
HT48R05A-1, HT48R06A-1, HT48R07A-1,

HT48R08A-1, HT48R09A-1

Cost-Effective I/O Type MCU

Handbook

Second Edition

June 2006

Copyright � 2006 by HOLTEK SEMICONDUCTOR INC. All rights reserved. Printed in Taiwan. No part of this publication

may be reproduced, stored in a retrieval system, or transmitted in any form by any means, electronic, mechanical photo-

copying, recording, or otherwise without the prior written permission of HOLTEK SEMICONDUCTOR INC.

Contents

Part I Microcontroller Profile..1

Chapter 1 Hardware Structure ...3

Introduction..3

Features...4

Technology Features...4

Kernel Features...4

Peripheral Features...4

Selection Table ..5

Block Diagram ...5

Pin Assignment..6

Pin Description...6

Absolute Maximum Ratings ...8

D.C. Characteristics...9

A.C. Characteristics ...10

System Architecture...11

Clocking and Pipelining ...11

Program Counter...12

Stack ...13

Arithmetic and Logic Unit � ALU ...14

Program Memory ...14

Organization..14

Special Vectors ...15

Look-up Table..15

Table Program Example..16

Data Memory ...17

Organization..17

General Purpose Data Memory ..18

Special Purpose Data Memory ...18

Contents

i

Special Function Registers ..19

Indirect Addressing Register � IAR ...19

Memory Pointer � MP..19

Accumulator � ACC...20

Program Counter Low Register � PCL ...20

Look-up Table Registers � TBLP, TBLH ...20

Watchdog Timer Register � WDTS ...20

Status Register � STATUS ..21

Interrupt Control Register � INTC ...22

Timer/Event Counter Registers ...22

Input/Output Ports and Control Registers ...22

Input/Output Ports ...23

Pull-high Resistors ..23

Port A Wake-up ...23

I/O Port Control Registers ...23

Pin-shared Functions ..24

Programming Considerations ...26

Timer/Event Counters..26

Configuring the Timer/Event Counter Input Clock Source26

Timer Register � TMR ..27

Timer Control Register � TMRC..27

Configuring the Timer Mode ...28

Configuring the Event Counter Mode ...29

Configuring the Pulse Width Measurement Mode ..29

Programmable Frequency Divider (PFD) and Buzzer Application30

Prescaler ...31

I/O Interfacing ...31

Programming Considerations ...31

Interrupts ...32

Interrupt Register ..32

Interrupt Priority ...33

External Interrupt ..33

Timer/Event Counter Interrupt ..33

Programming Considerations ...33

Reset and Initialization ..34

Reset ..34

Oscillator ...38

System Clock Configurations ...38

System Crystal/Ceramic Oscillator ...38

System RC Oscillator ...39

Watchdog Timer Oscillator ...39

Power Down Mode and Wake-up ...39

Power Down Mode ...39

Entering the Power Down Mode ...39

Standby Current Considerations ...40

Wake-up ..40

ii

Cost-Effective I/O Type MCU

Watchdog Timer...41

Configuration Options..43

Application Circuits ..44

Part II Programming Language...45

Chapter 2 Instruction Set Introduction ...47

Instruction Set..47

Instruction Timing ..47

Moving and Transferring Data...47

Arithmetic Operations..48

Logical and Rotate Operations..48

Branches and Control Transfer ...48

Bit Operations ...48

Table Read Operations ...49

Other Operations...49

Instruction Set Summary ...49

Convention ..49

Chapter 3 Instruction Definition ..53

Chapter 4 Assembly Language and Cross Assembler..65

Notational Conventions..65

Statement Syntax ..66

Name...66

Operation ..66

Operand ..66

Comment...67

Assembly Directives ..67

Conditional Assembly Directives...67

File Control Directives ...68

Program Directives..69

Data Definition Directives..72

Macro Directives ...74

Assembly Instructions..76

Name...76

Mnemonic..76

Operand, Operator and Expression ..76

Miscellaneous..78

Forward References..78

Local Labels ..78

Reserved Assembly Language Words..79

Contents

iii

Cross Assembler Options ..80

Assembly Listing File Format...80

Source Program Listing...80

Summary of Assembly ..81

Miscellaneous ...81

Part III Development Tools ..83

Chapter 5 MCU Programming Tools..85

HT-IDE Development Environment..85

Holtek In-Circuit Emulator � HT-ICE..86

HT-ICE Interface Card...86

OTP Programmer..87

OTP Adapter Card ..87

System Configuration ..87

HT-ICE Interface Card Settings...88

Installation..89

System Requirement...89

Hardware Installation ..89

Software Installation..89

Chapter 6 Quick Start ...95

Step 1 � Create a New Project..95

Step 2 � Add Source Program Files to the Project ...95

Step 3 � Build the Project..95

Step 4 � Programming the OTP Device ..95

Step 5 � Transmit Code to Holtek ...96

Appendix...97

Appendix A Device Characteristic Graphics ..99

Appendix B Package Information...109

iv

Cost-Effective I/O Type MCU

Preface

Since the founding of the company, Holtek Semiconductor Inc. has concentrated much of its de-

