the HT-IDE, is a
high performance integrated development environment designed around Holtek’s series
of 8-bit MCU devices. Incorporated within the system is the hardware and software tools
necessary for rapid and easy development of applications based on the Holtek range of
8-bit MCUs. The key component within the HT-IDE system is the HT-ICE or e-ICE
In-Circuit Emulator, capable of emulating the Holtek 8-bit MCU in real time, in addition to
providing powerful debugging and trace features. The new e-ICE includes an actual MCU
for more effective simulation purposes.

As for the software, the HT-IDE3000 provides a friendly workbench to ease the process of

 3

 Chapter 1 Overview and Installation

application program development, by integrating all of the software tools, such as editor,
Cross Assembler, Cross Linker, library and symbolic debugger into a user friendly
Windows based environment. In addition, the HT-IDE3000 provides a software simulator
which is capable of simulating the behavior of Holtek’s 8-bit MCU range without
connection to the HT-ICE. All fundamental functions of the HT-ICE hardware are valid for
the simulator.

More detailed information on the HT-IDE3000 development system is contained within
the HT-IDE3000 User’s Guide. Installed in conjunction with the HT-IDE3000 and to
ensure that the development system contains information on new microcontrollers and
the latest software updates, Holtek provides regular HT-IDE3000 Service Packs. These
Service Packs, which can be downloaded from the Holtek website, do not replace the
HT-IDE3000 but are installed after the HT-IDE3000 system software has been installed.

Some of the special features provided by the HT-IDE3000 include::

 Emulation
 Real-time program instruction emulation

 Hardware

HT-ICE
 Easy installation and usage
 Either internal or external oscillator
 Breakpoint mechanism
 Trace functions and trigger qualification supported by trace emulation chip
 MCU writer hardware integrated within the HT-ICE
 Printer port for connecting the HT-ICE to a host computer
 I/O interface card for connecting the user’s application board to the HT-ICE

e-ICE

 Easy installation and usage
 Either internal or external oscillator
 Breakpoint mechanism
 USB cable for connecting the e-ICE to a host computer
 2.54mm standard needle for connecting the user’s application board to the e-ICE

 Software
 Windows based software utilities
 Source program level debugger (symbolic debugger)
 Workbench for multiple source program files (more than one source program file in

one application project)
 All tools are included for the development, debug, evaluation and generation of the

final application program code (mask ROM file and OTP file)

 4

 Chapter 1 Overview and Installation

 Library for the setting up of common procedures which can be linked at a later date to
other projects.

 Simulator can simulate and debug programs without connection to the HT-ICE
hardware

 Virtual Peripheral Manager (VPM) simulates the behavior of the peripheral devices.
 LCD simulator simulates the behavior of the LCD panel.

Holtek In-Circuit Emulator (HT-ICE & e-ICE)

Developed alongside the Holtek 8-bit microcontroller device range, the Holtek ICE is a
fully functional in- �circuit emulator for Holtek s 8-bit microcontroller devices. Incorporated
within the system are a comprehensive set of hardware and software tools for rapid and
easy development of user applications. Central to the system is the in-circuit hardware

�emulator, capable of emulating all of Holtek s 8-bit devices in real-time, while also
providing a range of powerful debugging and trace facilities. Regarding software functions,
the system incorporates a user-friendly Windows based workbench which integrates
together functions such as program editor, Cross Assembler, Cross Linker and library
manager. In addition, the system is capable of running in software simulation mode
without connection to the HT-ICE hardware.

HT-ICE Interface Card
The interface cards supplied with the HT-ICE can be used for most applications, however,
it is possible for the user to omit the supplied interface card and design their own interface
card. By including the necessary interface circuitry on their own interface card, the user
has a means of directly connecting their target boards to the CN1 and CN2 connectors of
the HT-ICE.

Fig 1-1

MCU Programmer
Holtek’s MCU devices are fully supported by a range of programmers. For engineering
level MCU device programming, Holtek supplies its stand alone programming tool which
provides a quick and efficient means for low volume MCU programming. The HT-ICE

 5

 Chapter 1 Overview and Installation

In-Circuit Emulators has integrated a writer as part of the hardware package, facilitating
complete design, debug and MCU device programming all within the HT-ICE. More
programmers from other suppliers are available which provide more efficient and higher
volume production capability. Refer to our website for further suppliers information.

MCU Adapter Card
The Holtek MCU programmers are supplied with a standard Textool chip socket. The
OTP Adapter Card is used to connect the Holtek MCU programmers to the various sizes
of available MCU chip packages that are unable to use this supplied socket.

System Configuration

The HT-IDE system configuration is shown below, in which the host computer is a
Pentium compatible machine with Windows 2000/XP or later. Note that if
Windows 2000/XP or later systems are used, then the HT-IDE3000 software must
be installed in the Supervisor Privilege mode.

� � � � � � � � 	
 � � �

 � � � � � � � � �

� � � � � � � �
 � � � �

� � � �
 � � � � � � �
 � � � 	 �

�
 � � � �
� �
 � �

� � � �
 � � �
� �
 � � 	
 � � �

� � � � � �
 �
	
 � �

Fig 1-2
The HT-IDE system contains the following hardware components：

HT-ICE
 The HT-ICE box contains the emulator box with 1 printer port connector for

connecting to the host machine, I/O signal connector and one power-on LED
 I/O interface card for connecting the target board to the HT-ICE box
 Power Adapter, output 16V
 25-pin D-type printer cable
 Integrated MCU writer

 6

 Chapter 1 Overview and Installation

Fig 1-3

e-ICE
 The e-ICE basically consists of two boards, a mother board, known as the MEV, and

into which is plugged a device daughter board, known as the DEV.
 5-pin Mini-B USB cable

Fig 1-4

Installation

System Requirement
The hardware and software requirements for installing HT-IDE3000 system are as
follows:

 7

 Chapter 1 Overview and Installation

 PC/AT compatible machine with Pentium or higher CPU
 SVGA color monitor
 At least 256M RAM for best performance
 CD ROM drive (for CD installation)
 At least 200M free disk space
 Parallel or USB port to connect PC and ICE
 Windows XP/Vista/7
* Windows XP/Vista/7 are trademarks of Microsoft Corporation

Hardware Installation
 Holtek provides two kinds of ICE for the user to choose, as follows:

HT-ICE

 Step 1
Plug the power adapter into the power connector of the HT-ICE

 Step 2
Connect the target board to the HT-ICE by using the I/O interface card or flat cable

 Step 3
Connect the HT-ICE to the host machine using the printer cable. The LED on the
HT-ICE should now be lit, if not, there is an error and your dealer should be contacted.

 Caution: Exercise care when using the power adapter. Do not use a power adapter whose output

voltage is not 16V, otherwise the HT-ICE may be damaged. It is strongly recommended

that only the power adapter supplied by Holtek be used. First plug the power adapter to

the power connector of the HT-ICE.

e-ICE

 Step 1
Install the correct DEV board for the MCU to be emulated
 Step 2
Use the USB cable to connect the e-ICE to the PC. The LED on the HT-ICE should now
be lit, if not, there is an error and your dealer should be contacted.

Software Installation
 Step 1

First click on the IDE3000 install icon to start the Holtek HT-IDE3000 installation.

 8

 Chapter 1 Overview and Installation

 Step 2

Press the <Next> button to continue setup or press <Cancel> button to abort.

Fig 1-5

 Step 3

The following dialogue will be shown to ask the user to enter a directory name.

Fig 1-6

 9

 Chapter 1 Overview and Installation

Fig 1-7

 Step 4
Specify the path you want to install the HT-IDE3000 to and click the <Next> button.

 Step 5
SETUP will copy all files to the specified directory.

Fig 1-8

 10

 Chapter 1 Overview and Installation

 Step 6

If the process is successful the following dialogue box will be shown.

Fig 1-9

 Step 7

Press the Finish button and restart the computer system, after which the HT-IDE3000

can be run.

 11

 Chapter 1 Overview and Installation

 12

 Chapter 2 Quick Start

2
C h a p t e r 2

Quick Start

This chapter gives a brief description of using HT-IDE3000 to develop an application

project.

Step 1：Create a New Project with the CodeWizard

 Click on the Project menu and select New command

 Enter your project name and select an MCU from the combo box

 Choose the file type that is either .ASM or .C.

 Click on the Next button and the system will ask you to setup the configuration options

 Setup all configuration options and click on the OK button.

 Finally, click OK when you have confirmed the Project Setting options.

Step 2：Build the Project

 Click on Project menu and select the Build command

 The system will assemble/compile all source files in the project

 If there are errors in the programs, double click on the error message line and the

system will prompt you the to the position where the error has occurred.

 If all the program files are error free, the system will create a Task file and

download it to the HT-ICE for debug.

 These steps can be repeated until the program is fully debugged.

 13

 Chapter 2 Quick Start

Step 3：Programming the MCU Device

 Build the project to create the .OTP file

 Click on the Tools menu and select the Writer command to program the OTP devices

Step 4：Transmit Code to Holtek

 Click on the Project menu and select the Print Option Table command

 Send the .COD file and the Option Approval Sheet to Holtek

The Programming and data flow is illustrated by the following diagram:

 14

 Chapter 2 Quick Start

 15

Fig 2-1

 Chapter 3 Menu – File/Edit/View/Tools/Option

 C h a p t e r 3

3Menu

File/Edit/View/Tools/Options

This chapter describes some of the menus and commands of the HT-IDE3000. Other

menus are described in the Project, Debug and Window chapters.

Start the HT-IDE3000 System

Fig 3-1

 Click the Start Button, select Programs and select Holtek HT-IDE3000

 Click the HT-IDE3000 icon

 17

 Chapter 3 Menu – File/Edit/View/Tools/Option

 If the last project you worked on HT-IDE3000 is in emulation mode (using HT-ICE),

then Fig 3-2 will be displayed if one of the following conditions occurs.

 No connection between the HT-ICE and the host machine or connection fails.

 The HT-ICE is powered off.

Fig 3-2

If “YES” is selected and the connection between the HT-ICE and the host machine has

been made, then Fig 3-3 will be displayed, the HT-IDE3000 will enter the emulation mode

and the HT-ICE begins to function.

Fig 3-3

 If the last project you work on HT-IDE3000 is in simulation mode (using Simulator),

then Fig 3-4 will be displayed to indicate that HT-IDE3000 will enter the simulation

mode.

Fig 3-4

The HT-IDE3000 software includes File, Edit, View, Project, Build, Debug, Tools, Options,

Window and Help menus. The following sections describe the functions and commands

of each menu.

 18

 Chapter 3 Menu – File/Edit/View/Tools/Option

A dockable toolbar, below the menu bar (Fig 3-5), contains icons that correspond to, and

assist the user with more convenient execution of frequently used menu

commands. When the cursor is placed on a toolbar icon, the corresponding command

name will be displayed alongside. Clicking on the icon will cause the command to be

executed.

A Status Bar, in the bottom line (Fig 3-5), displays the emulation or simulation present

status and the resulting command status. In the status bar, the field (PC=0001H) displays

the Program Counter while in debugging process (Debug menu).

Fig 3-5

The Status Bar contains information that may be useful during program debug. The

Program Counter is used during program execution and indicates the actual present

Program Counter value while the row and column indicators are used to show the present

cursor position when using the program editor.

 19

 Chapter 3 Menu – File/Edit/View/Tools/Option

File Menu

The File menu provides file processing commands, the details behind which are shown in

the following list along with the corresponding toolbar icons.

 New

Create a new file

 Open
Open an existing file

 Close

Close the current active file

 Save

Write the active windows data to the active file

 SaveAs

Write the active windows data to the specified file

 Save All

Write all windows data to the corresponding opened files

 Print

Print active data to the printer

 Print Setup

Setup printer

 Recent Files

List the most recently opened and closed four files

 Exit

Exit from HT-IDE3000 and return to Windows

Edit Menu

 Undo

Cancel the previous editing operation
 20

 Chapter 3 Menu – File/Edit/View/Tools/Option

 the previous Undo operation

ove the selected lines from the file and place onto the clipboard

a copy of the selected lines onto the clipboard

he clipboard information to the present insertion point

he selected information

entire document

h the specified word from the editor active buffer

xt occurrence of the specified text

us occurrence of the specified text

tring in multiple files

he specified source word with the destination word in the editor active buffer

a specified location

ode

View Menu

The View menu provides the following commands to control the window screen of the

Screen Mode on/off

Redo

Cancel

Cut

Rem

Copy

Place

Paste

Paste t

Delete

Delete t

Select All

Select the

Find

Searc

Find Next

Find the ne

Find Previous

Find the previo

Find in Files

Search for a s

Replace

Replace t

Go To…

Moves to

Read Only

Read only m

HT-IDE3000. (Refer to Fig 3-6)

 Full Screen

Toggles Full

Toolbar

 21

 Chapter 3 Menu – File/Edit/View/Tools/Option

Display the toolbar information on the window. The toolbar contains some groups of

 status bar information on the window.

n and off in your code.

tion cycles accumulatively. Press the reset button to clear the cycle

Note: There is a slight difference of maximum cycle count between two kinds of ICE, the

t to

buttons whose function is the same as that of the command in each corresponding

menu item. When the mouse cursor is placed on a toolbar button, the corresponding

function name will be displayed next to the button. If the mouse is clicked, the

command will be executed. Refer to the corresponding chapter for the functionality of

each button. The Toggle Breakpoint button will set the line specified by the cursor as a

breakpoint (highlighted). The toggle action of this button will clear the breakpoint

function if previously set.

Status Bar

Displays the

Display Line Numbers

Toggle line numbering o

Cycle Count

Count instruc

count. The Hex and Dec buttons are used to change the radix of the count,

hexadecimal or decimal. The maximum cycle count is 65535.

maximum cycle count of e-ICE can up to 4294967295 while HT-ICE can only coun

65535.

Fig 3-6

Tools Menu

The Tools menu provides the special commands to facilitate user application debug.

These commands are Configuration Option, Diagnose, Writer, Library Manager, Voice

 22

 Chapter 3 Menu – File/Edit/View/Tools/Option

tools and LCD Simulator and virtual peripheral manager.

Fig 3-7

Configuration Option
option file used by the Build command in the Project menu.

t or modifying the configuration options, it is necessary to

ation frequency has to be specified.

Note: ore information about choosing the clock source for e-ICE, please refer to the e-ICE

Diagnose
 (Fig 3-8) helps to check whether the HT-ICE is working correctly. There

n space

This command generates an
The contents of the option file depend upon the specified MCU. This command allows
options to be modified after creation of the project.

Choosing the Clock Source
When creating a new projec
choose an internal or external clock source for ICE.
If an internal clock source is used, the system applic
The HT-IDE3000 system will calculate a frequency which can be supported by the
HT-ICE, one which will be the most approximate value to the specified system frequency.
Whenever the calculated frequency is not equal to the specified frequency, a warning
message and the specified frequency along with the calculated frequency will be
displayed. Confirmation will then be required to confirm the use of the calculated
frequency or to specify another system frequency. Otherwise an external clock source is
the only option. No matter which kind of clock source is chosen, the system frequency
must be specified.

M
User’s Guide.

This command
are a total of 9 items for diagnosis. Multiple items can be selected by clicking the check
box and pressing the Test button, or press the Test All button to diagnose all items. These
items are listed below.
 MCU resource optio

 23

 Chapter 3 Menu – File/Edit/View/Tools/Option

 Diagnose the MCU options space of the HT-ICE.

he program code memory of the HT-ICE.

he trace buffer memory of the HT-ICE.

the program Data Memory of the HT-ICE.

 system Data Memory of the HT-ICE.

se the I/O EV-chip in socket 0 of the HT-ICE.

se the I/O EV-chip in socket 1 of the HT-ICE.

se the I/O EV-chip in socket 2 of the HT-ICE.

se the I/O EV-chip in socket 3 of the HT-ICE.

 Code space

 Diagnose t

 Trace space

 Diagnose t

 Data space

 Diagnose

 System space

 Diagnose the

 I/O EV 0

 Diagno

 I/O EV 1

 Diagno

 I/O EV 2

 Diagno

 I/O EV 3

 Diagno

Fig 3-8

Writer
The Writer command under the Tools menu controls the OTP/MTP programming

 24

 Chapter 3 Menu – File/Edit/View/Tools/Option

functions of the HT-ICE built-in writer. Within this command, the sub command EverPro

The Library Manager command, in Fig 3-9, supports the library functions. Program codes

 compiled into library files and then included in the application

dd/Delete a program module into/from a library file

d create an object file

K1000 is used to program most of OTP/MTP type MCUs. However, this command is not

applicable for the other external stand-alone writer which is known as the e-Writer

(HOPE3000). Visit the Holtek website for the relevant information.

Library Manager

used frequently can be

program by using the Project command in the Options menu. (Refer to the Cross Linker

options item in the Options menu, Project command). The functions of Library Manager

are:

 Create a new library file or modify a library file

 A

 Extract a program module from a library file, an

Part III gives more details on the library manager.

Fig 3-9

 25

 Chapter 3 Menu – File/Edit/View/Tools/Option

Editor
 Voice ROM Editor

tek provides a VROM Editor for the user to arrange the voice code for the

c MCU (eg. The HT86 series)

 Hol

specifi

Fig 3-10

 Data Editor

 Some Holtek MCUs (eg. the HT48E series) include internal EEPROM memory.

he Data EEPROM Editor provides an interface for the user to arrange the data and

load the data to/from the HT-ICE.

T

download/up

 26

 Chapter 3 Menu – File/Edit/View/Tools/Option

Fig 3-11

Voice & Flash Download

The Voice & Flash Download downloads the contents of a specified voice data file with

the extension .VOC or .DAT to the ICE for emulation or burn the voice data to SPI Flash

by e-Writer. It also uploads from ICE VROM or SPI Flash saving the data to a

specified .VOC or .DAT file. Fig 3-12 displays the dialog box which shows the name of

the download voice .VOC, which was generated by the VROM editor. The File Size box,

below the File Path box, displays the voice ROM size in bytes for microcontroller device

in the current project. Ensure that the voice file .VOC has been generated by the VROM

editor before downloading.

 27

 Chapter 3 Menu – File/Edit/View/Tools/Option

Fig 3-12

LCD Simulator
The LCD simulator, HT-LCDS, provides a mechanism to simulate the output of the LCD

driver. According to the designed patterns and the control programs, the HT-LCDS

displays the patterns on the screen in real time. Part III gives more details on the LCD

simulator.

Virtual Peripheral Manager
The Virtual Peripheral Manager (VPM) provides a mechanism to simulate certain

peripheral devices. It can only be used when the HT-IDE3000 is in the simulation mode.

Options Menu

The Options menu (Fig 3-13) provides the following commands which can set the working

parameters for other menus and commands.

 28

 Chapter 3 Menu – File/Edit/View/Tools/Option

Fig 3-13

Project Settings

 Project Option

The Project Option sets the default parameters used by the Build command in the Project

menu. During development, the project options may be changed according to the needs

of the application. According to the options set, the HT-IDE3000 will generate a proper

task file for these options when the Build command of the Project menu is issued. The

dialog box (Fig 3-14) is used to set the Project options.

Fig 3-14

 29

 Chapter 3 Menu – File/Edit/View/Tools/Option

Note: Before issuing the Build command, ensure that the project options are set correctly.

 Micro Controller

The chosen MCU for this project is selected here. Use the scroll arrow to browse the

available MCUs and select the appropriate one.

 Language Tool

Holtek permits Third Parties to provide C compilers for Holtek’s MCUs. Here the

Hi-Tech language tool can be selected as an alternative choice.

 Assembler/Compiler Options

The command line options of the Cross Assembler. Define symbol allows users to

define values for specified symbols used in assembly programs. The syntax is as

follows:

symbol1[=value1] [,symbol2 [=value2] [,...]]

For example：

 debugflag=1, newver=3

The check box of the Generate listing file is used to check if the source program listing

file has been generated.

 Linker options

To specify the options of the Cross Linker. Libraries are used to specify the library files

refered by Cross Linker.For example：

 libfile1, libfile2

Library files can be selected by clicking the Browse button.
Section address is used to set the ROM/RAM addresses of the specified sections, for
example：

 codesec=100, datasec=40

The check box of the Generate map file is used to check if the map file of Cross Linker

is generated.

 Debug Command

 30

 Chapter 3 Menu – File/Edit/View/Tools/Option

This command sets the options used by the Debug menu. The dialog box (Fig 3-14) lists

all the debug options with check boxes. By selecting the options and pressing the OK

button, the Debug menu can then obtain these options during the debugging process.

Fig 3-15

 Trace Record Fields

This location specifies the information to be displayed when issuing the Trace List

command, contained within the Window menu. For each source file instruction, the

information will be displayed in the same order as that of the items in the dialog box,

from top to the bottom. If no item has been selected, the next selected item will be

moved forward. The default trace list will display the file name and line number only.

The de-assembled instruction is obtained from the machine code, and the source line

is obtained from the source file. The execution data is the read data if the execution is

a read operation only, and it is the written data if the execution is a write only or read

and write operation. The external signal status has no effect if the simulation mode is

selected.

 General

Several items are used to display certain actions when in the debug mode, such as

displaying variable values, hexadecimal displays and entering the debug mode after a

Build process.

 31

 Chapter 3 Menu – File/Edit/View/Tools/Option

 Auto Stepping Command

Selects the automatic call procedure step option, namely Step Into or Step Over. Only

one option can be selected.

 Stack

Uncheck this Detect Stack Overflow box if you do not want the system to show a

message while detecting a stack overflow.

 Connection Port

Display the PC connection port for the ICE. The connection port has no effect if the

simulation mode is selected.

 Mode

Selects the HT-IDE3000 working mode as either simulation or emulation mode. If the

HT-ICE is connected to the host machine and powered on, the HT-IDE3000 can be

selected to be either in emulation or simulation mode.

 Directories Command

The command sets the default search path and directories for saving files. (Fig 3-16)

Fig 3-16

 Include files path

The search path referred to by the Cross Assembler to search for the included files.

 32

 Chapter 3 Menu – File/Edit/View/Tools/Option

 Library files path

The search path referred to by the Cross Linker to search for the library files.

 Output files path

The directory for saving the output files of the Cross Assembler (.obj, .lst) and Cross

Linker (.tsk, .map, .dbg)

Editor Settings

 Editors

This command sets the editor options such as tab size and the Undo command count.

The Save Before Assemble option will save the file before assembly. The Maximum Undo

Count is the maximum allowable counts of consecutive undo operations.

Fig 3-17

 Format

This command sets the foreground and background colours for the specified category.

From the available options (Fig 3-17), Text Selection is used for the Edit menu, Current

line, Breakpoint Line, trace Line and Stack Line are for the Debug menu and Error line is

for the Assembler output.

 33

 Chapter 3 Menu – File/Edit/View/Tools/Option

Fig 3-18

Language

This command changes the language of the user interface. ‘Default’ is the language of

the operation system. After changing the language, you must restart the HT-IDE3000 to

take it effect.

 34

 Chapter 3 Menu – File/Edit/View/Tools/Option

 35

 Chapter 4 Menu – Project

4
C h a p t e r 4

Menu - Project & Build

The HT-IDE3000 provides an example Project, which will assist first time users in quickly

familiarizing themselves with project development. It should be noted that from the

standpoint of the HT-IDE3000 system, a working unit is a project with each user

application described by a unique project.

When developing an HT-IDE3000 application for the first time, the development steps, as

described earlier, are recommended.

Fig 4-1

Create a New Project

 37

 Chapter 4 Menu – Project

In the Project menu (Fig 4-1), select the New command to create a new project. This

command will call the CodeWizard to assist users to create a new project.

Note: The project name is a file name with the extension .PJT and .PJTX.

CodeWizard flowchart

Finish

Project Option

Project Deployment

Configuration Options

Project Settings

Project Location

Fig 4-2

Step1: Project Location

This step will require the user to input a project name and select a Microcontroller, see

Fig. 4-3. Users can access all of their folders and saved files to select an already existing

project or can instead input a new project name. Additionally users can select the

required microcontroller for their project and also select the compiler tools. If the user

wishes to construct an empty project in advance then the More project settings box

should be unchecked.

 38

 Chapter 4 Menu – Project

Fig 4-3

Step2: Project Option

The second step is to select whether assembly files or C-language files are to be used in

the project.

 39

 Chapter 4 Menu – Project

Fig 4-4

Step3: Project Deployment

This step is to change the source program File name, program section and data section.

Fig 4-5

 40

 Chapter 4 Menu – Project

Finally is the Configuration Option and Project Setting operation, for this consult the

related chapters.

Open and Close a Project

The HT-IDE3000 can work with only one project at a time, which is the opening project, at

any time. If a project is to be worked upon, the project should first be opened, by using the

Open command of the Project menu (Fig 4-1). Then, insert the project name directly or

browse the directories and select a project name. Use the Close command to close the

project.

Note: When opening a project, the current project is closed automatically. Within the

development period, i.e. during editing, setting options and debugging etc., ensure that

the project is in the open state. This is shown by the displaying of the project name of the

opening project on the title of the HT-IDE3000 window. Otherwise, the results are

unpredictable. The HT-IDE3000 will retain the opening project information if the system

exits from the HT-IDE3000 without closing the opening project. This project will be

opened automatically the next time the HT-IDE3000 is run.

Manage the Source Files of a Project

Use the Edit command to add or remove source program files from the opened project.

The order, from top to bottom, of each source file in the list box, is the order of the input

files to the Cross Linker. The Cross Linker processes the input files according to the order

of these files in the box. Two buttons, namely [Move Up] and [Move Down], can be used

to adjust the order of a source file in the project. Fig 4-3 is the dialog box of the Project

menu's Edit command.

 41

 Chapter 4 Menu – Project

Fig 4-6

To Add a Source File to the Project
Choose a source file name from the file list box. Double-click the selected file name or

choose the Add button to add the source files to the project. When the selected source file

has been added, This file name is displayed on the list box of the Files in project.

To Delete a Source File from the Project
 Choose the file to be deleted from the project

 Click the Delete button

Note: Deleting the source files from the project does not actually delete the file but refers to the

removal of the file information from the project.

To Move a Source File Up or Down
 Choose the file to be moved in the list box (Files in project), by moving the cursor to

 42

 Chapter 4 Menu – Project

this file and clicking the mouse button

 Click the [Move Up] button or the [Move Down] button

Build a Project’s Task Files

Be sure that the following tasks have been completed before building a new project:

 The project has been opened

 The project options have all been set

 The project source files have been added

 The MCU options have been set (refer to the Tools menu chapter)

There are two commands related to the building of a project file, the Build command and

the Rebuild all command.

The Project menu’s Build command performs the following operations:

 Assemble or compile all the source files of the current project, by calling the Cross

Assembler or C compiler depends on the file extension .asm or .C

 Link all the object files generated by the Cross Assembler or C compiler, and generate

a task file and a debugging file.

 Load the task file into the HT-ICE if it is powered-on

 Display the source program of the execution entry point on the active window (the

HTIDE3000 refers to the source files, the task file and the debugging file for

emulation)

Note: The Build command may or may not execute the above tasks as the execution is

dependent on the creation date/time of all corresponding files. The rules are:

 If the creation date/time of a source file is later than that of its object file, then the

Cross Assembler or C compiler is called to assemble, compile this source file and to

generate a new object file.

 If one of the task s object files has a later creation date/time than that of the task file,

then the Cross Linker is called to link all object files of this task and to generate a new

task file.

The Build command downloads the task file into the HT-ICE automatically whether there

is an action or not.

The Rebuild All command carries out the same task as the Build command. The
 43

 Chapter 4 Menu – Project

difference is that the Rebuild All command will execute the task immediately without first

checking the creation date/time of the project files.

The result message of executing a Build or Rebuild All command are displayed on the

Output window. If an error occurs in the processing procedure, the actions following it are

skipped, and no task file is generated, and no download is performed.

To Build a Project Task File
 Click the Open command of the Project menu to open the project

 Click either the Build command of the Project menu or the Build button on the toolbar (Fig 4-1) to

start building a project

To Rebuild a Project Task File

 Click the Open command of the Project menu to open the project
 Click either the Rebuild All command of the Project menu or the Rebuild all button

on the toolbar (Fig 4-1) to start building a project once the project task has been built

successfully, emulation and debugging of the application program can begin (refer to the

HT-IDE3000 menu - Debug chapter).

Assemble/Compile

To verify the integrity of application programs, this command can be used to assemble or

compile the source code and display the result message in the Output window.

To Assemble or Compile a Program
 Use the File menu to open the source program file to be assembled or compiled
 Either select the Assemble/Compile command of the Project menu or click the

Assemble button on the toolbar to assemble/compile this program file

If the opened file has an .asm file extension name, the Cross Assembler will execute the

assembly process. If the file has a .C extension then the Holtek C compiler will compile

the program.

If no errors are detected, an object file with extension .OBJ is generated and stored in the

directory which is specified in the Output Files Path (refer to Options menu, Directories

command). If an error occurs and a corresponding message displayed on the Output

 44

 Chapter 4 Menu – Project

window, one of the following commands can be used to move the cursor to the error line:

 Double-click the left button of the mouse or

 Select the error message line on the Output window, and press the <Enter> key

Print Option Table Command

This command will print the current active option file to the specified printer. A printer may

be selected where the options file is to be printed out. It is recommended to use a

different printer port from the port which is connected to the HT-ICE.

If both the printer and the HT-ICE are using the same printer port, issuing this command

will cause the loss of all debug information and corresponding data. After the printing job

has finished, the user should proceed to the very beginning of the development

procedure and use the Build command of the Project menu if further emulation/debugging

of the application program is required.

Backup/Restore Project

The Backup Project command will use PROJECT_DATE_VERSION format to compress

the current project, and also allow users to add some project description in [Description]

editing box if necessary.

The Restroe Project command will restore the compressed project which selected in the

backup list box currently.

 45

 Chapter 4 Menu – Project

 46

 Chapter 5 Menu – Debug

5
C h a p t e r 5

Menu - Debug

In the development process, the repeated modification and testing of source programs is

an inevitable procedure. The HT-IDE3000 provides many tools not only to facilitate the

debugging work, but also to reduce the development time. Included are functions such as

single stepping, symbolic breakpoints, automatic single stepping, trace trigger conditions,

etc.

After the application program has been successfully constructed, (refer to the chapter on

Build a project’s task files) the first execution line of the source program is displayed and

highlighted in the active window (Fig 5-1). The HT-IDE3000 is now ready to accept and

execute the debug commands.

Fig 5-1

 47

 Chapter 5 Menu – Debug

Reset the HT-IDE3000 System

There are 4 kinds of reset methods in the HT-IDE3000 system:

 Power-on reset (POR) by plugging in the power adapter or pressing the reset button

on the HT-ICE

 Reset from the target board

 Software reset command in the HT-IDE3000 Debug menu (Fig 5-2)

 Software power-on reset command in the HT-IDE3000 Debug menu (Fig 5-2)

Fig 5-2

 48

 Chapter 5 Menu – Debug

The effects of the above 4 types of reset are listed in table 5-1.

Reset Item
Power-On

Reset

Target

Board

Reset

Software

Reset

Command

Software

Power-On

Reset Command

Clear Registers (*) (*) (*) (*)

Clear Options Yes No No No

Clear PD，TO Yes No No Yes

PC Value (**) 0 0 0

Emulation Stop (**) No(***) Yes Yes

Check Stand-Alone Yes No No No

Table 5-1

Note: (*)：Refer to the Data Book of the corresponding MCU for the effects of registers under the

different resets.

(**)：The PC value is 0 and the emulation stops.

(***)：If the reset is from the target board, the MCU will start emulating the application after

the reset is completed.

PC - Program Counter

PDF - Power Down Flag

TO - Time-out Flag

To Reset from the HT-IDE3000 Commands
 Either choose the Reset command from Debug menu or click the Reset button on the

toolbar to execute a software reset

 Either choose the Power-on Reset command from the Debug menu or click the

Power-on Reset button to execute a software power on reset

Emulation of Application Programs

After the application program has been successfully written and assembled, the Build or

Rebuild command should be executed. If successful, the first executable line of the

source program will be displayed and highlighted on the active window (Fig 5-1). At this

point, emulation of the application program can begin by using the HT-IDE3000 debug

 49

 Chapter 5 Menu – Debug

commands.

Note: During emulation of an application program, the corresponding project has to be open.

To Emulate the Application Program
 Choose the Go command from the Debug menu

or press the hot key F5

or press the Go button on the toolbar

Other windows can be activated during emulation. The HT-IDE3000 system will

automatically stop the emulation if a break condition is met. Otherwise, it will continue

emulating until the end of the application program. The Stop button on the toolbar is

illuminated with a red color while the HT-ICE is in emulation. Pressing this button will stop

the emulation process.

To Stop Emulating the Application Program
There are three methods to stop the emulation, shown as follows:

 Set the breakpoints before starting the emulation

 Choose the Stop command of the Debug menu or press the hot key Alt+F5

 Press the Stop button on the toolbar

To Run the Application Program to a Line
The emulation may be stopped at a specified line when debugging a program. The

following methods provide this function. All instructions between the current point and the

specified line will be executed except the conditional skips. Note however that the

program may not stop at the specified line due to conditional jumps or other situations.

 Move the cursor to the stopped line (or highlight this line)

 Choose the Go to Cursor command of the Debug menu

or press the hot key F7

or press the Go to Cursor button on the toolbar

To Directly Jump to a Line of an Application Program
It is possible to jump directly to a line, if the result of executed instructions between the

current point and the specified line are not important. This command will not change the

contents of Data Memory, registers and status except for the Program Counter. The

specified line is the next line to be executed.

 50

 Chapter 5 Menu – Debug

 Move the cursor to the appropriate line or highlight this line

 Choose Jump to Cursor command of the Debug menu

Single Step

The execution results of some instructions in the above section may be viewed and

checked. It is also possible to view the execution results one instruction at a time, i.e., in a

step-by-step manner. The HT-IDE3000 provides two step modes, namely manual mode

and automatic mode.

In the manual mode, the HT-IDE3000 executes exactly one step command each time the

single- step command is executed. In the automatic mode, the HT-IDE3000 executes

single step commands continuously until the emulation stop command is issued, using

the Stop command of the Debug menu. In the automatic mode, all user specified

breakpoints are discarded and the step rate can be set from FAST, 0.5, 1, 2, 3, 4 to 5

seconds. There are 3 step commands, namely Step Into, Step Over and Step Out.

 The Step Into command executes exactly one instruction at a time, however, it will

enter the procedure and stop at the first instruction of the procedure when it

encounters a CALL procedure instruction.

 The Step Over command executes exactly one instruction at a time, however upon

encountering a CALL procedure, will stop at the next instruction after the CALL

instruction instead of entering the procedure. All instructions of this procedure will

have been executed and the register contents and status may have changed.

 The Step Out command is only used when inside a procedure. It executes all

instructions between the current point and the RET instruction (including RET), and

stops at the next instruction after the CALL instruction.

Note: The Step Out command should only be used when the current pointer is within a

procedure or otherwise unpredictable results may happen.

The two step commands, Step Into and Step Over, in the automatic mode are set using

the Debug sub-menu of the Options menu

 To start automatic single step mode

 51

 Chapter 5 Menu – Debug

 52

Choose the Stepping command from the Debug menu also choose the stepping

speed (the step command is set in the Debug command from the Options menu)

 To end automatic single step mode

Choose the Stop command from the Debug menu

 To change automatic single step command for the automatic mode

 Choose the Debug command from the Options menu

 Choose the Step Into or the Step Over command in the Stepping command box

 To start Step Into

Choose the Step Into command from the Debug menu

or press the hot key F8

or press the Step Into button on the toolbar

 To start Step Over

Choose the Step Over command of the Debug menu

or press the hot key F10

or press the Step Over button on the toolbar

 To start Step Out

Choose the Step Out command of the Debug menu

or press the hot key Shift+F7

or press the Step Out button on the toolbar

Breakpoints

The HT-IDE3000 provides a powerful breakpoint mechanism which accepts various

forms of conditioning including program address, source line number and symbolic

breakpoint, etc

Breakpoint Features
The following are the main features of the HT-IDE3000 breakpoint mechanism:

 Any breakpoint will be recorded in the breakpoints list box after it is set, however this

breakpoint may not be immediately effective. It can be set to be effective later, as long

as it is not deleted, i.e.still in the breakpoints list box.

 Breakpoints of address or data, in binary form with don’t-care bits, are permitted.

 When an instruction is set to be an effective breakpoint, the ICE will stop at this

instruction, but will not execute it, i.e. this instruction will become the next one to be

 Chapter 5 Menu – Debug

executed. Although an instruction is an effective breakpoint, the ICE may not stop at

this instruction due to execution flow or conditional skips. If an effective breakpoint is

in the Data Space (RAM), the instruction that matches this conditional breakpoint data

will always be executed. The ICE will stop at the next instruction.

Note: 1. The HT-ICE can only have a maximum of 3 breakpoints active at the same time, while

e-ICE can enjoy up to 65536 effective breakpoints.