sign efforts in the area of microcontroller development. Although supplying a wide range of semi-

conductor devices, the microcontroller category has always been a key product category within

the Holtek range, and one which will continue to expand as their devices increase in functionality

and maturity. By capitalizing on the substantial accumulated skills within its dedicated

microcontroller development department, Holtek has been able to release a comprehensive

range of high quality low-cost microcontroller devices for a wide range of application areas.

Holtek�s high quality embedded I/O microcontroller solutions provide a means for customers to

greatly enhance the functional contents of their products, which when combined with Holtek�s com-

prehensive range of development tools provide designers with the means to reduce their design to

market times and greatly increasing their added value.

This handbook is divided into three parts for user convenience. Most details regarding general

datasheet information and device specification is located within Part I. Information related to

microcontroller programming such as device instruction set, instruction definition, and assembly

language directives is found within Part II. Part III relates to the Holtek range of Development Tools

where information can be found on their installation and use.

By compiling all relevant data together in one handbook we hope users of the Holtek range of

Cost-Effective I/O Type microcontroller devices will have at their fingertips a useful, complete and

simple means to efficiently implement their microcontroller applications. Holtek�s efforts to com-

bine information on device specifications, programming and development tools into one publica-

tion have produced a handbook which with careful use by the user should result in trouble free

designs and the maximum benefit being gained from the many features of Holtek microcontroller

devices. We recommend that users regularly check our website for the latest updates to our hand-

book and also welcome feedback and comments from our customers regarding further improve-

ments.

Preface

v

vi

Cost-Effective I/O Type MCU

P a r t I

Microcontroller Profile

Part I Microcontroller Profile

1

2

Cost-Effective I/O Type MCU

C h a p t e r 1

Hardware Structure

This section is the main datasheet section of the Cost-Effective I/O Type microcontroller hand-

book and contains all the parameters and information related to the hardware. The information

contained provides designers with details on all the main hardware features of the Cost-Effective

I/O Type MCU series which together with the programming section contains the information to en-

able swift and successful implementation of user microcontroller applications. By proper consulta-

tion of the relevant parts of this section, users can ensure that they make the most efficient use of

the flexible and multi-function features within the Cost-Effective I/O Type microcontroller series.

Introduction

The HT48R05A-1/HT48C05, HT48R06A-1/HT48C06, HT48R07A-1/HT48C07, HT48R08A-1/

HT48C08 and HT48R09A-1/HT48C09 are 8-bit high performance, cost-effective RISC architec-

ture microcontroller devices specifically designed for multiple I/O control product applications. De-

vice flexibility is enhanced with their internal special features such as HALT and wake-up

functions, oscillator options, buzzer driver, etc. These features combine to ensure applications re-

quire a minimum of external components and therefore reduce overall product costs. Having the

advantages of low power consumption, high performance, I/O flexibility as well as low-cost, these

devices have the versatility to suit a wide range of application possibilities such as industrial con-

trol, consumer products, subsystem controllers, etc. All devices share the same functions and fea-

tures, their main difference is in Data Memory and Program Memory capacity.

The HT48R05A-1, HT48R06A-1, HT48R07A-1, HT48R08A-1 and HT48R09A-1 are OTP devices

offering the advantages of easy and effective program updates, using the Holtek range of develop-

ment and programming tools. These devices provide the designer with the means for fast and cost

effective product development cycles. However, for applications that are at a mature state in their

design process, the HT48C05, HT48C06, HT48C07, HT48C08 and HT48C09 mask version de-

vices offer a complementary device for products with high volume and low-cost demands. Fully

pin and functionally compatible with their OTP version devices, such mask version devices pro-

vide the ideal substitute for products which have gone beyond their development cycle and are fac-

ing cost down demands.