2. It is acceptable to set breakpoints in Free Run mode for HT-ICE, however, e-ICE is not.

Description of Breakpoint Items
A breakpoint consists of the following descriptive items. It is not necessary to set all items,

Fig 5-3:

 Space

The location of the breakpoint, either Program Code space or Data space.

 Location

The actual location of the breakpoint. The next paragraph will give the location format.

 Content

The data content of breakpoint. This item is effective only when the Space is assigned

to the Data space. The Read and Write check box are used for executing conditions of

the breakpoint.

Note: The breakpoint in data space is only available for HT-ICE but e-ICE.

 Format of Description Items – Location

The allowed formats of Location items are:

 Absolute address (in code space or data space) with 4 format types, namely decimal,

hexadecimal (suffix with “H” or “h” or prefix with 0x), binary and don’t-care bits. For

example

20, 14h , 0x14, 00010100b , 10xx0011

represents decimal 20, hexadecimal 14h/0x14, binary 00010100b and don't-care bits

4 and 5 respectively.

 53

 Chapter 5 Menu – Debug

Note: Don’t-care bits must be in binary format.

 Line number with or without source file name, the format is:

 [source_file_name!].line_number

where the source_file_name is a name of the optional source file. If there is no file

name, the current active file is assumed. The exclamation point "!" is necessary only

when a source file name is specified. The dot . must prefix the line number which is

decimal.

Example:

 C:\HIDE\USER\GE.ASM!.42

sets the breakpoint at the 42nd line of the file GE.ASM in directory \HIDE\USER of

drive C.

Example:

 .48

sets the breakpoint at the 48th line of the current active file.

 Program symbol with or without the source file name. The format is

 [source_file_name!].symbol_name

All are the same as the line number location format except that the line_number is

replaced with symbol_name. The following program symbols are acceptable:

 Label name

 Section name

 Procedure name

 Dynamic data symbols defined in data section

 Format of Description Items – Content

The format of the content and external signals have five digital number options, similar to

the format of Location absolute address. These four types of number are decimal,

hexadecimal, binary and don’t-care bits.

 Format of Breakpoints List Box

The Breakpoints list box contains all the breakpoints that have been added, including

effective breakpoints and non-effective breakpoints. The Add button should be used to

add new breakpoints to the list box, and the Delete button to remove breakpoints from the

 54

 Chapter 5 Menu – Debug

 55

list box. The format of each breakpoint in the list box is as follows:

 <status> {<space and read/write>, <location>,
 <data content>, <external signal>}

where <status> is effective status. “+” is effective (enabled) and “–” is non-effective

(disabled). <space and read/write> is the space type and operating mode. “C” is the code

space, "D/R" is the data space with read, “D/W” is the data space with write, “D/RW” is the

data space with read and write.

<location>, <data content> and <external signal> have the same data format as the input

form respectively.

How to Set Breakpoints
There are four methods to set/enable a breakpoint, one is by using the Breakpoint

command from the Debug menu, the others are by using the Toggle Breakpoint button on

the toolbar, double clicking on the gray bar in the edit window, or pressing key F9. The

rules of the breakpoint mechanism are as follows:

 If the breakpoint to be set is not in the Breakpoints list box (Fig 5-3), then the

descriptive items must be designated first, then added to the Breakpoints list box.

 As long as the breakpoint exists in the list box, it can be made effective by Enabling

the breakpoint if it fails to be initially effective.

 Press the OK button for confirmation. Otherwise, all changes here will not be effective.

 When using the Toggle Breakpoint button on the toolbar, the cursor should first be

moved to the breakpoint line, and then the Toggle Breakpoint button pressed. If an

effective breakpoint is to be changed to a non-effective breakpoint, this can be

achieved by merely pressing the Toggle breakpoint button.

 To Add a Breakpoint

 Choose the Breakpoint command from the Debug menu (or press the hot key Ctrl+B)

A breakpoint dialog box is displayed (Fig 5-3)

 Designate the descriptive items of the breakpoint

Set Space, Location items

Set Content item and Read/Write check box if Space is the data space

 Press the Add button to add this breakpoint to the Breakpoints list box.

 Press the OK button to confirm

 Chapter 5 Menu – Debug

Note: If the total count of the effective breakpoints is less than 3, the newly added one will take

effect automatically after it has been added.

Fig 5-3

 To Delete a Breakpoint

 Choose the Breakpoint command from the Debug menu or press the hot key Ctrl+B

A breakpoint dialog box is displayed (Fig 5-3)

 Choose or highlight the breakpoint to be deleted from the Breakpoints list box

 Press the Delete button to delete this breakpoint from the Breakpoints list box

 Press the OK button to confirm

 To Delete all Breakpoints

 Choose the Breakpoint command from the Debug menu or press the hot key Ctrl+B

A breakpoint dialog box is displayed (Fig 5-3)

 Choose the Clear All button to delete all breakpoints from the Breakpoints list box

 Press the OK button to confirm

 You can also click the Clear All Breakpoint button on the toolbar to accomplish this

task.

 To Enable (Disable) a Breakpoint

 56

 Chapter 5 Menu – Debug

 Choose the Breakpoint command from the Debug menu or press the hot key Ctrl+B

A breakpoint dialog box is displayed (Fig 5-3)

 Choose the disabled (enabled) breakpoint from the Breakpoints list box

 Press the Enable (Disable) button, to enable or disable this breakpoint

 Press the OK button to confirm

Trace the Application Program

The HT-IDE3000 provides a powerful trace mechanism which records the execution

processes and all relative information when the HT-IDE3000 is emulating the application

program. The trace mechanism provides qualifiers to filter specified instructions and

trigger conditions in order to stop the trace recording. It also provides a method to record

a specified count of the trace records before or after a trigger point.

Note: When the HT-IDE3000 starts emulating (refer to the section on Emulation of the

Application Programs), the trace mechanism will begin to record the executing

instructions and relative information automatically, but not vice versa.

Note: Only the HT-ICE support the trace mechanism function.

Initiating the Trace Mechanism
The basic requirement for initializing the trace mechanism is to set the Trace Mode with

or without Qualify. The Trace Mode defines the trace scope of the application program

and Qualify defines the filter conditions of the trace recording.

The available Trace Modes are:

 Normal

Sets the trace scope to all application programs and is the default mode.

 Trace Main

Sets the trace scope to all application programs except the interrupt service routine

programs.

 Trace INT

Sets the trace scope to all interrupt service routine programs.

 57

 Chapter 5 Menu – Debug

 58

According to Qualify, the trace mechanism decides which instructions and what

corresponding information should be recorded in the trace buffer during the emulation

process. The rule is that an instruction will be recorded if its information and status satisfy

one of the enabled qualifiers. The format of Qualify is the same as that of the breakpoint.

If all program steps are required to be recorded, then No Qualify is needed (do not set the

Qualify). The default is No Qualify.

In contrast to the Trace Mode and Qualify, which specify the conditions of trace recording,

both the Trigger Mode and Forward Rate specify the conditions to stop the trace

recording.

The Trigger Mode specifies the kind of trigger point, and is a standard used to determine

the location of the stop trace point. The Forward Rate specifies the trace scope between

the trigger point and the stop trace point.

The available Trigger Modes are:
 No Trigger

No stopping of the trace recording condition. This is the default case.

 Trigger at Condition A

The trigger point is at condition A.

 Trigger at Condition B

The trigger point is at condition B.

 Trigger at Condition A or B

The trigger point is at either condition A or condition B.

 Trigger at Condition B after A

The trigger point is at condition B after condition A has occurred.

 Trigger when meeting condition A for k times

The trigger point is when condition A has occurred k times.

 Trigger at Condition B after meeting A for k times

The trigger point is at condition B after condition A has occurred for k times.

Condition A and Condition B specify the trigger conditions. The format of condition A or

B is the same as that of the breakpoint.

The Loop Count specifies the number of occurrences of the specified condition A. It is

used only when the Trigger Mode is from one of the last two modes in the above list.

The Forward Rate specifies the approximate rate of the trace recording information

between the trigger point and stop trace point in the whole trace buffer. The trigger point

 Chapter 5 Menu – Debug

divides the trace buffer into two parts, before and after trigger point. The forward rate is

used to limit the trace recording scope after the trigger point. The percentage is

adjustable between 0 and 100%.

Note: It is not necessary for the trace recording scope to be equal to the forward rate. If a

breakpoint is met before reaching the trace recording scope or a trace stop command

(refer to: Stopping the trace mechanism) is issued, the trace recording will be stopped.

A Qualify list box records and displays all qualifiers used by the Trace Mode. Up to 20

qualifiers can be added into the list box and and up to 6 qualifiers can be effective. A

Qualifier can be disabled or deleted from the list box. The format of each qualifier in the

Qualify list box has the same format as the breakpoint in the Breakpoints list box (refer to

the section on Breakpoints, Format of breakpoints list box)

Stopping the Trace Mechanism
There are 3 methods to stop the trace recording mechanism：

 Set the trigger point (Trigger Mode) and Forward Rate as shown above

 Set breakpoints to stop the the emulation and the trace recording.

 Issue a Trace Stop command from the Debug menu (Fig 5-2) to stop the trace

recording.

Fig 5-4 lists all the requirements to use the trace mechanism. This is the result of the

Trace command from the Debug menu.

Trace Start/Stop Setup

 To Set the Trace Mode

 Choose the Trace command from the Debug Menu

A Trace dialog box is displayed as in Fig 5-4.

 Choose a trace mode from the Trace Mode pull-down list box

 Press the OK button

 59

 Chapter 5 Menu – Debug

Fig 5-4

 To Set the Trigger Mode

 Choose the Trace command from the Debug Menu

A Trace dialog box is displayed as in Fig 5-4.

 Choose a trigger mode from the Trigger Mode pull-down list box

 press the OK button

 To Change the Forward Rate

 Choose the Trace command from the Debug Menu

A Trace dialog box is displayed as in Fig 5-4

 Use the Forward Rate scroll bar to specify the desired rate

 Press the OK button

 To Setup the Condition A/Condition B

 Choose the Trace command of the Debug Menu

A Trace dialog box is displayed as Fig 5-4.

 Press Condition A/Condition B radio button

 Press the Set Condition button

A Set Qualify dialog box is displayed as in Fig 5-5.

 Enter the conditional information

 60

 Chapter 5 Menu – Debug

 Press the OK button to close the Set Condition dialog box

 Press the OK button to close the Trace dialog box

Fig 5-5

 To Add a Trace Qualify Condition

 Choose the Trace command from the Debug Menu

A Trace dialog box is displayed as in Fig 5-4.

 Press the Qualify radio button

 Press the Set Qualify button

A Set Qualify dialog box is displayed as in Fig 5-5.

 Enter the qualifier information

 Press the OK button to close the Set Qualify dialog box

 Press the Add button to add the qualifiers into the Qualify list box below

 Press the OK button to close the Trace dialog box

 To Delete a Trace Qualify Condition

 Choose the Trace command from the Debug Menu

A Trace dialog box is displayed as in Fig 5-4.

 Choose the qualify line to be deleted from the Qualify list box

 Press the Delete button

 Press the OK button to confirm

 To Delete All Qualify Conditions
 Choose the Trace command from the Debug Menu

A Trace dialog box is displayed as in Fig 5-4.

 Press the Clear All button

 Press the OK button to confirm

Note: If there is no qualifier, all instructions are qualified by default.

 61

 Chapter 5 Menu – Debug

 To Enable (Disable) a Trace Qualify Condition

 Choose the Trace command from the Debug Menu

A Trace dialog box is displayed as in Fig 5-4

 Choose the disabled (enabled) qualifier line to be enabled (disabled) from the Qualify

list box

 Press the Enable (disable) button

 Press the OK button to confirm

Note: At most, 6 trace qualifications can be enabled at the same time. The e-ICE is limited to

the Normal Mode, the trace range is for the whole application program.

Trace Record Format
Once the trace qualify and trigger conditions have been setup, those instructions which

satisfy the qualify conditions will be recorded in the trace buffer. The Trace List command

of the Window menu provides the functions to view and check the trace record

information, used for debugging the program. The trace record fields may not all be

displayed on the screen except for the sequence number. These fields are dependent

upon the settings in the Debug sub-menu from the Options menu. The text enclosed by

the parentheses are the headings shown in the Trace List command of the Window menu.

Fig 5-6 and Fig 5-7 illustrate the contents of the trace list under the different debug

options.

Fig 5-6

 Sequence number (No)

 62

 Chapter 5 Menu – Debug

For any of the trigger modes, the sequence number of a trigger point is +0. The trace

records before and after the trigger point are numbered using negative and positive

line numbers respectively. If all the fields of the Trace Record Fields (in the Debug

Option of Option menu) are selected, the result is as shown in Fig 5-7. If No trigger

mode is selected or the trigger point has not yet occurred, the sequence number starts

from -00001 and decreases 1 sequentially for the trace records (Fig 5-6).

 Program count (PC)
The program count of the instruction in this trace record.

 Machine code (CODE)
The machine code of this instruction.

 Disassembled instruction (INSTRUCTION)
The disassembled mnemonic instruction is disassembled using an HT-IDE3000 utility.

 Execution data (DAT)
The data content to be executed (read/write).

 Source file name with a line number (FILE-LINE)
The source file name and the line number of this instruction.

 Source file (SOURCE)
The source line statement (including symbols).

All the above fields are optional except the sequence number which is always displayed.

Fig 5-7

Note: To set the trace record fields use the Debug command of the Options menu.
To view the trace record fields use Trace List command of the Window menu.

 Clear the Trace Buffer

 63

 Chapter 5 Menu – Debug

 64

The trace buffer can be cleared by issuing the Reset Trace command. Hereafter, the
trace information will be saved from the beginning of the trace buffer. Note that both the
Reset command and the Power-On Reset command also clear the trace buffer.

Debugger Command Mode
In addition to the windows based debugging mode, the HT-IDE3000 provides an

alternative debugging mode, named the Command Mode. Under this mode, the user, in

addition to obtaining the same functions as the menu-driven windows based debugging

mode, also has access to additional debugging functions. These added functions include

the ability to save the debugging history into a log file in order to execute these debugging

commands automatically again as well as the ability to execute the previous debugging

command without rewriting the command.

Enter/Quit the Command Mode

 Enter to Command Mode

From the Debug Menu of the HT-IDE3000 select “Command Mode” command. When the

command mode has been entered a new screen will appear where commands can be

entered after the “HT8>” prompt on the second line. (Fig 5-8)

 Command Mode Window

 The Command Mode Title bar shows the name of the present project file.

 Any command can be entered after the “HT8>” prompt on the command line.

 When the command is entered the full command syntax will be displayed on the

bottom status bar.

 After the command has been entered at the “HT8> xxxx” prompt, the next line will

display the result of the command execution. (Fig 5-9)

Another “HT8>” prompt will then be displayed where another command can be

entered.

 Quit from the Command Mode

To quit from the Command Mode the normal windows exit method can be used or a

Q[quit] command can be entered at the command prompt.

 Chapter 5 Menu – Debug

 65

Functions Supported by the Command Mode
The following table shows the complete list of debugging statements supported by the

Command Mode

Command Function Description Command Syntax

！ Execute a previous command ！dd

； Comment ；

BP Breakpoint Commands BP{-C|-D|-E|-L}[list|*] list=11 12…

BP Breakpoint Set BP S[,RW],Location [,Data][,Ext Sig]

DB Dump Program Memory DB[bank.address[,range]]

DR Dump Data Memory DR[bank]address[,range]

FA Fill string FA {bank.address|symbol}list. list=11

12…

FB Fill bytes FB {bank.address|symbol}list list=11

12…

GO Free run or run to the specified

address

GO [address]

JP Jump to specified address directly JP address

H Help H

HIS History of commands HIS

LF Load and execute a log file LF [-V] [LogFileName]

LP Load project LP ProjectName

Q Quit Q

R Reset R

POR Power on reset POR

S Single Step (Into/Over/Out) S [-I|-V|-O] (default option: 　-I　　

TR Trace list TR [-L][length]

W Open/Write/Close a Log file W {-S|-C}[LogFileName]

In the debugging command syntax, if large brackets exist, this indicates that a parameter
must be inserted otherwise an error will occur. Parameters are separated by a | symbol.

 Chapter 5 Menu – Debug

Fig 5-8

 Breakpoint Commands

There are two breakpoint commands, their command syntax and function is as follows：

 BP - Breakpoint Clear/Enable/Disable/List

Syntax：BP [-C|-D|-E|-L] [list|*]

Parameter -C is the clear breakpoint parameter. This will delete the indicated

breakpoint or clear all the breakpoints shown in the Breakpoint Box. Within the list

there can be from 1~20 numbers

Fig 5-9

which represent the breakpoints already setup. This means that more than one can be

selected. For example, the three numbers 1 3 8 each separated by a space, indicates

that the 1st,, 3rd and 8th, breakpoints will be cleared. This has the same operation as

the Delete function within the Debug/Breakpoint window. The star symbol * means

that all the breakpoints already setup will be cleared. It has the same operation as the

Clear All function within the Debug/Breakpoint window.

 66

 Chapter 5 Menu – Debug

Parameter -D will change all the indicated breakpoints to non-active, however the

breakpoints will still remain shown in the Breakpoint Box. This command is the same

as the Disable function within the Debug/Breakpoint window. The star * has the same

operation as that described above.

Parameter -E will change all the indicated breakpoints to active. , This command is the

same as the Enable function within the Debug/Breakpoint window. The star * has the

same operation as that described above.

Parameter -L will display all the presently setup breakpoints in the window, the format

is consistent with the contents of the Debug/Breakpoint window, where the first

column shows the breakpoint number. The user can refer to this breakpoint number to

setup the required numbers in the BP -C, BP -D, BP -E statement.

Note: 1. BP-L this parameter does not require list |

2. The HT-IDE3000 can only have a maximum of 3 breakpoints active at the same time.

If no C, D, E or L parameters are given then the Breakpoint command will be of the

following type:

 BP – Breakpoint Set

Syntax︰BP S[,RW] ,Location [,Data][,Ext Sig]

The parameter within the brackets is optional however under certain conditions it must

be specified.

S denotes a Space, where a choice can be made between C or D. The letter C

indicates that the breakpoint is set in Program Code Memory, while D indicates that

the breakpoint is set in the Data Memory (RAM)

If D is chosen to replace S then the read/write option [,RW] must also be specified.

The user can choose from R or W or RW. This is because if the breakpoints are set in

the Data Memory then the choice exists for the breakpoint to be activated on either a

read, a write or both a read and write. If C is chosen to replace S, which indicates

program code, then it is not necessary to setup RW.

The “Location” parameter sets the position of the breakpoint, its format is:

[SourceFileName!].LineNumber or [SourceFileName!].SymbolName

If no SourceFileName is specified then the already opened source file will be taken as

the default.

If D is chosen to replace S then the “Data” parameter must be setup. The breakpoint is

setup at the specified location in the Data Memory and will initiate a break when a

 67

 Chapter 5 Menu – Debug

 68

read or write with the specified data occurs.

Ext Sig is a parameter that can be chosen, for its use consult the HT-IDE3000 User’s

Guide.

 Comment Command

 Syntax︰; comment string

This command is provided to give an explanation to the Log file. Any characters found

after the ; will have no functional effect.

 Dump Command

 Syntax︰DB bank.address ,range

DB range

DB

This command will display in the window, the contents of the specified program

memory area. This area is specified by indicating the address, as well as the range

and bank. The data is in hex format. If the address is specified but the bank number is

not specified then the bank number will be taken as that of the current bank. If neither

address nor bank number is specified the bank number will be taken as that of the

current bank number and the address will be taken as that of the present Program

Counter. If the range is not specified then the range value will be taken as 16 words.

The range is not allowed to exceed one bank (2000h). An example of this statement

would be 1.0f00 which would indicate that the bank number is 1 and the address value

is 0f00h.

 Syntax︰DR bank.address ,range

DR address

This command will display in the window, the contents of the specified area of Data

Memory. This data area is specified by its address, range and bank. The data is

displayed in hex format. If the range is not specified then it will be set to 16 bytes. The

range is not allowed to exceed one bank (100h) and the bank address is expressed in

hex format.

 Fill Command

This command changes the contents of the Data Memory

 Syntax︰FB {bank.address | symbol} ,list

Will write the bytes specified in the list into a Data Memory area at the specified bank

number and at the specified start address or symbol. Either a bank.address or symbol

name can be used. Also the list can be more than one byte, however at least one

 Chapter 5 Menu – Debug

blank must be used as a delimiter. All values are specified in hex format. The list

range cannot cross over a bank boundary.
 Syntax︰FA {bank.address | symbol} ,string

FA has the same function as FB except that the data is supplied in ASCII the user can
chose one of the following symbol formats:
.var
filename!.var
path\ filename!.var

Note: If path contains spaces then the name must be included in quotation marks otherwise an

error condition will occur.

 Example︰FA “d:\tmp\test cmd\test1.asm!.count”，”test1”

 Go/Jump Commands

 Syntax︰GO [address]
If an address is specified the program will free run until the specified address is
encountered. If the address is not specified the program will run to the end or until an
active breakpoint is encountered.

 Syntax︰JP address
Will force a direct jump to the specified address. Note that an address must be
specified.

 Help Command

 Syntax︰H
This command will list in the window all of the debugging commands, their syntax and
description.

 History Command

 Syntax：HIS
This command will display in the window the last 20 commands, not including the HIS
command, that were executed. At the same time the first column will display the
command sequence numbers in succession.

 Syntax：!dd
dd is the displayed command sequence number in the above mentioned HIS
command. This command will execute the previously executed command again. By
writing the sequence number and adding a “!” the same command can be executed
again reducing the need to re-input commands and parameters. If no command
sequence number is indicated the last command will be executed.

 69

 Chapter 5 Menu – Debug

 Load Commands

 Syntax：LF [-V] [LogFileName]
This command will load and execute all the Debugging Commands in the Log File,
specified by the LogFileName
If no LogFileName is specified, then the same name as the current Project File name
will be taken as the filename.
Parameter -V indicates that the command line and the execution result should be
displayed in the window.
If LF has no -V option, then the result record will be placed in a logfile of the same
name with a .res file extension name.
Log file is created using the W command. The contents can be modified by using the
File and Edit function within the HT-IDE3000.
However these contents must contain the correct Debugging Commands otherwise
an error condition will occur, the execution will stop and return to the prompt sign

Note: 1.If spaces are included in the LogFileName then the name must be included within
quotation marks otherwise an error condition will occur.

 2.The logfile cannot contain the LF, W or Q commands.

 Quit Command

 Syntax：Q
This command will end the Command Mode and return to the present window.

Note: 1.This command has no effect in the Command Log file.

2.After quitting from the command mode all the files opened by “LF” and “W –S” will be

 closed and the execution of commands will stop.

 Reset Commands

 Syntax：R

The function of this command is the same as the Debug/Reset command

 Syntax：POR

The function of this command is the same as the Debug/Power-On Reset command

 Step Commands

There are 3 kinds of Single Step commands; which after execution will display the

contents of the PC, STATUS and ACC

 Syntax：S {-I︱-O︱-V}
Single Step Command.

 70

 Chapter 5 Menu – Debug

-I is Step Into, which has the same function as Debug/Step Into
-V is Step Over, which has the same function as Debug/Step Over
-O is Step Out, which has the same function as Debug/Step Out
If no option has been setup the default condition will be “S –V”

 Trace Command

 Syntax：TR [-L] [length]
The trace command will display the contents of the trace buffer in the window.
Parameter -L indicates that all records will be displayed, which include Sequence
number, Program count, Machine code, Disassembled instructions, Execution data,
External signal, source file name with line number and source file.
If the -L parameter is not supplied, then the default condition will only display
Sequence number, Program count, Machine code, Disassembled instructions and
source file name with line number. The parameter “length” indicates the length of the
displayed trace. The trace display will begin from sequence number 0 and trace back
with the specified length. The length can also specify the length to trace forward. To
do this the forward rate must first be setup in the system. The default length value is 5.

The Trace mode, qualify conditions and forward rate etc. parameters are directly setup
within the HT-IDE3000 window, the command mode does not support these functions.

 Write Command

 Syntax：W [-S︱-C] [LogFileName]

This command will write the debugging commands and its corresponding results into

the Log File. The Log File will terminate whenever a W -C or Q command is

encountered or if the command mode is terminated.

-S will create a Log File in which all following commands and results will be written

-C will close the previously created Log File, no further commands will be written into

the Log File

If the indicated Log File is already saved, then the system will require confirmation

before overwriting and continuing with the next step. It is not necessary to add a file

extension name.

If the Log File name does not exist, then the file name will take the same name as the

project with an added .CMD file extension name.

Note: 1.If spaces are included in the LogFileName then the name must be included within

 quotation marks otherwise an error condition will occur.

2.After executing the W -S command the LF or W -S command cannot be executed.

 71

 Chapter 5 Menu – Debug

 72

Log File Format
The Log File is a text file that can be modified by any text editor including the editor

contained within the HT-IDE3000. This editor can be accessed by selecting Edit from the

main menu. Its format is that every Debugging command will occupy one line.

command: W -S LogFileName will clear the contents of the Log File, and after write the

new commands and results.

If the command string, has been created by the “W –S”command then note that prompt

signs will also be written into the Log File. However, the next time it is read by the

debugger command these previously written prompt signs will be ignored automatically.

For the case where the command strings are generated using an editor, note that it is not

necessary to enter any prompt signs into the Log File.

If the Log File has been created by the “W –S”command then before each command

execution result a “;” will be automatically inserted making the execution result into an

annotated note. In this way when the next upload is executed only the command string

will be executed, the result string will be ignored.

 Chapter 5 Menu – Debug

 73

HT-COMMAND Error Messages
Error Message Description

Invalid Command The command just entered is illegal

Can not find HT-IDE The present environment is not the HTIDE3000

Syntax error The input syntax is incorrect

No project for debug No project file has been opened in the

HT-IDE3000

ROM bank Out of range The Program Memory dump has exceeded its

range

RAM bank Out of range The Data Memory dump has exceeded its

range

Can not run xxx command in emulation

mode

The xxx command cannot be executed

Can not run xxx command in load file

mode

The xxx command cannot be executed

Can not run xxx command in write file

mode

The xxx command cannot be executed

Unterminated string The character string definition requires

balanced quotes

No Command in history buffer History buffer empty

Open xxx log file error Cannot open the log file

Close xxx log file error Cannot close the log file

Read xxx log file error Cannot read the log file

Write xxx log file error Cannot write to the log file

Not in emulation status Before executing this command first enter

emulation mode

Sources have been modified，please

rebuild

The original source file has been modified

requiring the files to be rebuilt

Stop by user User has stopped execution

Get PC failed Reading the value of the Program Counter has

failed

Stack overflow The stack has exceeded its capacity

No debug info The setup breakpoints have no debug

information

 Chapter 5 Menu – Debug

 74

Error Message Description
Cannot find the symbol The indicated symbol cannot be found

Cannot find the register The indicated register cannot be found

 Chapter 6 Menu – Window

6
C h a p t e r 6

Menu - Window

The HT-IDE3000 provides various kinds of windows which assist the user to emulate or

simulate application programs. These windows (as shown in Fig 6-1) include program

Data Memory (RAM), program code memory (ROM), Trace List, Register,Watch , Stack,

Program, Output, etc.

Fig 6-1

 75

 Chapter 6 Menu – Window

Window Menu Commands

 Workspace

The Workspace window lists out all of the source files in the project. As shown in Fig.

6-2, here chosen source files can be quickly selected. Files can be added or removed

here.

Fig 6-2

 RAM

The RAM window display the contents of the program Data Memory space as shown

in Fig 6-3 The address spaces of the registers are not included in the RAM window

because they are displayed in the register window. The contents of the RAM window

can be modified directly for debugging purpose. The address displayed vertically is

the base address while the horizontal single digit address is the offset. All the digits

are displayed in hexadecimal format.

 76

 Chapter 6 Menu – Window

Fig 6-3

 ROM
The ROM window displays the contents of the program code memory space as shown

in Fig 6-4. The ROM address range is from 0 to last address where the last address

depends upon the MCU selected in the project. The horizontal and vertical scrollbars

can be used to view any address in the ROM window. The contents in ROM window

are displayed in hexadecimal format and cannot be modified.

Fig 6-4

 Trace List

The Trace List window displays the trace record information as shown in Fig 6-5. The

contents of the trace record can be defined in the Debug command in the Options

menu. Double click the trace record in the Trace List window will activate the source

file window and the cursor will stop at the corresponding line.

 77

 Chapter 6 Menu – Window

Fig 6-5

 Register

The Register window displays all the registers defined in the MCU selected in the

project. Fig 6-6 shows an example of the Register window of HT48C70-1. The

contents of the Register window can be modified for debugging. Note that the

Register window is dockable.

Fig 6-6

 78

 Chapter 6 Menu – Window

 Watch

The Watch window displays the memory addresses and contents of the specified

symbols defined in the data sections, i.e., in the RAM space. The format of the symbol

is:

 [source_file_name!].symbol_name

The contents of the registers can also be displayed by first typing a period then typing

the symbol name or register name and pressing the Enter key. The memory address

and contents of the specified symbol or register will be displayed to the right of the

symbol as shown in the following format:

 :[address]=data contents

Note that both address and data are displayed in hexadecimal format as shown in Fig

6-7. The symbol and their corresponding data will be saved by the HT-IDE3000 and

displayed the next time the Watch window is opened. The symbols can be deleted

from Watch window by pressing the delete key. Note that the Watch window is

dockable.

Fig 6-7

 Stack

The Stack window displays the contents of the stack buffer for the MCU selected in

the current project. The maximum stack level is dependent upon the MCU selected.

Fig 6-8 shows an example of the Stack window. The growth of the stack is numbered

from 0. The number is increased by 1 for a push operation (CALL instruction or

interrupt) and decreased by 1 for a pop operation (RET or RETI instructions). The top

stack line is highlighted. E.g. The 01: shown in Fig 6-8 is the top stack line. While

executing a RET or RETI instruction, the program line number specified in the top

stack line (134 in this example) will be used as the next instruction line to be executed.

 79

 Chapter 6 Menu – Window

Also, the line above the top stack line (00: in this example) will be used as the new top

stack line. If there is no stack line anymore, no line in the Stack window will be

highlighted. The format of the stack line is:

 Stack_level: program_counter source_file_name(line_number)

where the stack_level is the level number of the stack, program_counter is the

hexadecimal return address of the calling procedure or the program address of the

interrupted instruction, source_file_name is the complete name of the source file

containing the calling or interrupted instruction, and line_number is the decimal line

number of the instruction after the call instruction or interrupted instruction in the

source file.

Fig 6-8

 Variable

This window can view and modify variable values, including two tabs:

- Auto tab, this tab can observe and set both local variables and global variables

related to the current function.

- Local tab, this tab can observe and set local variables related to the current function.

 80

 Chapter 6 Menu – Window

Fig 6-9

 Program

The Program window displays the program code memory or ROM in disassembly

format. The address range is from 0 to last address where the last address depends

upon the MCU selected in the project.

 Disassembly

The Disassembly Window shows mixed high-level source code and its associated

assembler code. Each instruction is marked with code coverage indicators that show

execution status.

Fig 6-10

 Output
The Output window shows the system messages from the HT-IDE3000 when the
Build/Rebuild All commands are executing. By double clicking on the error message

 81

 Chapter 6 Menu – Window

 82

line, the window containing the source file will be displayed and the corresponding line
containing the error highlighted.

 Chapter 6 Menu – Window

 83

 Chapter 7 Simulation

7
C h a p t e r 7

Menu - Simulation

The HT-IDE3000 provides a simulation mechanism for debugging application programs.

The HT-IDE3000 simulator provides the same functions as the HT-ICE, but does not

require the actual presence of the HT-ICE to function. In the HT-IDE3000, all the

debugging and window functions for the HT-ICE are valid for the simulator. In addition,

the simulator provides an interface for the input and output ports. Although the simulator

provides many functions, some hardware characteristics of the MCU cannot be simulated.

It is therefore recommended that emulation is carried out on the application program

using the HT-ICE before manufacture of the masked IC.

Some MCU series support emulation mode only and some support simulation mode.

Note: Some MCU series support simulation mode, e.g. HT48R10/30/50/70-1

Start the Simulation

Upon entering the HT-IDE3000, two situations may occur. The first is when a project has

already been opened, and the second is when no project has been opened. In the first

case, the working mode of the HT-IDE3000 depends upon the working mode of this

project. In the latter case, the working mode will be in simulation. Even if the working

mode of a project is in emulation, it can be changed by the user to be in simulation. In

addition, the working mode of the HT-IDE3000 will be in simulation when the following

situations occur.

 No connection between the HT-ICE and the host machine or when the connection
 85

 Chapter 7 Simulation

 86

fails.

 The HT-ICE is powered off.

The Debug command in the Option menu provides the function to set the working mode

of the HT-IDE3000. Fig 7-1 displays the contents of the Debug command.

Fig 7-1

In addition to MCU simulator, Holtek provides a Virtual Peripheral Manager (VPM) which

enables the user to directly drive and monitor the simulation of inputs and outputs on PC.

Part III gives more details on the VPM.

 Chapter 8 OTP Programming

8
C h a p t e r 8

MCU Programming

Introduction

The MCU Writer is a writer to program both OTP (One-Time Programmable) and MTP

(Multi-Times Programmable) MCU devices. All of the Holtek OTP and MTP devices can

be programmed using this writer. The advantages of this writer are in its small size and

ease of installation and simple operation.

The newest versions of the HT-ICE hardware emulator include an integrated writer for

convenient user operation – see Fig. 8-1.

Fig 8-1

 87

 Chapter 8 OTP Programming

Installation

Since the MCU writer is built-in on the HT-ICE box, after the completion of HT-ICE

installation, the MCU programming function is ready to be used within the HT-IDE3000

software with no further installation procedure needed. Refer to Chapter 1 — Overview

and Installation.

Adapter Card

The HT-ICE emulator is shipped with a 40-pin TEXTOOL Adapter Card. If the device

package format doesn’t match with this Adapter Card, the user will need to change the

Adapter Card. Refer to other Holtek Technical Documents or visit our website for further

information on selecting Adapter Cards.

Fig 8-2

 88

 Chapter 8 OTP Programming

Programming an MCU Device with the EverPro
K1000

Run the EverPro K1000 Software
Run the EverPro K1000 software under the Holtek Development System icon in the main

Windows programs menu as shown in the Fig 8-3 below:

Fig 8-3

Or launch the EverPro K1000 from the HT-IDE3000 as show int the Fig8-4 below:

Fig 8-4

 89

 Chapter 8 OTP Programming

Fig 8-5

EverPro K1000 Programming Functions
Fig 8-5 shows the internal functions of the EverPro K1000. The 7 buttons shown at the

right hand side of this window each represent an instruction, the function is explained

below:

 Blank Check

Check that the presently loaded MCU device has not previously been written to. The

results of this check will be displayed on the EverPro K1000 display. If the device is

not empty, the memory area that has been written to will also be shown on the display.

 Program
The function is to place the program data in the PC ram memory into the OTP device

 Verify
The contents of the presently loaded MCU device will be read and checked that it is

 90

 Chapter 8 OTP Programming

the same as the data loaded into the PC ram memory, the results of which will be
displayed on the EverPro K1000 Writer display.

 Read

This instruction will read out the contents of the MCU device presently loaded into the

MCU writer and store them in the PC ram memory. This instruction will also cause the

file checksum to be displayed underneath the “Auto” button. If required, this data can

also be stored in a file with the .OTP or .MTP file suffix.

 Erase

This command can erase the Program and Data area of the MTP device.

 Lock

This instruction will implement the protect function in the MCU device preventing the

contents of this IC from being read. After programming an MCU device, this

instruction can then be used to protect the contents.

 Auto

This instruction will execute in order the four instructions Blank Check, Program,

Verify and Lock. If any of the instructions do not execute correctly, the process will be

halted and the following instruction not executed.

EverPro K1000 Additional Functions

 File/Open…

This opens a file with an .OTP or .MTP suffix, which will load the program contents into

the PC ram memory. This data will be accessed when programming the relevant MCU

device. After selecting “Open”, the file dialogue box will be displayed from which the

correct folder and file name can be chosen. The file content will be displayed in the

message window after being opened, and the checksum of the opened file will be shown

underneath the “Auto” button.

 File/Save

Save updates the current file by overwriting the last save of the file.

 File/SaveAs…

Save As lets you save the current file in OTP or MTP format under a different file name.

 Setting/Programming Setting…

These commands allow the setup of detailed programming operations and other setup

functions as shown in Fig. 8-6.

 91

 Chapter 8 OTP Programming

 MCU Type

Select the MCU type. If the OTP device has not stored its part number then the user

can manually select the MCU type.

 Programming Field

Specify programming field, including Program, Option, Data and Voice four areas.

 Read Field

Specify read field, including Program, Option, Data and Voice four areas.

 Verify Field

Specify verify field, including Program, Option, Data and Voice four areas.