Chapter 1 Hardware Structure

3

1

Features

Technology Features

� High-performance RISC Architecture

� Low-power Fully Static CMOS Design

� Operating Voltage:

fSYS=4MHz: 2.2V~5.5V

fSYS=8MHz: 3.3V~5.5V

� Power Consumption:

2mA Typical at 5V 4MHz

Maximum of 1�A Standby Current at 3V with WDT Disabled

� Temperature Range:

Operating Temperature -40�C to 85�C (Industrial Grade)

Storage Temperature -50�C to 125�C

Kernel Features

� Program Memory:

0.5K�14 OTP/Mask ROM (HT48R05A-1/HT48C05)

1K�14 OTP/Mask ROM (HT48R06A-1/HT48C06, HT48R07A-1/HT48C07)

2K�14 OTP/Mask ROM (HT48R08A-1/HT48C08, HT48R09A-1/HT48C09)

� Data Memory:

32�8 RAM (HT48R05A-1/HT48C05)

64�8 RAM (HT48R06A-1/HT48C06, HT48R07A-1/HT48C07)

96�8 RAM (HT48R08A-1/HT48C08, HT48R09A-1/HT48C09)

� Table Read Function

� Two-level Hardware Stack

� Direct and Indirect Data Addressing Mode

� Bit Manipulation Instructions

� 63 Powerful Instructions

� Most Instructions Implemented in 1 Machine Cycle

Peripheral Features

� From 13 to 19 Bidirectional I/O with Pull-high Options

� Port A Wake-up Options

� External Interrupt Input

� Event Counter Input

� 8-bit Timer with 8-stage Prescaler and Interrupt

� Watchdog Timer (WDT)

� HALT and Wake-up Feature for Power Saving Operation

� PFD/Buzzer Driver Outputs

� On-chip Crystal and RC Oscillator

� Low Voltage Reset (LVR) Feature for Brown-out Protection

� Programming Interface with Code Protection

� Mask Version Devices Available for High-volume Production

� Full Suite of Supported Hardware and Software Tools Available

4

Cost-Effective I/O Type MCU

Selection Table

The series of Cost-Effective I/O microcontrollers include a comprehensive range of features,

some of which are standard and some of which are device dependent. Most features are common

to all devices, the main feature distinguishing them are Program Memory, Data Memory capacity

and I/O count. To assist users in their selection of the most appropriate device for their application,

the following table, which summarizes the main features of each device, is provided.

Part No. VDD
Program
Memory

Data
Memory

I/O Timer Int. PFD Stack
Package

Types

HT48R05A-1
HT48C05

2.2V~5.5V 0.5K�14 32�8 13 8-bit�1 2 � 2
16SSOP,

18DIP/SOP

HT48R06A-1
HT48C06

2.2V~5.5V 1K�14 64�8 13 8-bit�1 2 � 2
16SSOP,

18DIP/SOP

HT48R07A-1
HT48C07

2.2V~5.5V 1K�14 64�8 19 8-bit�1 2 � 2
24SKDIP/

SOP/SSOP

HT48R08A-1
HT48C08

2.2V~5.5V 2K�14 96�8 13 8-bit�1 2 � 2
16SSOP,

18DIP/SOP

HT48R09A-1
HT48C09

2.2V~5.5V 2K�14 96�8 19 8-bit�1 2 � 2
24SKDIP/

SOP/SSOP

Note 1. Part numbers including 	C	 are mask version devices while 	R	 are OTP devices.

2. There is a Low Voltage Reset within the range 2.7V~3.3V, if the LVR function is disabled,

the operating voltage can be reduced to 2.2V.

Block Diagram

The following block diagram illustrates the main functional blocks of the Cost-Effective I/O Type

microcontroller series of devices.

Note This block diagram represents the OTP devices, for the mask device there is no Device Pro-

gramming Circuitry.

Chapter 1 Hardware Structure

5

� � � � � �
� � � � � 	
 � �

� �
 � � � � � �
� �
 	 � � � � � � � � 	
 � �

� � �
 � � �
 � � �
� � � � � � �

� � �
 � � �
 � � �
� � � � �
 � �

� � �
� � � � � � 	
 � �

� 	
 	
� � � � �

�
�
�
��
�
�
��

�
�
�
�
�
�

� � � � �
� � � �
 � �

� � � � �

! � � " # � $
� 	 % � �

� � � � �
 � �

� � � & � � '
� � � � �
 � �

� 	
 � (� � �
� � � � �

� � � �
 �)
! * �

� � � & � � '
� � � � �
 � �

� � � � � �
� � � �
 � �

+ � , , � �
� � � - � �

� � � & � � '
� � � � �
 � �

� �
 � � � � $

� � � � � �

� � � & � � '
� � � � �
 � �

� � �
� � �
 �

� � - � � �
� � � � � 	 � � � � �

� � � � � �
 �

� � � & � � � � 	
 � � �
� $
 � � �

� � � � � 	 �
� � � � �

�
�
�
��
�
�
��

�
�
�
�
�
�

�
 	 � "

�
 	 � " � � � � �
 � �

� � � � � 	 �
� � � �
 � �

! � � " # � $
� 	 % � �
� � � �
 � �

� � � � � � � � 	 �
� � � � �

� !