 Blank Field

Specify blank field, including Program, Option, Data and Voice four areas.

 Erase Field

Specify erase field, including Program, Option, and Data three areas (Only support

MTP series microcontroller).

 Lock Field

Specify lock field, including Program and Data areas.

 Programming Mode

Either Parallel Mode or Serial Mode can be selected.

 Check ID

Checks the device ID before each operation.

 92

 Chapter 8 OTP Programming

Fig 8-6

 Setting/Language

English, Traditional Chinese or Simplified Chinese can be selected here.

 Utility/Read Option

This command can read the Option contents – can also be used for locked devices.

 Utility/Partial Lock…

This command can lock indicated and partial memory sections as shown in Fig. 8-6. After

selecting the required area select OK to continue operation.

 93

 Chapter 8 OTP Programming

Fig 8-7

 Utility/Partial Program…

This command will program indicated and partial memory sections as shown in Fig. 8-8.

The red area indicates the selected area which will be programmed.

Fig 8-8

 94

 Chapter 8 OTP Programming

 95

 Utility/Page Erase...

Can erase indicated pages of memory as shown in Fig. 8-9. Only supports MTP type

devices.

Fig 8-9

 Ultility/Print Option Table

Print option table.

 Part II Development Language and Tools

P a r t I I

Development Language and Tools

 97

 Part II Development Language and Tools

 98

 Chapter 9 Assembly Language and Cross Assembler

9
C h a p t e r 9

Assembly Language and

Cross Assembler

Assembly-Language programs are written as source files. They can be assembled into

object files by the Holtek Cross Assembler. Object files are combined by the Cross Linker

to generate a task file.

A source program is made up of statements and look up tables, giving directions to the

Cross Assembler at assembly time or to the processor at run time. Statements are

constituted by mnemonics (operations), operands and comments.

Notational Conventions

The following list describes the notations used by this document.

Example of convention Description of convention

[optional items]

Syntax elements that are enclosed by a pair of brackets are

optional. For example, the syntax of the command line is as

follows:

HASM [options] filename [;]

In the above command line, options and semicolon; are

both optional, but filename is required, except for the

following case:

 99

 Chapter 9 Assembly Language and Cross Assembler

Brackets in the instruction operands. In this case, the

brackets refer to memory address.

{choice1 | choice2}

Braces and vertical bars stand for a choice between two or

more items. Braces enclose the choices whereas vertical

bars separate the choices. Only one item can be chosen.

Repeating elements…

Three dots following an item signify that more items with

the same form may be entered. For example, the directive

PUBLIC has the following form:

PUBLIC name1 [,name2 [,…]]

In the above form, the three dots following name2 indicate

that many names can be entered as long as each is

preceded by a comma.

Statement Syntax

The construction of each statement is as follows:

 [name][operation][operands][;comment]

 All fields are optional.

 Each field (except the comment field) must be separated from other fields by at least

one space or one tab character.

 Fields are not case-sensitive, i.e., lower-case characters are changed to upper-case

characters before processing.

Name
Statements can be assigned labels to enable easy access by other statements. A name

consists of the following characters:

 A～Z a～z 0～9 ？ ╴ @

with the following restrictions :

 0~9 cannot be the first character of a name

 100

 Chapter 9 Assembly Language and Cross Assembler

 ? cannot stand alone as a name

 Only the first 31 characters are recognized

Operation
The operation defines the statement action of which two types exist, directives and

instructions. Directives give directions to the Cross Assembler, specifying the manner in

which the Cross Assembler is to generate the object code at assembly time. Instructions,

on the other hand, give directions to the processor. They are translated to object code at

assembly time, the object code in turn controls the behavior of the processor at run time.

Operand
Operands define the data used by directives and instructions. They can be made up of

symbols, constants, expressions and registers.

Comment
Comments are the descriptions of codes. They are used for documentation only and are

ignored by the Cross Assembler. Any text following a semicolon is considered a

comment.

Assembly Directives

Directives give direction to the Cross Assembler, specifying the manner in which the

Cross Assembler generates object code at assembly time. Directives can be further

classified according to their behavior as described below.

Conditional Assembly Directives
The conditional block has the following form:

 IF
 statements
 [ELSE
 statements]
 ENDIF

 Syntax
IF expression
IFE expression

 101

 Chapter 9 Assembly Language and Cross Assembler

 Description

The directives IF and IFE test the expression following them.

The IF directive grants assembly if the value of the expression is true, i.e. non-zero.

The IFE directive grants assembly if the value of the expression is false, i.e. zero.

 Example
 IF debugcase
 ACC1 equ 5
 extern username: byte
 ENDIF

In this example, the value of the variable ACC1 is set to 5 and the username is

declared as an external variable if the symbol debugcase is evaluated as true, i.e.

nonzero.

 Syntax
IFDEF name
IFNDEF name
 Description

The directives IFDEF and IFNDEF test whether or not the given name has been

defined. The IFDEF directive grants assembly only if the name is a label, a variable or

a symbol. The IFNDEF directive grants assembly only if the name has not yet been

defined. The conditional assembly directives support a nesting structure, with a

maximum nesting level of 7.

 Example
 IFDEF buf_flag
 buffer DB 20 dup (?)
 ENDIF

In this example, the buffer is allocated only if the buf_flag has been previously defined.

File Control Directives
 Syntax

INCLUDE file-name
or
INCLUDE 　file-name　
 Description

This directive inserts source codes from the source file given by file-name into the
current source file during assembly. Cross Assembler supports at most 7 nesting
levels.

 Example
 INCLUDE macro.def

In this example, the Cross Assembler inserts the source codes from the file macro.def

 102

 Chapter 9 Assembly Language and Cross Assembler

into the current source file.

 Syntax
PAGE size
 Description

This directive specifies the number of the lines in a page of the program listing file.
The page size must be within the range from 10 to 255, the default page size is 60.

 Example
 PAGE 57

This example sets the maximum page size of the listing file to 57 lines.

 Syntax
.LIST
.NOLIST
 Description

The directives .LIST and .NOLIST decide whether or not the source program lines are

to be copied to the program listing file. .NOLIST suppresses copying of subsequent

source lines to the program listing file. .LIST restores the copying of subsequent

source lines to the program listing file. The default is .LIST.

 Example
 .NOLIST
 mov a, 1
 mov b1, a
 .LIST

In this example, the two instructions in the block enclosed by .NOLIST and .LIST are

suppressed from copying to the source listing file.

 Syntax
.LISTMACRO
.NOLISTMACRO
 Description

The directive .LISTMACRO causes the Cross Assembler to list all the source
statements, including comments, in a macro. The directive .NOLISTMACRO
suppresses the listing of all macro expansions. The default is .NOLISTMACRO.

 Syntax
.LISTINCLUDE
.NOLISTINCLUDE
 Description

The directive .LISTINCLUDE inserts the contents of all included files into the program
listing. The directive .NOLISTINCLUDE suppresses the addition of included files. The
default is .NOLISTINCLUDE.

 103

 Chapter 9 Assembly Language and Cross Assembler

 Syntax
MESSAGE ’text-string’
 Description

The directive MESSAGE directs the Cross Assembler to display the text-string on the
screen. The characters in the text-string must be enclosed by a pair of single
quotation marks.

 Syntax
ERRMESSAGE ’error-string’
 Description

The directive ERRMESSAGE directs the Cross Assembler to issue an error. The
characters in the error-string must be enclosed by a pair of single quotation marks.

Program Directives
 Syntax（comment）

; text
 Description

A comment consists of characters preceded by a semicolon (;) and terminated by an
embedded carriage-return/line-feed.

 Syntax
name .SECTION [align] [combine] ‘class’
 Description

The .SECTION directive marks the beginning of a program section. A program section

is a collection of instructions and/or data whose addresses are relative to the section

beginning with the name which defines that section. The name of a section can be

unique or be the same as the name given to other sections in the program. Sections

with the same complete names are treated as the same section. The optional align

type defines the alignment of the given section. It can be one of the following:
BYTE uses any byte address (the default align type)
WORD uses any word address
PARA uses a paragraph address
PAGE uses a page address

For the CODE section, the byte address is in a single instruction unit. BYTE aligns the
section at any instruction address, WORD aligns the section at any even instruction
address, PARA aligns the section at any instruction address which is a multiple of 16,
and PAGE aligns the section at any instruction address with a multiple of 256.

For DATA sections, the byte address is in one byte units (8 bits/byte). BYTE aligns the
section at any byte address, WORD aligns the section at any even address, PARA
aligns the section at any address which is a multiple of 16, and PAGE aligns the

 104

 Chapter 9 Assembly Language and Cross Assembler

section at any address which is a multiple of 256. The optional combine type defines
the way of combining sections having the same complete name (section and class
name). It can be any one of the following:

 COMMON
Creates overlapping sections by placing the start of all sections with the same
complete name at the same address. The length of the resulting area is the length
of the longest section.

 AT address
Causes all label and variable addresses defined in a section to be relative to the
given address. The address can be any valid expression except a forward
reference. It is an absolute address in a specified ROM/RAM bank and must be
within the ROM/RAM range.

If no combine type is given, the section is combinative, i.e., this section can be
concatenated with all sections having the same complete name to form a single,
contiguous section. The class type defines the sections that are to be loaded in the
contiguous memory. Sections with the same class name are loaded into the memory
one after another. The class name CODE is used for sections stored in ROM, and the
class name DATA is used for sections stored in RAM. The complete name of a
section consists of a section name and a class name. The named section includes all
codes and data below (after) it until the next section is defined.

 Syntax
ROMBANK banknum section-name [,section-name,...]
 Description

This directive declares which sections are allocated to the specified ROM bank. The
banknum specifies the ROM bank, ranging from 0 to the maximum bank number of
the destination MCU. The section-name is the name of the section defined previously
in the program. More than one section can be declared in a bank as long as the total
size of the sections does not exceed the bank size of 8K words. If this directive is not
declared, bank 0 is assumed and all CODE sections defined in this program will be in
bank 0. If a CODE section is not declared in any ROM bank, then bank 0 is assumed.

 Syntax
RAMBANK banknum section-name [,section-name,...]
 Description

This directive is similar to ROMBANK except that it specifies the RAM bank, the size
of RAM bank is 256 bytes.

 Syntax
END
 Description

 105

 Chapter 9 Assembly Language and Cross Assembler

This directive marks the end of a program. Adding this directive to any included file

should be avoided.

 Syntax
ORG expression
 Description

This directive sets the location counter to expression. The subsequent code and data
offsets begin at the new offset specified by expression. The code or data offset is
relative to the beginning of the section where the directive ORG is defined. The
attribute of a section determines the actual value of offset, absolute or relative.

 Example

 ORG 8
 mov A, 1

In this example, the statement mov A, 1 begins at location 8 in the current section.

 Syntax
PUBLIC name1 [,name2 [,...]]
EXTERN name1:type [,name2:type [,...]]
 Description

The PUBLIC directive marks the variable or label specified by a name that is available
to other modules in the program. The EXTERN directive, on the other hand, declares
an external variable, label or symbol of the specified name and type. The type can be
one of the three types: BYTE, BIT (these three types are for data variables), and
NEAR (a label type and used by call or jmp).

 Example
 PUBLIC start, setflag
 EXTERN tmpbuf:byte
 CODE .SECTION ‘CODE‘
 start:
 mov a, 55h
 call setflag
 ...
 setflag proc
 mov tmpbuf, a
 ret
 setflag endp
 end

In this example, both the label start and the procedure setflag are declared as public
variables. Programs in other sources may refer to these variables. The variable
tmpbuf is also declared as external. There should be a source file defining a byte that
is named tmpbuf and is declared as a public variable.

 Syntax
name PROC

 106

 Chapter 9 Assembly Language and Cross Assembler

name ENDP
 Description

The PROC and ENDP directives mark a block of code which can be called or jumped
to from other modules. The PROC creates a label name which stands for the address
of the first instruction of a procedure. The Cross Assembler will set the value of the
label to the current value of the location counter.

 Example
 toggle PROC
 mov tmpbuf, a
 mov a, 1
 xorm a, flag
 mov a, tmpbuf
 ret
 toggle ENDP

 Syntax
[label:] DC expression1 [,expression2 [,...]]
 Description

The DC directive stores the value of expression1, expression2 etc. in consecutive
memory locations. This directive is used for the CODE section only. The bit size of the
result value is dependent on the ROM size of the MCU. The Cross Assembler will
clear any redundant bits; expression1 has to be a value or a label. This directive may
also be employed to setup the table in the code section.

 Example
 table: DC 0128H, 025CH

In this example, the Cross Assembler reserves two units of ROM space and also
stores 0128H and 025CH into these two ROM units.

Data Definition Directives
An assembly language program consists of one or more statements and comments. A

statement or comment is a composition of characters, numbers, and names. The

assembly language supports integer numbers. An integer number is a collection of binary,

octal, decimal, or hexadecimal digits along with an optional radix. If no radix is given, the

Cross Assembler uses the default radix (decimal). The table lists the digits that can be

used with each radix.

Radix Type Digits

B

O

D

Binary

Octal

Decimal

01

01234567

0123456789

 107

 Chapter 9 Assembly Language and Cross Assembler

H Hexadecimal 0123456789ABCDEF

 Syntax
[name] DB value1 [,value2 [,...]]
[name] DBIT
[name] DB repeated-count DUP(?)
 Description

These directives reserve the number of bytes specified by the repeated-count or
reserve bytes only. value1 and value2 should be ? due to the microcontroller RAM .
The Cross Assembler will not initialize the RAM data. DBIT reserves a bit. The
content ? denotes uninitialized data, i.e., reserves the space of the data. The Cross
Assembler will gather every 8 DBIT together and reserve a byte for these 8 DBIT
variables.

 Example
 DATA .SECTION ‘DATA’
 tbuf DB ?
 flag1 DBIT
 sbuf DB ?
 cflag DBIT

In this example, the Cross Assembler reserves byte location 0 for tbuf, bit 0 of location
1 for flag1, location 2 for sbuf and bit 1 of location 1 for cflag.

 Syntax
name LABEL {BIT|BYTE|WORD}
 Description

The name with the data type has the same address as the following data variable
 Example
 lab1 LABEL WORD
 d1 DB ?
 d2 DB ?

In this example, d1 is the low byte of lab1 and d2 is the high byte of lab1.

 Syntax
name EQU expression
 Description

The EQU directive creates absolute symbols, aliases, or text symbols by assigning an
expression to name. An absolute symbol is a name standing for a 16-bit value; an
alias is a name representing another symbol; a text symbol is a name for another
combination of characters. The name must be unique, i.e. not having been defined
previously. The expression can be an integer, a string constant, an instruction
mnemonic, a constant expression, or an address expression.

 Example
 accreg EQU 5
 bmove EQU mov

 108

 Chapter 9 Assembly Language and Cross Assembler

In this example, the variable accreg is equal to 5, and bmove is equal to the instruction
mov.

Macro Directives
Macro directives enable a block of source statements to be named, and then that name to
be re-used in the source file to represent the statements. During assembly, the Cross
Assembler automatically replaces each occurrence of the macro name with the
statements in the macro definition.

A macro can be defined at any place in the source file as long as the definition precedes
the first source line that calls this macro. In the macro definition, the macro to be defined
may refer to other macros which have been previously defined. The Cross Assembler
supports a maximum of 7 nesting levels.

 Syntax
name MACRO [dummy-parameter [,...]]
 statements
 ENDM
The Cross Assembler supports a directive LOCAL for the macro definition.

 Syntax
name LOCAL dummy-name [,...]
 Description

The LOCAL directive defines symbols available only in the defined macro. It must be
the first line following the MACRO directive, if it is present. The dummy-name is a
temporary name that is replaced by a unique name when the macro is expanded. The
Cross Assembler creates a new actual name for dummy-name each time the macro is
expanded. The actual name has the form ??digit, where digit is a hexadecimal
number within the range from 0000 to FFFF. A label should be added to the LOCAL
directive when labels are used within the MACRO/ENDM block. Otherwise, the Cross
Assembler will issue an error if this MACRO is referred to more than once in the
source file.
In the following example, tmp1 and tmp2 are both dummy parameters, and are
replaced by actual parameters when calling this macro. label1 and label2 are both
declared LOCAL, and are replaced by ??0000 and ??0001 respectively at the first
reference, if no other MACRO is referred. If no LOCAL declaration takes place, label1
and label2 will be referred to labels, similar to the declaration in the source program.
At the second reference of this macro, a multiple define error message is displayed.

 Delay MACRO tmp1, tmp2
 LOCAL label1, label2
 mov a, 70h
 mov tmp1, a

 109

 Chapter 9 Assembly Language and Cross Assembler

 label1:
 mov tmp2, a
 label2:
 clr wdt1
 clr wdt2
 sdz tmp2
 jmp label2
 sdz tmp1
 jmp label1
 ENDM

The following source program refers to the macro Delay ...
� � � � � � �

� � � � 	
 � � � � � � � � 	
 � � � � � � � � � � �

� � � � � � 	 � � �

� � 	 � � � � � � � � � �
 � � � � �
 � �

� � � � � � � � � � � � � � 	 � � � � � � 	 � � �

� � � � � �
 � � � � � 	 � � ! " #

� � � � � �
 � � � � � �
 � � � � 	

� 	 � � � $

� � � � � �
 � � � � � �
 � � � � 	

� 	 � � � $

� � � � � � � � � � � � � % & � �

� � � � � � � � � � � � � % & � �

� � � � � � � & ' � � � � �
 � �

� � � � � � (
 � � � � � � 	 � � �

� � � � � � � & ' � � � � �
 � �

� � � � � � (
 � � � � � � 	 � � �

� � � � � �) * � �

& 	 � 	 � � � � � � � + � , & 	 � 	 ,

- � + � � & � � .

� � + � � & � � .

� � & � � � � � � � + � 	 � � " � , � � & ,

� � 	 � � - � + � � � � � + �

 + &
The Cross Assembler will expand the macro Delay as shown in the following listing file.
Note that the offset of each line in the macro body, from line 4 to line 17, is 0000. Line
24 is expanded to 11 lines and forms the macro body. In addition the formal
parameters, tmp1 and tmp2, are replaced with the actual parameters, BCnt and SCnt,
respectively.

 110

 Chapter 9 Assembly Language and Cross Assembler
/ � � $ � � � 	 �
 � � � � � � � � � 0 � � � 1 � � � � � � 2 � � �
 � � � � � 3 � � � � + � � � 4 " � � � � � � 5 	 � � �

� � � � � � " " " " �

� � � � � � " " " " � � � � � � � � � � � � � � � � � � 	
 � � � � � � � � 	
 � � � � � � � � � � �

� � � 6 � � " " " " � 	 � � �

� � � 7 � � " " " " � � � � � � � � � � � � � � � � 	 � � � � � � � � � �
 � � � � �
 � �

� � � 8 � � " " " " � 	 � � � � � � 	 � � �

� � � 9 � � " " " " �
 � � � � � 	 � � ! " #

� � � ! � � " " " " �
 � � � � � �
 � � � � 	

� � � 4 � � " " " " � � � � � � � � � � � � � � � 	 � � � $

� � � : � � " " " " �
 � � � � � �
 � � � � 	

� � � " � � " " " " � � � � � � � � � � � � � � � 	 � � � $

� � � � � � " " " " � % & � �

� � � � � � " " " " � % & � �

� � � 6 � � " " " " � & ' � � � � �
 � �

� � � 7 � � " " " " � (
 � � � � � � 	 � � �

� � � 8 � � " " " " � & ' � � � � �
 � �

� � � 9 � � " " " " � (
 � � � � � � 	 � � �

� � � ! � � " " " " �) * � �

� � � 4 � � " " " "

� � � : � � " " " " � � � � � � � � � � � � � � & 	 � 	 � � � � � � � + � , & 	 � 	 ,

� � � " � � " " " " � � " " � � � � � � � � � � - � + � � & � � .

� � � � � � " " " � � � " " � � � � � � � � � � � � + � � & � � .

� � � � � � " " " �

� � � 6 � � " " " " � � � � � � � � � � � � � � � � & � � � � � � � + � 	 � � " � , � � & ,

� � � 7 � � " " " " � � � � � � � � � � � � � � � � 	 � � - � + � � � � � + �

� � � 7 � � " " " " � � " / ! " � � � � � � � � � � � � � �
 � � � � � 	 � � ! " #

� � � 7 � � " " " � � � " " 4 " � � � � � � � � � � � � � �
 � � � � � - � + � � � 	

� � � 7 � � " " " � � � � � � � � � � � � � � � � . . " " " " $

� � � 7 � � " " " � � � " " 4 " � � � � � � � � � � � � � �
 � � � � � � � + � � � 	

� � � 7 � � " " " 6 � � � � � � � � � � � � � � � . . " " " � $

� � � 7 � � " " " 6 � � " " " � % & � �

� � � 7 � � " " " 7 � � " " " 8 � % & � �

� � � 7 � � " " " 8 � � � ! 4 " � � � � � � � � � � � � � � � & ' � � � � � � + �

� � � 7 � � " " " 9 � � � 4 " 6 � � � � � � � � � � � � � � (
 � � � � � . . " " " �

� � � 7 � � " " " ! � � � ! 4 " � � � � � � � � � � � � � � � & ' � � � � - � + �

� � � 7 � � " " " 4 � � � 4 " � � � � � � � � � � � � � � � (
 � � � � � . . " " " "

� � � 8 � � " " " : � � � � � � � � � � � � � � + &

� � � � � � � � " �) � � � � �

Assembly Instructions

The syntax of an instruction has the following form：

[name:] mnemonic [operand1 [,operand2]] [; comment]

where
name: → label name
mnemonic → instruction name (keywords)
operand1 → registers
 memory address
operand2 → registers
 memory address
 immediate value

Name
A name is made up of letters, digits, and special characters, and is used as a label.

 111

 Chapter 9 Assembly Language and Cross Assembler

Mnemonic
Mnemonic is an instruction name dependent upon the type of the MCU used in the source

program.

Operand, Operator and Expression
Operands (source or destination) are the argument defining values that are to be acted on

by instructions. They can be constants, variables, registers, expressions or keywords.

When using the instruction statements, care must be taken to select the correct operand

type, i.e. source operand or destination operand. The dollar sign $ is a special operand,

namely the current location operand.

An expression consists of many operands that are combined to describe a value or a

memory location. The combined operators are evaluated at assembly time. They can

contain constants, symbols, or any combination of constants and symbols that are

separated by arithmetic operators.

Operators specify the operations to be performed while combining the operands of an

expression. The Cross Assembler provides many operators to combine and evaluate

operands. Some operators work with integer constants, some with memory values, and

some with both. Operators handle the calculation of constant values that are known at the

assembly time. The following are some operators provided by the Cross Assembler.

 Arithmetic operators + – * / %（MOD）

 SHL 和 SHR operators

 Syntax
 expression SHR count
 expression SHL count

The values of these shift bit operators are all constant values. The expression is

shifted right SHR or left SHL by the number of bits specified by count. If bits are

shifted out of position, the corresponding bits that are shifted in are zero-filled. The

following are such examples:

 mov A, 01110111b SHR 3 ; result ACC=00001110b
 mov A, 01110111b SHL 4 ; result ACC=01110000b

 Bitwise operators NOT、AND、OR、XOR

 Syntax
 NOT expression
 expression1 AND expression2
 expression1 OR expression2

 112

 Chapter 9 Assembly Language and Cross Assembler

 expression1 XOR expression2
 NOT is a bitwise complement.
 AND is a bitwise AND.
 OR is a bitwise inclusive OR.
 XOR is a bitwise exclusive OR.

 OFFSET operator

 Syntax
 OFFSET expression

The OFFSET operator returns the offset address of an expression. The expression
can be a label, a variable, or other direct memory operand. The value returned by the
OFFSET operator is an immediate operand.

 LOW、MID 和 HIGH operator

 Syntax
 LOW expression
 MID expression
 HIGH expression

The LOW/MID/HIGH operator returns the value of an expression if the result of the
expression is an immediate value. The LOW/MID/HIGH operators will then take the
low/middle/ high byte of this value. But if the expression is a label, the LOW/MID/HIGH
operator will take the values of the low/middle/high byte of the program count of this
label.

 BANK operator

 Syntax
 BANK name

The BANK operator returns the bank number allocated to the section of the name
declared. If the name is a label then it returns the rom bank number. If the name is a
data variable then it returns the ram bank number. The format of the bank number is
the same as the BP defined. For more information of the format please refer to the
data sheets of the corresponding MCUs. (Note: The format of the BP might be
different between MCUs.)

Example 1:
 mov A, BANK start
 mov BP, A
 jmp start

Example 2:
 mov A, BANK var
 mov BP, A
 mov A, OFFSET var
 mov MP1, A
 mov A, R1

 Operator precedence

 113

 Chapter 9 Assembly Language and Cross Assembler

Precedence Operators
1(Highest)
2
3
4
5

6
7
8
9(Lowest)

(), []
+ , – (unary), LOW, MID, HIGH, OFFSET, BANK
*, /, %, SHL, SHR
+, – (binary)
>(greater than), >=(greater than or equal to),
<(less than), <= (less than or equal to)
= = (equal to), !=(not equal to)
! (bitwise NOT)
& (bitwise AND)
| (bitwise OR), ^ (bitwise XOR)

Miscellaneous

Forward References
The Cross Assembler allows reference to labels, variable names, and other symbols
before they are declared in the source code (forward named references). But symbols to
the right of EQU are not allowed to be forward referenced.

Local Labels
Alocal label is a label with a fixed form such as $number. The number can be 0~29. The
function of a local label is the same as a label except that the local label can be used
repeatedly. The local label should be used between any two consecutive labels and the
same local label name may used between other two consecutive labels. The Cross
Assembler will transfer every local label into a unique label before assembling the source
file. At most 30 local labels can be defined between two consecutive labels.

Example

Label1: ; label
 $1: ;; local label
 mov a, 1
 jmp $3
 $2: ;; local label
 mov a, 2
 jmp $1
 $3: ;; local label
 jmp $2
Label2: ; labe1
 Jmp $1
 $0: ;; local label
 jmp Label1
 $1: jmp $0
Label3:

 114

 Chapter 9 Assembly Language and Cross Assembler

Reserved Assembly Language Words
The following tables list all reserved words used by the assembly language.

 Reserved Names (directives, operators)
$ DUP INCLUDE NOT

* LABEL OFFSET

+ ELSE .LIST OR

- END .LISTINCLUDE ORG

. ENDIF .LISTMACRO PAGE

/ ENDM LOCAL PARA

= ENDP LOW PROC

? EQU MACRO PUBLIC

[] ERRMESSAGE MESSAGE RAMBANK

AND EXTERN MID ROMBANK

BANK HIGH MOD .SECTION

BYTE IF NEAR SHL

DB IFDEF .NOLIST SHR

DBIT IFE .NOLISTINCLUDE WORD

DC IFNDEF .NOLISTMACRO XOR

 Reserved Names (instruction mnemonics)
ADC HALT RLCA SUB

ADCM INC RR SUBM

ADD INCA RRA SWAP

ADDM JMP RRC SWAPA

AND MOV RRCA SZ

ANDM NOP SBC SZA

CALL OR SBCM TABRDC

CLR ORM SDZ TABRDL

CPL RET SDZA XOR

CPLA RETI SET XORM

DAA RL SIZ

DEC RLA SIZA

DECA RLC SNZ

 Reserved Names (registers names)
A WDT WDT1 WDT2

 115

 Chapter 9 Assembly Language and Cross Assembler

Cross Assembler Options

The Cross Assembler options can be set via the Options menu Project command in

HTIDE3000. The Cross Assembler Options is located on the center part of the Project

Option dialog box, as shown in Fig 3-12.

The symbols could be defined in the Define Symbol edit box.

 Syntax
 symbol1 [=value1] [,symbol2 [=value2] [,...]]
 Example
 debugflag=1, newver=3

The check box of the Generate listing file is used to decide whether the listing file
should be generated or not. If the check box is checked, the listing file will be
generated. Otherwise, it won’t be generated.

Assembly Listing File Format

The Assembly Listing File contains the source program listing and summary information.
The first line of each page is a title line which include company name, the Cross
Assembler version number, source file name, date/time of assembly and page number.

Source Program Listing
Each line in the source program has the following syntax:
 line-number offset [code] statement
 Line-number is the number of the line starting from the first statement in the assembly

source file (4 decimal digits).

 The 2nd field – offset – is the offset from the beginning of the current section to the

code (4 hexadecimal digits)
 The 3rd field – code – is present only if the statement generates code or data (two

hexadecimal 4-digit data)
The code shows the numeric value in hexadecimal if the value is known at assembly
time. Otherwise, a proper flag will indicate the action required to compute the value.
The following two flags may appear behind the code field.
 R → relocatable address (Cross Linker must resolve)
 E → external symbol (Cross Linker must resolve)

 116

 Chapter 9 Assembly Language and Cross Assembler

The following flag may appear before the code field

 = → EQU or equal-sign directive
The following 2 flags may appear in the code field
 ---- → section address (Cross Linker must resolve)
 nn[xx] → DUP expression: nn DUP(?)

 The 4th field – statement – is the source statement shown exactly as it appears in the
source file, or as expanded by a macro. The following flags may appear before a
statement.
 n → Macro-expansion nesting level
 C → line from INCLUDE file

 Summary

! " # $ % & ' () * ! " # $ % & ' () * ! " # $ % & ' () * ! " # $ % & ' () * ! " # $ % & ' () * ! " # $ % & ' () *
* ! " # $ % &

+ + +
� � � � � � � � � � � � � � � � � � , , , , � � , , , , � � - � � � � � � � � � �
 � � - �
 � � � � � �

� �

� � � �

IIII → line number (4 digits, right alignment)
oooo → offset of code (4 digits)
hhhh → two 4-digits for opcode

E → external reference
C → statement from included file
R → relocatable name
n → Macro-expansion nesting level

Summary of Assembly
The total warning number and total error number is the information provided at the end of
the Cross Assembler listing file.

Miscellaneous
If any errors occur during assembly, each error message and error number will appear
directly below the statement where the error occurred.

 117

 Chapter 9 Assembly Language and Cross Assembler

 118

 Example of Assembly Listing File
/ � � $ � � � � 5 �) � � � � � � � � 0 � � � 1 � � � � � � 2 � � �
 � � � � � 3 � � � � + � � � 4 9 � � � � � � 5 	 � � �

�

�

6

7

8

9

!

�

�

6

7

8

9

!

4

:

� "

� �

� �

� 6

� 7

� 8

� 9

� !

� 4

� :

� "

� �

� �

� 6

� 7

� 8

� 9

� !

� 4

� :

6 "

6 �

6 �

6 6

6 6

6 6

6 6

6 6

6 7

6 8

6 9

6 !

6 4

6 :

7 "

" " " "

" " " "

" " " "

" " " "

" " " "

" " " "

" " " "

" " " "

" " " "

" " " "

" " " "

" " " "

" " " "

" " " "

" " " "

" " " "

" " " "

" " " "

" " " "

" " " "

" " " "

" " " "

" " " "

" " " "

" " " "

" " " "

" " " "

" " " "

" " " "

" " " "

" " " �

" " " �

" " " 6

" " " "

" " " "

" " " �

" " " �

" " " 6

" " " 7

" " " 8

" " " 8

" " " 9

" " " !

" " " !

" " " 4

" " " :

" " " �

" " " -

" " " �

" " " �

" " � "

� � "

�

�

�

�

�

�

�

" "

" "

" "

" / 8 8

" " 4 "

" " 4 "

" / � �

" " : 6

" / " "

" " : �

� / � 7

" ! " "

" / " "

" / " "

� 4 " "

� � 6 7

� - � �

) � � � � �

� 	 � � 9 "

� � � � � � + � � ; &
� � � � �
 	 � � �

� 	

� 	 �

� �

� � �

� �

� � �

 < ;

 < ;

 < ;

 < ;

 < ;

 < ;

= � � # >

= � 6 # >

= � 7 # >

= � 8 # >

= � 9 # >

= � ! # >

? � + � � ; & @ � 	
 � � � � + � @

 A � � +

 A � � +

� � � � �

� � � � � �

 + &

 	 � � �

 A � � 	 �

 A � � �

+ 	 �

� � �

� � � � 	

 � � 	 �

 � � � 	 �

� � � � �

 + &

& 	 � 	

� �

� �

� � � �

� � &

 �

 �

 �

 �

 �

� � � � 	

 � � 	

 �

� � � � �

� � �

 �

 �

 �

(
 �

8 9 ! 4

) / � �

�

)

)

)

�

)

�

�

�

�

� � � � � � + � , & 	 � 	 ,

� & � � .

� & � � .

� & � � �

� � � � � � + � , � � & ,

	 � � " 8 8 #

� � � � 	

 A � � � � � 	

	 � � " 	 	 #

� 	 � � � 	

� � " " #

	 � � � �

	 � � � 	 + 1 � A � � 	 �

	 � � � � � � � � A � � �

 A � � 	 �

� � 6 7 # � � 8 9 ! 4 # � � " 	 � � & # � � " � � � #

 � � 	 � , � 	
 � � � 5 � � � � 	
 � � ,

$

$

 	 � � �

" " #
	

= � � # > � � 	

= � 7 # >

 + &

& %

 Chapter 10 Cross Linker

10
C h a p t e r 10

Cross Linker

What the Cross Linker Does

The Cross Linker creates task files from the object files generated by the Cross

Assembler or the C compiler. The Cross Linker combines both code and data in the

object files and searches the named libraries to resolve external references to routines

and variables. It also locates the code and data sections at the specified memory address

or at the default address, if no explicit address is specified. Finally, the Cross Linker

copies both the program codes and other information to the task file. It is this task file that

is loaded by the Holtek IDE Holtek Integrated Development Environment, into the Holtek

HT-ICE In-Circuit Emulator, for debugging. The libraries included by the Cross Linker

were generated by the Holtek library manager.

Cross Linker Options

The options specify and control the tasks performed by Cross Linker. In chapter 3, Option

Menu, Project command provides a dialog box, Cross Linker Options, to specify these

options to the Cross Linker. These options are:

Libraries
 Syntax
 libfile1[,libfile2...]

This option informs the Cross Linker to search the specified library files if the input

 119

 Chapter 10 Cross Linker

object files refer to a procedure or variable which is not defined in any of the object

files. If a module of a library file contains the referred procedure or variable, then only

this module, not the whole library file will be included in the output task file. (refer to

Chapter 13 Library Manager)

Section Address
 Syntax
 section_name=address[,section_name=address]...

This option specifies the address of the sections; section_name is the name of the
section that is to be addressed. The section_name must be defined in at least one
input object file, otherwise a warning will occur. The address is the specified address
whose format is xxxx in hexadecimal format.

Generate Map File
The check box of this option is to specify whether the map file is generated or not.