� (� &
 � �

�

�

Pin Assignment

Pin Description

HT48R05A-1/HT48C05, HT48R06A-1/HT48C06

Pin Name I/O Options Description

PA0~PA7 I/O
Pull-high

Wake-up

Bidirectional 8-bit input/output port. Each individual bit on this port

can be configured as a wake-up input by a configuration option.

Software instructions determine if the pin is a CMOS output or

Schmitt Trigger input. A configuration option determines if all pins

on all ports have pull-high resistors.

PB0/BZ

PB1/BZ

PB2

I/O
Pull-high

I/O or BZ/BZ

Bidirectional 3-bit input/output port. Software instructions determine

if the pin is a CMOS output or Schmitt Trigger input. A configuration

option determines if all pins on all ports have pull-high resistors.

PB0 and PB1 are pin-shared with BZ and BZ, respectively.

PC0/INT

PC1/TMR
I/O Pull-high

Bidirectional 2-bit input/output port. Software instructions deter-

mine if the pin is a CMOS output or Schmitt Trigger input. A config-

uration option determines if all pins on all ports have pull-high

resistors. The external interrupt and timer input are pin-shared

with PC0 and PC1, respectively.

OSC1

OSC2

I

O
Crystal or RC

OSC1, OSC2 are connected to an external RC network or external

crystal (determined by configuration option) for the internal system

clock. For external RC system clock operation, OSC2 is an output

pin for 1/4 system clock.

RES I
 Schmitt Trigger reset input. Active low.

VDD

 Positive power supply

VSS

 Negative power supply, ground

6

Cost-Effective I/O Type MCU

� � � � � � � � 	
 � � � � � � � �

� � � � � � � 	
 � � � � � � �

� � � � � � � � 	 � � � � � 	 � � � � � � 	 �

. /

. 0

. 1

. 2

. 3

. .

. 4

5

.

3

2

1

0

/

6

7

� � � � � � � � � 	
 � � � � � � � �

� � � � � � � � 	
 � � � � � � � �

� � � � � � � � 	
 � � � � � � � �

 � � � � � � 	 �

� � 1

� � 0

� � /

� � 6

� � � 3

� � � .

* � �

� 8 �

� � 2

� � 3

� � .

� � 4

� + 4 � + 9

* � �

� � 4 � � : �

� � . � � � �

� � 1

� � 0

� � /

� � 6

� � � 3

� � � .

* � �

� 8 �

� � . � � � �

� � � � � � � � 	
 � � � � � � � �

� � � � � � � � 	
 � � � � � � � �

� � � � � � � � 	
 � � � � � � � �

 � � � � � 	 � � � � � 	 �

� � 2

� � 3

� � .

� � 4

� + 3

� + . � + 9

� + 4 � + 9

* � �

� � 4 � � : �

. 7

. 6

. /

. 0

. 1

. 2

. 3

. .

. 4

.

3

2

1

0

/

6

7

5

3 1

3 2

3 3

3 .

3 4

. 5

. 7

. 6

. /

. 0

. 1

. 2

.

3

2

1

0

/

6

7

5

. 4

. .

. 3

� � 2

� � 3

� � .

� � 4

� + 3

� + . � + 9

� + 4 � + 9

* � �

� � 4 � � : �

� + 2

� � 1

� � 0

� � /

� � 6

� � � 3

� � � .

* � �

� 8 �

� � . � � � �

� � 3

� + 0 � + /

� + 1 � + 6

Note 1. Each pin on PA can be programmed through a configuration option to have a wake-up function.

2. Individual pins or ports cannot be selected to have pull-high resistors. If the pull-high configura-

tion option is chosen, then all input pins of all ports will be connected to pull-high resistors.

3. Pins PB1/BZ and PB2 only exist on the 18-pin package.

HT48R08A-1/HT48C08

Pin Name I/O Options Description

PA0~PA7 I/O
Pull-high

Wake-up

Bidirectional 8-bit input/output port. Each individual bit on this port

can be configured as a wake-up input by a configuration option.

Software instructions determine if the pin is a CMOS output or

Schmitt Trigger input. A configuration option determines if all pins

on this port have pull-high resistors.

PB0/BZ

PB1/BZ

PB2

I/O
Pull-high

I/O or BZ/BZ

Bidirectional 3-bit input/output port. Software instructions determine

if the pin is a CMOS output or Schmitt Trigger input. A configuration

option determines if all pins on this port have pull-high resistors.

PB0 and PB1 are pin-shared with BZ and BZ, respectively.

PC0/INT

PC1/TMR
I/O Pull-high

Bidirectional 2-bit input/output port. Software instructions deter-

mine if the pin is a CMOS output or Schmitt Trigger input. A config-

uration option determines if all pins on this port have pull-high

resistors. The external interrupt and timer input are pin-shared

with PC0 and PC1, respectively.

OSC1

OSC2

I

O
Crystal or RC

OSC1, OSC2 are connected to an external RC network or external

crystal (determined by configuration option) for the internal system

clock. For external RC system clock operation, OSC2 is an output

pin for 1/4 system clock.

RES I
 Schmitt Trigger reset input. Active low.

VDD

 Positive power supply

VSS

 Negative power supply, ground

Note 1. Each pin on PA can be programmed through a configuration option to have a wake-up function.

2. Individual pins cannot be selected to have pull-high resistors. If the pull-high configuration is

chosen for a particular port, then all input pins on this port will be connected to pull-high resis-

tors.

3. Pins PB1/BZ and PB2 only exist on the 18-pin package.

Chapter 1 Hardware Structure

7

HT48R07A-1/HT48C07, HT48R09A-1/HT48C09

Pin Name I/O Options Description

PA0~PA7 I/O
Pull-high

Wake-up

Bidirectional 8-bit input/output port. Each individual bit on this port

can be configured as a wake-up input by a configuration option.

Software instructions determine if the pin is a CMOS output or

Schmitt Trigger input. A configuration option determines if all pins

on this port have pull-high resistors.

PB0/BZ

PB1/BZ

PB2~PB7

I/O
Pull-high

I/O or BZ/BZ

Bidirectional 8-bit input/output port. Software instructions determine

if the pin is a CMOS output or Schmitt Trigger input. A configuration

option determines if all pins on this port have pull-high resistors.

PB0 and PB1 are pin-shared with BZ and BZ, respectively.

PC0/INT

PC1/TMR

PC2

I/O Pull-high

Bidirectional 3-bit input/output port. Software instructions deter-

mine if the pin is a CMOS output or Schmitt Trigger input. A config-

uration option determines if all pins on this port have pull-high

resistors. The external interrupt and timer input are pin-shared

with PC0 and PC1, respectively.

OSC1

OSC2

I

O
Crystal or RC

OSC1, OSC2 are connected to an external RC network or external

crystal (determined by configuration option) for the internal system

clock. For external RC system clock operation, OSC2 is an output

pin for 1/4 system clock.

RES I
 Schmitt Trigger reset input. Active low.

VDD

 Positive power supply

VSS

 Negative power supply, ground

Note 1. Each pin on PA can be programmed through a configuration option to have a wake-up function.

2. Individual pins cannot be selected to have pull-high resistors. If the pull-high configuration is

chosen for a particular port, then all input pins on this port will be connected to pull-high resis-

tors.

Absolute Maximum Ratings

Supply Voltage...VSS�0.3V to VSS+6.0V

Input Voltage ...VSS�0.3V to VDD+0.3V

Storage Temperature...�50�C to 125�C

Operating Temperature..�40�C to 85�C

These are stress ratings only. Stresses exceeding the range specified under Absolute Maximum

Ratings may cause substantial damage to the device. Functional operation of this device at other

conditions beyond those listed in the specification is not implied and prolonged exposure to ex-

treme conditions may affect device reliability.

8

Cost-Effective I/O Type MCU

D.C. Characteristics Ta=25�C

Symbol Parameter
Test Conditions

Min. Typ. Max. Unit
VDD Conditions

VDD Operating Voltage

 fSYS=4MHz 2.2
 5.5 V

 fSYS=8MHz 3.3
 5.5 V

IDD1 Operating Current (Crystal OSC)
3V

No load, fSYS=4MHz

 0.6 1.5 mA

5V
 2 4 mA

IDD2 Operating Current (RC OSC)
3V

No load, fSYS=4MHz

 0.8 1.5 mA

5V
 2.5 4 mA

IDD3
Operating Current
(Crystal OSC, RC OSC)

5V No load, fSYS=8MHz
 4 8 mA

ISTB1 Standby Current (WDT Enabled)
3V

No load, system HALT

 5 �A

5V

 10 �A

ISTB2 Standby Current (WDT Disabled)
3V

No load, system HALT

 1 �A

5V

 2 �A

VIL1
Input Low Voltage for I/O Ports,
TMR and INT

 0
 0.3VDD V

VIH1
Input High Voltage for I/O Ports,
TMR and INT

 0.7VDD
 VDD V

VIL2 Input Low Voltage (RES)

 0
 0.4VDD V

VIH2 Input High Voltage (RES)

 0.9VDD
 VDD V

VLVR Low Voltage Reset
 LVR enabled 2.7 3 3.3 V

IOL I/O Port Sink Current
3V VOL=0.1VDD 4 8
 mA

5V VOL=0.1VDD 10 20
 mA

IOH I/O Port Source Current
3V VOH=0.9VDD �2 �4
 mA

5V VOH=0.9VDD �5 �10
 mA

RPH Pull-high Resistance
3V
 20 60 100 k�

5V
 10 30 50 k�

Chapter 1 Hardware Structure

9

A.C. Characteristics Ta=25�C

Symbol Parameter
Test Conditions

Min. Typ. Max. Unit
VDD Conditions

fSYS1 System Clock (Crystal OSC)

 2.2V~5.5V 400
 4000 kHz

 3.3V~5.5V 400
 8000 kHz

fSYS2 System Clock (RC OSC)

 2.2V~5.5V 400
 4000 kHz

 3.3V~5.5V 400
 8000 kHz

fTIMER Timer I/P Frequency (TMR)

 2.2V~5.5V 0
 4000 kHz

 3.3V~5.5V 0
 8000 kHz

tWDTOSC Watchdog Oscillator Period
3V
 45 90 180 �s

5V
 32 65 130 �s

tWDT1 Watchdog Time-out Period (RC)
3V

Without WDT prescaler
11 23 46 ms

5V 8 17 33 ms

tWDT2
Watchdog Time-out Period
(System Clock)

 Without WDT prescaler
 1024
 *tSYS

tRES External Reset Low Pulse Width

 1

 �s

tSST System Start-up Timer Period
 Wake-up from HALT
 1024
 *tSYS

tLVR Low Voltage Width to Reset

 0.25 1 2 ms

tINT Interrupt Pulse Width

 1

 �s

*tSYS=1/fSYS1 or 1/fSYS2

10

Cost-Effective I/O Type MCU

System Architecture

A key factor in the high-performance features of the Holtek range of Cost-Effective I/O Type

microcontrollers is attributed to the internal system architecture. The range of devices take advan-

tage of the usual features found within RISC microcontrollers providing increased speed of opera-

tion and enhanced performance. The pipelining scheme is implemented in such a way that

instruction fetching and instruction execution are overlapped, hence instructions are effectively ex-

ecuted in one cycle, with the exception of branch or call instructions. An 8-bit wide ALU is used in

practically all operations of the instruction set. It carries out arithmetic operations, logic operations,

rotation, increment, decrement, branch decisions, etc. The internal data path is simplified by mov-

ing data through the Accumulator and the ALU. Certain internal registers are implemented in the

Data Memory and can be directly or indirectly addressed. The simple addressing methods of

these registers along with additional architectural features ensure that a minimum of external com-

ponents is required to provide a functional I/O control system with maximum reliability and flexibil-

ity. This makes these devices suitable for low-cost, high-volume production for controller

applications requiring from 0.5K up to 2K words of program memory and from 32 to 96 bytes of

data storage.

Clocking and Pipelining

The main system clock, derived from either a Crystal/Resonator or RC oscillator is subdivided into

four internally generated non-overlapping clocks, T1~T4. The Program Counter is incremented at

the beginning of the T1 clock during which time a new instruction is fetched. The remaining T2~T4

clocks carry out the decoding and execution functions. In this way, one T1~T4 clock cycle forms

one instruction cycle. Although the fetching and execution of instructions takes place in consecu-

tive instruction cycles, the pipelining structure of the microcontroller ensures that instructions are

effectively executed in one instruction cycle. The exception to this are instructions where the con-

tents of the Program Counter are changed, such as subroutine calls or jumps, in which case the in-

struction will take one more instruction cycle to execute.

Note When the RC oscillator is used, OSC2 is freed for use as a T1 phase clock synchronizing pin. This

T1 phase clock has a frequency of fSYS/4 with a 1:3 high/low duty cycle.

Chapter 1 Hardware Structure

11

; �
 � (� � � �
 ' � < � � =

8 > � � �
 � � � � �
 ' � < � � # . = ; �
 � (� � � �
 ' � < � � ? . =

8 > � � �
 � � � � �
 ' � < � � = ; �
 � (� � � �
 ' � < � � ? 3 =

8 > � � �
 � � � � �
 ' � < � � ? . =

� � � � ? . � � ? 3

� � � � � � 	
 � � � � � � � "
< � �
 � � � � � � � " =

� (� � � � � � � " � � .

� � � � � 	 � � � � � �
 � �

� (� � � � � � � " � � 3

� (� � � � � � � " � � 2

� (� � � � � � � " � � 1

� � $ � � � � � � �

System Clocking and Pipelining

For instructions involving branches, such as jump or call instructions, two machine cycles are re-

quired to complete instruction execution. An extra cycle is required as the program takes one cy-

cle to first obtain the actual jump or call address and then another cycle to actually execute the

branch. The requirement for this extra cycle should be taken into account by programmers in tim-

ing sensitive applications.

Program Counter

During program execution, the Program Counter is used to keep track of the address of the next in-

struction to be executed. It is automatically incremented by one each time an instruction is exe-

cuted except for instructions, such as �JMP� or �CALL� that demand a jump to a non-consecutive

Program Memory address. For the Cost-Effective I/O series, the Program Counter is 9 bits wide

for the HT48R05A-1/HT48C05, 10 bits wide for HT48R06A-1/HT48C06 and HT48R07A-1/

HT48C07 devices and 11 bits wide for the HT48R08A-1/HT48C08 and HT48R09A-1/HT48C09 de-

vices. However, it must be noted that only the lower 8 bits, known as the Program Counter Low

Register, are directly addressable by user.

When executing instructions requiring jumps to non-consecutive addresses, such as a jump in-

struction, a subroutine call, interrupt or reset, etc., the microcontroller manages program control

by loading the required address into the Program Counter. For conditional skip instructions, once

the condition has been met, the next instruction, which has already been fetched during the pres-

ent instruction execution, is discarded and a dummy cycle takes its place while the correct instruc-

tion is obtained.

The lower byte of the Program Counter, known as the Program Counter Low register or PCL, is

available for program control and is a readable and writable register. By transferring data directly

into this register a short program jump can be executed directly, however, as only this low byte is

available for manipulation, the jumps are limited to the present page of memory, that is 256 loca-

tions. When such program jumps are executed it should also be noted that a dummy cycle will be

inserted.

Note The lower byte of the Program Counter is fully accessible under program control. The use of the

PCL might cause program branching, so an extra cycle is needed to pre-fetch. Further information

on the PCL register can be found in the Special Function Register section.

12

Cost-Effective I/O Type MCU

� � � � � � � � 	 �
 � � � � � � � � � � � 	 �
 � �

� � � � � � � � 	 �
 � �

� � � 	 � � � � � � � � � �

�

�

�

�

�

� � � � � � �

� � � � � ! � � " #

$ � � � � � � � � �

$ � � � ! � � " #

�

�

% � �

� � � � � � � � � 	 �
 � �

� � � � � � � � 	 �
 � �

� � � � � � � � 	 �
 � � � � � � � � � � � 	 �
 � �

� � � � � � � � 	 �
 � &

Note 1. PC10~PC8: Current Program Counter bits

2. @7~@0: PCL bits

3. #10~#0: Instruction code bits

4. S10~S0: Stack register bits

5. For the HT48R08A-1/HT48C08 and HT48R09A-1/HT48C09, the Program Counter is 11 bits

wide, i.e. from b10~b0.

6. For the HT48R06A-1/HT48C06 and HT48R07A-1/HT48C07, since their Program Counter

is 10 bits wide, the b10 column in the table is not applicable.

7. For the HT48R05A-1/HT48C05, since its Program Counter is 9 bits wide, the b9 and b10

columns in the table are not applicable.

Stack

This is a special part of the memory which is used to save the contents of the Program Counter

only. The stack is organized into two levels and is neither part of the data nor part of the program

space, and is neither readable nor writable. The activated level is indexed by the Stack Pointer

(SP) and is neither readable nor writable. At a subroutine call or interrupt acknowledge signal, the

contents of the Program Counter are pushed onto the stack. At the end of a subroutine or an inter-

rupt routine, signaled by a return instruction (RET or RETI), the Program Counter is restored to its

previous value from the stack. After a chip reset, the Stack Pointer will point to the top of the stack.

If the stack is full and an enabled interrupt takes place, the interrupt request flag will be recorded

but the acknowledge signal will be inhibited. When the Stack Pointer is decremented (by RET or

RETI), the interrupt will be serviced. This feature prevents stack overflow allowing the program-

mer to use the structure more easily. However, when the stack is full, a CALL subroutine instruc-

tion can still be executed which will result in a stack overflow. Precautions should be taken to avoid

such cases which might cause unpredictable program branching. Only the most recent 2 return ad-

dresses are stored.

Chapter 1 Hardware Structure

13

Mode
Program Counter Bits

b10 b9 b8 b7 b6 b5 b4 b3 b2 b1 b0

Initial Reset 0 0 0 0 0 0 0 0 0 0 0

External Interrupt 0 0 0 0 0 0 0 0 1 0 0

Timer/Event Counter Overflow 0 0 0 0 0 0 0 1 0 0 0

Skip Program Counter + 2

Loading PCL PC10 PC9 PC8 @7 @6 @5 @4 @3 @2 @1 @0

Jump, Call Branch #10 #9 #8 #7 #6 #5 #4 #3 #2 #1 #0

Return from Subroutine S10 S9 S8 S7 S6 S5 S4 S3 S2 S1 S0

Arithmetic and Logic Unit � ALU

The arithmetic-logic unit or ALU is a critical area of the microcontroller that carries out arithmetic

and logic operations of the instruction set. Connected to the main microcontroller data bus the

ALU receives related instruction codes and performs the required arithmetic or logical operations

after which the result will be placed in the specified register. As these ALU calculation or opera-

tions may result in Carry, borrow or other status changes, the status register will be correspond-

ingly updated to reflect these changes. The ALU supports the following functions:

� Arithmetic operations ADD, ADDM, ADC, ADCM, SUB, SUBM, SBC, SBCM, DAA

� Logic operations AND, OR, XOR, ANDM, ORM, XORM, CPL, CPLA

� Rotation RRA, RR, RRCA, RRC, RLA, RL, RLCA, RLC

� Increment and Decrement INCA, INC, DECA, DEC

� Branch decision, JMP, SZ, SZA, SNZ, SIZ, SDZ, SIZA, SDZA, CALL, RET, RETI

Program Memory

The Program Memory is the location where the user code or program is stored. For

microcontrollers, two types of Program Memory are usually supplied. The first type is the One-

Time Programmable (OTP) Memory where users can program their application code into the de-

vice. Devices with OTP memory are denoted by having an �R� within their device name. By using

the appropriate programming tools, OTP devices offer users the flexibility to freely develop their

applications which may be useful during debug or for products requiring frequent upgrades or pro-

gram changes. OTP devices are also applicable for use in applications that require low or medium

volume production runs. The other type of memory is the mask ROM memory, denoted by having

a �C� within the device name. These devices offer the most cost effective solutions for high vol-

ume products.

Organization

The Program Memory has a capacity of 0.5K by 14, 1K by 14 or 2K by 14 bits and is the location

where the user program is stored. The Program Memory is addressed by the Program Counter

and also contains data, table information and interrupt entries. Table data, which can be setup in

any location within the Program Memory, is addressed by a separate table pointer register.

The following diagram shows the Program Memory structure for the Cost-Effective I/O Type

microcontroller:

14

Cost-Effective I/O Type MCU

� � � � � � � � � � 	
 � � �

 � � � � � � � � � � � �

 � � � � � � � � � � � �
� � � � � � � � � � � � � �

� � � � � � � � � � �

 � � � �
� � �
 � � �

� � � � � � � � � � � � � �

Special Vectors

Within the Program Memory, certain locations are reserved for special usage, such as reset and in-

terrupts.

� Location 000H

This vector is reserved for use by the chip reset for program initialization. After a chip reset is ini-

tiated, the program will jump to this location and begin execution.

� Location 004H

This vector is used by the external interrupt. If the external interrupt pin on the device receives a

high to low transition, the program will jump to this location and begin execution if the external in-

terrupt is enabled and the stack is not full.

� Location 008H

This internal interrupt vector is used by the Timer/Event Counter. If a counter overflow occurs,

the program will jump to this location and begin execution if the internal interrupt is enabled and

the stack is not full.

Look-up Table

Any location within the Program Memory can be defined as a look-up table where programmers

can store fixed data. To use the look-up table, the table pointer must first be setup by placing the

lower-order address of the look-up data to be retrieved in the Table Pointer Register TBLP. This

register defines the lower 8-bit address of the look-up table. After setting up the table pointer, the

table data can be retrieved from the current Program Memory page using the �TABRDC [m]� in-

struction. In the case of the HT48R06A-1/HT48C06, HT48R07A-1/HT48C07, HT48R08A-1/

HT48C08 and HT48R09A-1/HT48C09 devices, the additional �TABRDL [m]� instruction can be

used to retrieve data from the last page of the Program Memory, however, this instruction is not

valid for the HT48R05A-1/HT48C05 devices. When these instructions are executed, the lower or-

der table byte from the Program Memory will be transferred to the user defined Data Memory regis-

ter [m] as specified in the instruction. The higher order table data byte from the Program Memory

will be transferred to the TBLH special register. Any unused bits in this transferred higher order

byte will be read as �0�.

Chapter 1 Hardware Structure

15

� � � � � � � � � � �
 � �

� ! ! "

� # # "

$! ! "

� � � � � � � � 	
 � � � � � � � �

� � � � � � � 	
 � � � � � � �

�
 � � � � � � % � � � �

& � � � � �

' (� � �
 � �
�
 � � � � 	 � � � & � � � � �

� � � � �) � � 	
 � � �
�
 � � � � 	 � � � & � � � � �

' (� � �
 � �
�
 � � � � 	 