Map File

The map file lists the names and loads the addresses and lengths of all sections in a

program as well as listing the messages it encounters. The Cross Linker gives the

address of the program entry point at the end of the map file. The map file also lists the

names and loads addresses of all public symbols. The names and file names of the

external symbols or procedures are recorded in the map file if no corresponding public

symbol or procedure can be found. The contents of the map file are as follows :

 Holtek (R) Cross Linker Version 8.1
 Copyright (C) HOLTEK Semiconductor Inc. 2007-2008.All
 rights reserved.
 Input Object File: C:\SAMPLE\T2.OBJ

 Input Library File: C:\Program Files\Holtek MCU Development
Tools\HT-IDE3000V7.1\LIB\MATH6.LIB

SECTION
 Start End Length Class Name
 0000h 0002h 0003h CODE @CODE (C:\Documents
and Settings\panwei\My
Documents\HTK_Project\C-INTR-TEST\C-INTR-TEST.OBJ)
 0003h 0003h 0001h CODE STARTSEC (C:\Documents
and Settings\panwei\My

 120

 Chapter 10 Cross Linker

Documents\HTK_Project\C-INTR-TEST\C-INTR-TEST.OBJ)
 0004h 0004h 0001h CODE @@ExtISR (C:\Documents
and Settings\panwei\My
Documents\HTK_Project\C-INTR-TEST\C-INTR-TEST.OBJ)
 0005h 000fh 000bh CODE @main (C:\Documents and
Settings\panwei\My Documents\HTK_Project\C-INTR-TEST\C-INTR-TEST.OBJ)
 0010h 0017h 0008h CODE @ExtISR (C:\Documents
and Settings\panwei\My
Documents\HTK_Project\C-INTR-TEST\C-INTR-TEST.OBJ)
 0040h 0041h 0002h DATA CTMPDATA (C:\Program
Files\Holtek MCU Development Tools\HT-IDE3000V7.1\LIB\MATH6.LIB)
 0048h 0048h 0001h DATA @ExtISR (C:\Documents
and Settings\panwei\My
Documents\HTK_Project\C-INTR-TEST\C-INTR-TEST.OBJ)

 Local Sections
 Start End Length Class Name
 0043h 0044h 0002h LOCAL _funa (C:\Documents and
Settings\panwei\My Documents\HTK_Project\C-INTR-TEST\C-INTR-TEST.OBJ)
 0042h 0042h 0001h LOCAL _funb (C:\Documents and
Settings\panwei\My Documents\HTK_Project\C-INTR-TEST\C-INTR-TEST.OBJ)
 0044h 0047h 0004h LOCAL _func (C:\Documents and
Settings\panwei\My Documents\HTK_Project\C-INTR-TEST\C-INTR-TEST.OBJ)
 0042h 0043h 0002h LOCAL _fund (C:\Documents and
Settings\panwei\My Documents\HTK_Project\C-INTR-TEST\C-INTR-TEST.OBJ)
 0048h 0048h 0000h LOCAL @DUMMY (C:\Documents and
Settings\panwei\My Documents\HTK_Project\C-INTR-TEST\C-INTR-TEST.OBJ)
 0042h 0047h 0006h LOCAL _main (C:\Documents and
Settings\panwei\My Documents\HTK_Project\C-INTR-TEST\C-INTR-TEST.OBJ)

 Indepentent Local Sections
 Start End Length Class Name
 0048h 0048h 0000h ILOCAL _ExtISR (C:\Documents and
Settings\panwei\My Documents\HTK_Project\C-INTR-TEST\C-INTR-TEST.OBJ)

 Public Symbols Information
 Address Public by Name
 0040h V1A
 0041h V1S

 Address Public by Value
 0040h V1A
 0041h V1S

ROM Usage Statistics
 Size Used Percentage
 0800h 0018h 1%

RAM Usage Statistics
 Size Used Percentage
 0040h 0009h 14%

 121

 Chapter 10 Cross Linker

Call Tree
 _funa
 _funb
 _func
 _fund
 @DUMMY
 _main

HLINK: Program entry point at section '@CODE' (address 0) of file 'C:\Documents
and Settings\panwei\My
Documents\HTK_Project\C-INTR-TEST\C-INTR-TEST.OBJ'

Total 0 Error(s), Total 0 Warning(s)

Cross Linker Task File and Debug File

One of the Cross Linker’s output files is the task file which consists of two parts, a task

header and binary code. The task header contains the Cross Linker version, the MCU

name and the ROM code size. The binary code part contains the program codes. The

other Cross Linker output file is the debug file which contains all information referred to by

the Holtek IDE debugging program. This information includes source file names, symbol

names and line numbers as defined in the source files. The Holtek IDE will refer to the

symbolic debugging function information. This file should not be deleted unless the

debugging procedure is completed, otherwise the Holtek IDE will be unable to support the

symbolic debugging function.

 122

 Chapter 10 Cross Linker

 123

 Part III Utilities

P a r t I I I

Utilities

In addition to the previously discussed general purpose 8-bit MCU development tools,

Holtek also supplies several other utilities for its range of special purpose Voice and LCD

MCU devices by supplying all the necessary tools and step by step guide for relevant

simulation of voice synthesis and tone generator applications as well as the tools for real

time hardware LCD panel simulation. This part contains all the information needed to

program and debug relevant applications quickly and efficiently.

 125

 Part III Utilities

 126

 Chapter 11 Library Manager

11
C h a p t e r 11

Library Manager

What the Library Manager Does

The Library Manager provides functions to process the library files. The library files are

utilized in the creation of the output file by the Cross Linker. Alibrary is a collection of one

or more object modules which are assembled or compiled and ready for linking. It stores

the modules that other programs may require for execution.

By using the Library Manager, library files can be created. Object files including common

routines may be added to the library files. Before creating these object files, the names of

all common routines must be made public by using the assembly directive PUBLIC (refer

to the chapter on Assembly Language and Cross Assembler). The Cross Assembler

generates the output object file (.OBJ) while the Library Manager adds this object file into

the specified library file. When the Cross Linker has found unresolved names in a

program during the linking process, it will search the library files for these unresolved

names, and extracts a copy of the module containing that name. If an unresolved name

has been found in this library module, the module will be linked to the program.

To Setup the Library Files

The Library Manager provides the following functions :

 Create new library files

 Add/Delete a program module to/from a library file

 127

 Chapter 11 Library Manager

 Extract a program module from a library file, and create an object file

To select use the Tools Menu and the Library Manager command as shown in Fig 11-1.

Fig 11-2 shows the dialogue box for processing the functions of the Library Manager.

Fig 11-1

Fig 11-2

Create a New Library File

Press Open button, Fig 11-3 is displayed

 128

 Chapter 11 Library Manager

Type in a new library file name and press the OK button, Fig 11-4 is displayed for

confirmation. If the Yes button is chosen, a new library file will be created but will not

contain any program modules.

Fig 11-3

Fig 11-4

Add a Program Module into a Library File
Select an object module from the “Object in Directory” box, and press the [ADD] button to

add this object module into this library file.

Delete a Program Module from a Library File
Select an object module from the “Object In Library” box, and press the [Delete] button to
delete this object module from the library file.

Extract a Program Module from Library and Create An Object File
Select an object module from the “Object in Library” box, and press [ExTract] button. A

 129

 Chapter 11 Library Manager

 130

file will then be created with the same name and same content as the selected object
module. It is displayed on the “Object in Directory” box.

Object Module Information
Press the Open button, Fig 11-3 is displayed. Select a library file from the box below the
File Name box, press OK button. From Fig 11-2, all the object modules of the selected
library file are listed in the “Object in Library” box. The following information about each
object module is also listed in the “Objects’ Information” box：

 Maximum ROM size

The maximum size used by this object module program code. Dependent upon the

code section align type.

 Minimum ROM size

The minimum actual size used by this object module program code

 Maximum RAM size

The maximum size used by this object module program data. It depends on the data

section align type.

 Minimum RAM size

The minimum, actual size used by this object module program data.

 Public Name

The names of all public symbols in this object module.

 Chapter 12 LCD Simulator

12
C h a p t e r 12

LCD Simulator

Introduction

The Holtek LCD simulator, known as the HT-LCDS, provides a mechanism allowing users

to simulate the output of LCD drivers. According to the user designed patterns and the

control programs, the HT-LCDS displays the patterns on the screen in real time. It

facilitates the development process even if the actual LCD hardware panel is unavailable.

Note that if the current project’s microcontroller does not support LCD functions, these

commands are disabled.

LCD Panel Configuration File

Before starting the LCD simulation, an LCD panel configuration file must first be setup.

The HT-LCDS will obtain the LCD data and display LCD patterns on the screen according

to the LCD panel configuration file. The HT-LCDS cannot simulate the LCD action if this

file is absent. For microcontrollers possessing an LCD driver, the corresponding panel

configuration file has to be setup for LCD simulation. The LCD simulator command within

the Tools menu will then be enabled to setup the panel configuration file and for

simulation (Fig12-1). The LCD panel configuration file contains two kinds of data, panel

configuration data and pattern information, which users can setup using the HT-LCDS.

 131

 Chapter 12 LCD Simulator

Fig 12-1

Relationship Between the Panel File and the Current Project
By default, the panel configuration file has the same file name as the current project name

except for the extension name, which is .lcd. The HT-LCDS assumes this file to be the

corresponding panel configuration file of the current project. The panel configuration file is

generated by the HT-LCDS File menu, New command or the New button on the toolbar.

A different file name from the current project name can be assigned to the panel

configuration file by clicking File menu,Save command or Save button on the toolbar.

When the HT-LCDS begins simulation, it references the current active panel configuration

file to obtain its simulation information. The LCD panel configuration file is activated by

selecting the New or Open command of the HT-LCDS File menu. The file name of the

LCD panel configuration file may be the same as the current project name or a different

name can be chosen.

Selecting the HT-LCDS
When selected from within the Tools menu, the LCD simulator as shown in Fig 12-2 is

displayed if the corresponding panel configuration file of the current project exists. The file

name of each bitmap pattern is shown at the specified COM/SEG position of the table. At

the same time, these patterns are shown on the above panel screen. If the corresponding

panel configuration file does not exist within the project directory, both the panel screen

and the COM/SEG table will not be displayed. Fig 12-3 shows the HTLCDS menu bar

information.

 132

 Chapter 12 LCD Simulator

]

Fig 12-2

The Fig below shows the HT-LCDS menu bar information.

Fig 12-3

New： create a new panel configuration file

Open：open an existing panel configuration file

Save：save the panel configuration file

Cut：delete a pattern

Copy：copy a pattern to the clipboard

Paste：add the copied pattern to the panel

I：panel information dialog

S：enter the LCD simulation mode

LCD Panel Picture File

The LCD panel picture (pattern) file is a bitmap file (.bmp) which represents the practical

patterns and their positions on the panel. The bitmap file can be created using any bitmap

editor and provides another method of setting up the LCD panel pattern information by

using the HT-LCDS Edit menu, Panel Editor command. The bitmap file is optional, users

 133

 Chapter 12 LCD Simulator

can setup the LCD panel pattern information even if the LCD panel picture file is absent.

Setup the LCD Panel Configuration File

The following two steps are used to setup a panel configuration file:

 Setup the panel configurations, including the segment and common number of the

LCD driver as well as the width and height size of the panel in pixels. Also, the

directory of the panel configuration file and the dot matrix mode can be selected.

 Select the patterns and their positions. This will setup the relationship between the

patterns and the COM/SEG positions.

Setup the Panel Configurations
To setup the panel configurations by selecting the HT-LCDS File menu, New command.

The Panel Configuration dialog box (Fig 12-4) will be displayed. Setup the correct LCD

driver data, COM/SEG number, Width, Height and Directory of the pattern, then press the

[OK] button. After setting up the panel configuration, the system returns to Fig 12-2 for

pattern selection.

Fig 12-4

The panel configurations include:

 The default number of the LCD driver for this microcontroller is displayed when

Fig12-4 is displayed. To ensure that these numbers are the same as the actual setting

number of the LCD driver for the micro controller.

 Width and Height. These are the size of the panel screen in pixels and can be

changed to adjust the panel screen.

 Panel configuration file directory. Select the directory where the panel configuration

 134

 Chapter 12 LCD Simulator

file is stored using the browse button or setup to have the same directory as the

project.

 Dot Matrix Mode. To simulate dot matrix type LCD panels. Fig 12-5 shows the dot

matrix screen.

Fig 12-5

Note: It is important not to set different COM or SEG number from the actual corresponding

LCD driver numbers, otherwise unpredictable results will occur.

Select the Patterns and Their Positions
The following methods show the steps of selecting the patterns and their positions

 To create a new panel configuration file using the HT-LCDS File menu New command.

After having set the panel configuration, Fig 12-2 is displayed. The user then has to

select the patterns from the Pattern Information dialog box (Fig 12-6) and set the

COM/SEG positions. The section, Add a new pattern, describes the procedure in

detail.

 To open an existing panel configuration file using the HT-LCDS File menu Open

command. The patterns are displayed as shown on the panel screen in Fig 12-2 and

the pattern file names are displayed as shown in the Fig12-2 COM/SEG table position.

Users can add/delete/change the pattern information, including the pattern file and

pattern positions.

 To open a panel picture file using the HT-LCDS Edit menu Panel Editor command. If

this panel picture file has been setup already, then it is not necessary to select the

patterns, it is only necessary to select the pattern positions. The section, Define the

pattern using the Panel Editor, describes the procedure in detail.

Add a New Pattern
 Move the cursor to a COM/SEG position on the grid as shown in Fig 12-2 and double

click the mouse. The Pattern Information dialog box, as shown in Fig 12-6, is

 135

 Chapter 12 LCD Simulator

displayed. All the pattern files (.bmp) in the project’s directory are listed in the Pattern

List box. The Size field is the bitmap size of the selected pattern, Com and Seg fields

are the numbers of the selected COM/SEG position of this pattern. None of these

three fields can be modified.

 Select a pattern, a bitmap file, from the Pattern List box, or click the Browse button to

change to another directory and select a pattern from that directory. The HT-LCDS

uses 2-color bitmap files as the image source of patterns. The Preview-window zooms

into the selected pattern.

 Set the X/Y positions in the panel screen for the selected pattern.

 Press the [OK] button and return to Fig 12-2, then click the File menu, Save command

or click the Save button on the toolbar. The panel file has now been created or

modified.

Fig 12-6

Delete a Pattern
 As shown in Fig 12-2, select the COM/SEG position of the pattern to be deleted and

press the [Delete] key or click the Cut button on the toolbar.

Change the Pattern
 Delete the selected pattern first, then add a new pattern to change the pattern.

 Alternatively, as shown in Fig 12-2, select the COM/SEG position of the selected

pattern and double click the mouse. The Pattern Information dialog box, as shown in

 Fig 12-6, is displayed. Select a pattern from the Pattern List box and press the [OK]

button.

 136

 Chapter 12 LCD Simulator

Change the Pattern Position
 As shown in Fig 12-2, use the Select-Drag-Drop method to move the pattern directly

onto the panel screen.

 Alternatively, as shown in Fig 12-2, double click the COM/SEG position of the

selected pattern. The Pattern Information dialog box, in Fig 12-6, is displayed. Set the

X, Y value of the new position and press the [OK] button.

When the above operations have been completed and the system has returned to that

shown in Fig 12-2, click the HT-LCDS File menu, Save command or click the Save button

on the toolbar. The panel file has now been created or modified.

How to Add a User-define Matrix
The HT-LCDS supports a mapping strategy (File menu, Import user matrix command)

which can help define a new matrix if the COM/SEG number is not equal to the

ROW/COL number of the LCD panel. For example, Assume there is an LCD panel of 2

COMs and 6 SEGs, and assuming this LCD panel is a 3 ROWs 4 COLs matrix, as shown

in the following mapping

COM0-SEG0 COM0-SEG1 COM0-SEG2 COM0-SEG3

COM1-SEG0 COM1-SEG1 COM1-SEG2 COM1-SEG3

COM0-SEG4 COM0-SEG5 COM1-SEG4 COM1-SEG5

A definition file for the above matrix can be defined as follows,
；MATRIX.DEF
；Comment line
ROW=3
COLUMN=4
；mapping syntax：ROW,COL=>COM,SEG
0，0 => 0，0 ； Map Row0 co10 to COM0 SEG0
0，1 => 0，1 ； Map Row0 co11 to COM0 SEG1
0，2 => 0，2 ； Map Row0 co12 to COM0 SEG2
0，3 => 0，3 ； Map Row0 co13 to COM0 SEG3
1，0 => 1，0 ； Map Row1 co10 to COM1 SEG0
1，1 => 1，1 ； Map Row1 co11 to COM1 SEG1
1，2 => 1，2 ； Map Row1 co12 to COM1 SEG2
1，3 => 1，3 ； Map Row1 co13 to COM1 SEG3
2，0 => 0，4 ； Map Row2 co10 to COM0 SEG4
2，1 => 0，5 ； Map Row2 co11 to COM0 SEG5
2，2 => 1，4 ； Map Row2 co12 to COM1 SEG4
2，3 => 1，5 ； Map Row2 co13 to COM1 SEG5

 137

 Chapter 12 LCD Simulator

Define the Pattern Using the Panel Editor
The HT-LCDS supports a full panel edit interface to define the LCD panel patterns. If a

panel picture file has been drawn already, then it is not necessary to set all pattern files in

the panel respectively. The only requirement is to select the pattern positions.

Fig 12-7

The following steps select the pattern positions for all the patterns in the LCD panel

 Invoke the Panel Editor by selecting the Edit command, Panel Editor command after

having set the panel configuration

 Select the File menu, Open command in the Panel Editor to open the panel picture file

(.bmp)

Note: Supports 2-color .BMP only

 The panel will be displayed in the window as in Fig 12-7

 Select the pattern for each COM/SEG by using double-click or drag-and-drop

methods.The Save Pattern dialog box will be displayed after which the pattern

information can be entered.

 Repeat the above step for all patterns in the panel.

 After having set the pattern information for all patterns, return to the Panel Editor

window and save all the settings using the File menu Save command.

 Exit the Panel Editor and return to the HT-LCDS, the panel will now display the new

settings.

Add New Pattern Items Using a Batch File
The HT-LCDS provides a method to add pattern items from a batch file using the Edit

menu and Add Item Batch command. The batch file is a text file with an extension

 138

 Chapter 12 LCD Simulator

name .BTH. All the pattern items in the batch file will define the pattern file name and its

positions. After selecting a batch file using the Edit menu’s Add Item Batch command, the

HT-LCDS adds all patterns depicted in the batch file at the specified positions of the panel.

The following is an example of a .BTH file.

；this is a comment line.
；item syntax：BMPfile.bmp, COM, SEG, X, Y
CRYSTAL.BMP, 0, 2, 120, 30
FION.BMP, 2, 3, 200, 50
CLIN.BMP, 3, 2, 130, 90
STEVE.BMP, 4, 4, 20, 40

Selecting Color for an LCD Panel
The HT-LCDS provides a palette dialog, as shown in Fig.12-8, for selecting the colors of

the panel using the HT-LCDS Configure menu and Set Panel Color command.

Fig 12-8

Note: The ECB mode is for HTG21x0 color LCD only.

Setting Pattern Color for VFD Panel
The HT-LCDS provides an interface, as shown in Fig.12-9, for setting the color of each

pattern for Holtek’s VFD MCU (eg. HT49CVX series) Select Configure menu and execute

the Set VFD pattern Color command to accomplish this setting.

 139

 Chapter 12 LCD Simulator

Fig 12-9

Fig 12-10

Simulating the LCD

Before starting the LCD simulation, ensure that the HT-LCDS refers to the correct panel

configuration file. Enter the HT-LCDS environment by selecting the Tools menu, LCD

Simulator command as shown in Fig 12-1 and Fig 12-2.

 Click once the S button on the toolbar allowing the HT-LCDS to begin LCD simulation

while referring to the corresponding panel configuration file.

 Open a panel configuration file which is not the corresponding panel configuration file

of the current project and click the S button on the toolbar. The HT-LCDS will then

 140

 Chapter 12 LCD Simulator

 141

begin LCD simulation while referring to the opened panel configuration file.

When the HT-LCDS begins simulation, a window as shown in Fig 12-11 will be displayed

while the most recent LCD patterns will be displayed on the panel screen.

Stop the Simulation
Double click the title bar of the LCD simulation window to make the HT-LCDS return to

the edit mode.

Fig 12-9

 Chapter 13 Virtual Peripheral Manager

13
C h a p t e r 13

Virtual Peripheral Manager

Introduction

In most practical applications the chosen MCU is connected to some forms of external

hardware to implement the necessary user functions, however the inclusion of this

external hardware in the simulation process is usually outside the scope of most MCU

simulators. To overcome this problem, Holtek has developed a Virtual Peripheral

Manager, or VPM, which enables the user to add a range of external peripheral devices

to the MCU project. Used in conjunction with the HT-IDE simulator, the VPM enables the

user to directly drive and monitor the inputs and outputs of these external hardware

devices allowing for more efficient debugging and implementation of user applications.

The VPM Window

Fig 13-1 shows a practical example of a VPM window. As in most Windows applications

the VPM window incorporates a toolbar for the function menus and a status bar to

indicate program information with the main screen area displaying the peripherals or

devices which have been added to the project.

The peripherals added to the project are known as components in the VPM. Components

can be selected by clicking the mouse left button on the component required. Within this

document the selected component will be referred to as the current component. By

double clicking on the current component a connect dialog box will be displayed which

 143

 Chapter 13 Virtual Peripheral Manager

permits the necessary connections to be made between the component and the MCU. By

clicking the right mouse key, on certain current components a configuration” dialog box

will be displayed allowing attributes to be setup for that particular component.

In the status bar there are four fields, Mode, Current Component, Time and Cycle. The

Mode field indicates whether the VPM is currently in configuration mode or running mode.

The Current Component field shows the name of the current component. The Time field

and Cycle field show the total execution time and cycle count respectively while the VPM

is in running mode.

Fig 13-1

VPM Menu

File Menu
There are six functions in the File menu as shown in Fig 13-2. Three of the main functions

can also be found on the toolbar as shown in Fig 13-3.

 144

 Chapter 13 Virtual Peripheral Manager

Fig 13-2

Fig 13-3

 New

Create a new VPM project. Each time the VPM is entered the system automatically

creates a new project.

 Open

Open an existing VPM project.

 Save

Save current project to file.

 Save As

Save current project with another file name to file.

 Exit

Exit VPM and return to Windows.

Function Menu
There are five functions in the Function menu as shown in Fig 13-4. All of these functions

can also be found on the toolbar as shown in Fig 13-5.

 145

 Chapter 13 Virtual Peripheral Manager

Fig 13-4

Fig 13-5

 Add

Add a new peripheral to the project.

Click the Add button on the toolbar. An Add Peripheral dialog will be displayed as shown

in Fig 13-6. Select the peripheral desired and click the OK button.

Fig 13-6

 Delete

Delete a peripheral from the project. Select the component to be deleted and click the Del

button. The selected component will be removed from the project.

 Connect

Select a component and click the Connect button on the toolbar. A Connect Dialog will be

displayed like Fig. 13-7. The connection status of the current component will be displayed

in Connect status list box. The Connect/Disconnect button can be used again to adjust

 146

 Chapter 13 Virtual Peripheral Manager

the connection status between components.

Fig 13-7

As an example, Fig. 13-7 shows the Connect dialog box for an LED component named

LED_0. In this example, the current component is LED_0. The Select combo box will

display all the components in this project that can be connected to LED_0. The Select List

Box will display all the ports of the selected component. The Register Bit shows the port

information details. The peripheral of an LED has two pins, one anode and one cathode.

In this example, LED_0 s CATHODE pin has been connected to the CPU Port A bit0.

 147

 CONFIG

Some peripherals include some user adjustable attribute options. To do this the

component should first be selected and then the Configure button pressed. If the

component has attribute options, the Configuration Dialog box will be displayed. Fig. 13-8

shows an example of an LED configuration dialog box.

 Chapter 13 Virtual Peripheral Manager

Fig 13-8

 Mode

There has two modes, configuration mode and running mode. By clicking on the mode

button, or selecting mode item from the function menu, the system will toggle the VPM

between these two modes. In the configuration mode, the virtual external circuit can be

edited using the Add/Del/CONFIG functions. In the running mode, the VPM will display

the operations of these components according to their specific configurations in addition

to displaying the Holtek IDE MCU simulation results.

The VPM Peripherals

LED

Fig 13-9

The LED has two pins, one cathode and one anode. When the cathode =0 and the anode

=1, the LED will be illuminated. The LED has a colour option as shown in the

configuration dialog box.

Button/Switch

Fig 13-10

The BUTTON/SWITCH has two options, the debounce time and the switch status when in

the open position. The debounce time units are in milliseconds. The BUTTON has a

non-latching momentary operation while the SWITCH has a latching non-momentary

operation. The DipSwitch peripheral offers a means of providing multiple switches in a

single package, the size of which is adjustable.

 148

 Chapter 13 Virtual Peripheral Manager

Fig 13-11

Seven Segment Display

Fig 13-12

A seven segment display is formed from eight individual leds known as A, B, C, D, E, F, G

and ptr. Each of these individual leds is connected to an input pin of the same name and

also to a common pin. This common pin can be either a cathode (-) or an anode (+)

connection which determines the polarity of the display.

 149

 Chapter 13 Virtual Peripheral Manager

 Resistor

Fig 13-13

The resistors exist to provide a pull-up or pull-down function and are connected to either

VCC or VSS respectively. The required configuration is set using their respective

configuration dialog box.

 Logic gate

Logic gates are provided to give a total of six logic functions.

Fig 13-14

Select a logic gate using the add function. If the logic gate that is displayed is not the

required one, pressing the right key on the mouse will display a range of logic gates as

shown in the figure. The desired logic gate can then be selected. The Pin Number input

area determines the number of input pins to each gate. The value set here is reflected in

the number of pins available in the connect dialog box.

 Matrix key

The Matrix key provides a standard matrix key peripheral device, the size of which can be

setup from the configuration dialog box. The debounce time can be set for the matrix

switches with the units in milliseconds. Note that the columns of the matrix are either

connected to VCC or VSS, an option which is set in the attribute dialog box of the matrix

peripheral.

 150

 Chapter 13 Virtual Peripheral Manager

Fig 13-15

If, for example, the user sets up the matrix key with row = 4 and column =4, there will be 4

input pins or rows and 4 output pins or columns.

 Rectangle wave generator

Fig 13-16

The rectangle wave generator is used to generate rectangular waves, the frequency of

which is dependent upon the MCU frequency. In the attribute dialog box of this peripheral

the cycle input dictates how many instruction cycles are required for an input waveform

transition. If for example the cycle value is set to 2, then every 2 machine cycles the

rectangular waveform generator input will toggle. The period of this input is therefore

twice the cycle value. Note that if the rectangular wave generator is selected and the left

key double clicked to display the connect dialog box, the generator can only connect to

one device. However if the devices to be connected to are selected and their connect

dialog box displayed then more than one device can be connected to the same wave

generator. If more than one pin on the MCU is to be connected to the same wave

generator then it is necessary to add further wave generators to achieve this.

Quick Start Example

From the examples provided in the Holtek IDE3000 User’s Guide, one has been chosen

as a practical example to illustrate how to construct a virtual external circuit.

Scanning Light

 From within the HT-IDE3000 System

 Create a new project and select the HT48C10-1 MCU (Project/New)

 151

 Chapter 13 Virtual Peripheral Manager

 Add the source file scanning.asm to the project (Project/Edit) The file can be found in

the Holtek IDE\SAMPLE\IO

 Change the Holtek IDE to simulation mode.(Options/Debug/Mode)

 Build the project.(Project/Build)

 From within the VPM

 Create a new VPM project.

 Add 8 LEDs to the project by repeatedly clicking the Add button and selecting LED 8

times

 Add a resistor to the project - click the Add button and select RESISTOR just added

and double click the mouse left button - then setup the resistor s name with VCC

 Connect all of the LED anode pins to VCC and connect all of the LED’s cathode pins

to bit n of PA on the MCU (n=0-7). The following shows how to connect LED_0’s

anode to VCC and its cathode to bit0 of PA on the MCU

 Click the mouse left button on LED_0 to select it

 Click the mouse right button on LED_0 to display the connect dialog box as shown

as Fig 13-18

 Connect the cathode of LED_0 to PA bit0 on the MCU

 Repeat the above to setup all other LED_n connections

 Push the Mode button to change the VPM mode from configuration mode to running

mode

 From within the HT-IDE3000

Start the debug operations — the output results for the LEDs will be shown in the VPM

window.

 152

 Chapter 13 Virtual Peripheral Manager

 153

Fig 13-17

Fig 13-18

 Chapter 14 Hi-Tech C MCU Converter

14
C h a p t e r 14

Hi-Tech C MCU Converter

Hi-Tech C MCU Converter Function

This is a Holtek MCU plug-in for the Hi-Tech C compiler environment which can support

the newer Holtek MCUs.

Using the Hi-Tech C MCU Converter

 Execute the Hi-Tech C MCU Converter Program

First select the main Holtek MCU Development Tools area, and then select the Hi-Tech C

MCU Converter as shown in Fig. 14-1.

 154

 Chapter 14 Hi-Tech C MCU Converter

Fig 14-1

 Setup the HT-IDE3000 and HI-TECH shortcut

The user needs to install the HI-TECH C for the Holtek MCU software. Then select the

HT-IDE3000 and HI-TECH install shortcut as shown in Fig. 14-2. Then select Merge to

activate the converter after which a successful convert message will be shown.

Fig 14-2

 155

 Chapter 14 Hi-Tech C MCU Converter

 156

 Part IV Appendix

P a r t I V

Appendix

 157

 Appendix A Reserved Words Used By Cross Assembler

 158

 Appendix A Reserved Words Used By Cross Assembler

 159

A
A p p e n d i x A

Reserved Words

Used By Cross Assembler

Reserved Assembly Language Words

The following table lists all reserved words used by the assembly language.

 Reserved Names (directives, operators)

$ DUP INCLUDE NOT

* LABEL OFFSET

+ ELSE .LIST OR

- END .LISTINCLUDE ORG

. ENDIF .LISTMACRO PAGE

/ ENDM LOCAL PARA

= ENDP LOW PROC

? EQU MACRO PUBLIC

[] ERRMESSAGE MESSAGE RAMBANK

 Appendix A Reserved Words Used By Cross Assembler

 160

AND EXTERN MID ROMBANK

BANK HIGH MOD .SECTION

BYTE IF NEAR SHL

DB IFDEF .NOLIST SHR

DBIT IFE .NOLISTINCLUDE WORD

DC IFNDEF .NOLISTMACRO XOR

 Appendix A Reserved Words Used By Cross Assembler

 161

 Reserved Names (instruction mnemonics)

ADC HALT RLCA SUB

ADCM INC RR SUBM

ADD INCA RRA SWAP

ADDM JMP RRC SWAPA

AND MOV RRCA SZ

ANDM NOP SBC SZA

CALL OR SBCM TABRDC

CLR ORM SDZ TABRDL

CPL RET SDZA XOR

CPLA RETI SET XORM

DAA RL SIZ

DEC RLA SIZA

DECA RLC SNZ

 Reserved Names（registers names）

A WDT WDT1 WDT2

Instruction Sets
Arithmetic Instructions

ADD A,[m] Add Data Memory to ACC

ADDM A,[m] Add ACC to Data Memory

ADD A,x Add immediate data to ACC

ADC A,[m] Add Data Memory to ACC with carry

ADCM A,[m] Add ACC to Data Memory with carry

SUB A,x Subtract immediate data from ACC

SUB A,[m] Subtract Data Memory from ACC

SUBM A,[m] Subtract Data Memory from ACC with result in Data Memory

SBC A,[m] Subtract Data Memory from ACC with carry

SBCM A,[m] Subtract Data Memory from ACC with carry and result in Data

Memory

DAA [m] Decimal adjust ACC for addition with result in Data Memory

 Appendix A Reserved Words Used By Cross Assembler

 162

Logic Operation Instructions

AND A,[m] AND Data Memory to ACC

OR A,[m] OR Data Memory to ACC

XOR A,[m] Exclusive-OR Data Memory to ACC

ANDM A,[m] AND ACC to Data Memory

ORM A,[m] OR ACC to Data Memory

XORM A,[m] Exclusive-OR ACC to Data Memory

AND A,x AND immediate data to ACC

OR A,x OR immediate data to ACC

XOR A,x Exclusive-OR immediate data to ACC

CPL [m] Complement Data Memory

CPLA [m] Complement Data Memory with result in ACC

Increment & Decrement Instructions

INCA [m] Increment Data Memory with result in ACC

INC [m] Increment Data Memory

DECA [m] Decrement Data Memory with result in ACC

DEC [m] Decrement Data Memory

Rotate Instructions

RRA [m] Rotate Data Memory right with result in ACC

RR [m] Rotate Data Memory right

RRCA [m] Rotate Data Memory right through carry with result in ACC

RRC [m] Rotate Data Memory right through carry

RLA [m] Rotate Data Memory left with result in ACC

RL [m] Rotate Data Memory left

RLCA [m] Rotate Data Memory left through carry with result in ACC

RLC [m] Rotate Data Memory left through carry

Data Move Instructions

MOV A,[m] Move Data Memory to ACC

MOV [m],A Move ACC to Data Memory

MOV A,x Move immediate data to ACC

 Appendix A Reserved Words Used By Cross Assembler

 163

Bit Operation Instructions

CLR [m].i Clear bit of Data Memory

SET [m].i Set bit of Data Memory

Branch Instructions

JMP addr Jump unconditionally

SZ [m] Skip if Data Memory is zero

SZA [m] Skip if Data Memory is zero with data movement to ACC

SZ [m].i Skip if bit i of Data Memory is zero

SNZ [m].i Skip if bit i of Data Memory is not zero

SIZ [m] Skip if increment Data Memory is zero

SDZ [m] Skip if decrement Data Memory is zero

SIZA [m] Skip if increment Data Memory is zero with result in ACC

SDZA [m] Skip if decrement Data Memory is zero with result in ACC

CALL addr Subroutine call

RET Return from subroutine

RET A,x Return from subroutine and load immediate data to ACC

RETI Return from interrupt

Table Read Instructions

TABRDC [m] Read ROM code (current page) to Data Memory and TBLH

TABRDL [m] Read ROM code (last page) to Data Memory and TBLH

Miscellaneous Instructions

NOP No operation

CLR [m] Clear Data Memory

SET [m] Set Data Memory

CLR WDT Clear Watchdog Timer

CLR WDT1 Pre-clear Watchdog Timer

CLR WDT2 Pre-clear Watchdog Timer

SWAP [m] Swap nibbles of Data Memory

SWAPA [m] Swap nibbles of Data Memory with result in ACC

HALT Enter Power Down Mode

	P a r t I
	C h a p t e r 1
	HT-IDE Development Environment
	Holtek In-Circuit Emulator (HT-ICE & e-ICE)
	HT-ICE Interface Card
	MCU Programmer
	MCU Adapter Card

	System Configuration
	Installation
	System Requirement
	Hardware Installation
	Software Installation

	C h a p t e r 2
	Step 1：Create a New Project with the CodeWizard
	Step 2：Build the Project
	Step 3：Programming the MCU Device
	Step 4：Transmit Code to Holtek

	 C h a p t e r 3
	Start the HT-IDE3000 System
	File Menu
	Edit Menu
	View Menu
	Tools Menu
	Configuration Option
	Diagnose
	Writer
	Library Manager
	Editor
	Voice & Flash Download
	LCD Simulator
	Virtual Peripheral Manager

	Options Menu
	Project Settings
	Editor Settings
	Language

	C h a p t e r 4
	Create a New Project
	Step1: Project Location
	Step2: Project Option
	Step3: Project Deployment

	Open and Close a Project
	Manage the Source Files of a Project
	To Add a Source File to the Project
	To Delete a Source File from the Project
	To Move a Source File Up or Down

	Build a Project’s Task Files
	To Build a Project Task File

	Assemble/Compile
	To Assemble or Compile a Program

	Print Option Table Command
	Backup/Restore Project

	C h a p t e r 5
	Reset the HT-IDE3000 System
	To Reset from the HT-IDE3000 Commands

	Emulation of Application Programs
	To Emulate the Application Program
	To Stop Emulating the Application Program
	To Run the Application Program to a Line
	To Directly Jump to a Line of an Application Program

	Single Step
	Breakpoints
	Breakpoint Features
	Description of Breakpoint Items
	How to Set Breakpoints

	Trace the Application Program
	Initiating the Trace Mechanism
	Stopping the Trace Mechanism
	Trace Start/Stop Setup
	Trace Record Format

	Debugger Command Mode
	Enter/Quit the Command Mode
	Functions Supported by the Command Mode
	Log File Format
	HT-COMMAND Error Messages

	C h a p t e r 6
	Window Menu Commands

	C h a p t e r 7
	Start the Simulation

	C h a p t e r 8
	Introduction
	Installation
	Adapter Card
	Programming an MCU Device with the EverPro K1000
	Run the EverPro K1000 Software
	EverPro K1000 Programming Functions
	EverPro K1000 Additional Functions

	P a r t I I
	C h a p t e r 9
	Notational Conventions
	Statement Syntax
	Name
	Operation
	Operand
	Comment

	Assembly Directives
	Conditional Assembly Directives
	File Control Directives
	Program Directives
	Data Definition Directives
	Macro Directives

	Assembly Instructions
	Name
	Mnemonic
	Operand, Operator and Expression

	Miscellaneous
	Forward References
	Local Labels
	Reserved Assembly Language Words

	Cross Assembler Options
	Assembly Listing File Format
	Source Program Listing
	Summary of Assembly
	Miscellaneous

	C h a p t e r 10
	What the Cross Linker Does
	Cross Linker Options
	Libraries
	Section Address
	Generate Map File

	Map File
	Cross Linker Task File and Debug File

	P a r t I I I
	C h a p t e r 11
	What the Library Manager Does
	To Setup the Library Files
	Create a New Library File
	Add a Program Module into a Library File
	Delete a Program Module from a Library File
	Extract a Program Module from Library and Create An Object File
	Object Module Information

	C h a p t e r 12
	Introduction
	LCD Panel Configuration File
	Relationship Between the Panel File and the Current Project
	Selecting the HT-LCDS

	LCD Panel Picture File
	Setup the LCD Panel Configuration File
	Setup the Panel Configurations
	Select the Patterns and Their Positions
	Add a New Pattern
	Delete a Pattern
	Change the Pattern
	Change the Pattern Position
	How to Add a User-define Matrix
	Define the Pattern Using the Panel Editor
	Add New Pattern Items Using a Batch File
	Selecting Color for an LCD Panel
	Setting Pattern Color for VFD Panel

	Simulating the LCD
	Stop the Simulation

	C h a p t e r 13
	Introduction
	The VPM Window
	VPM Menu
	File Menu
	Function Menu

	The VPM Peripherals
	LED
	Button/Switch
	Seven Segment Display

	Quick Start Example
	Scanning Light

	C h a p t e r 14
	Hi-Tech C MCU Converter Function
	Using the Hi-Tech C MCU Converter

	P a r t I V
	A p p e n d i x A
	Reserved Assembly Language Words
	Instruction Sets

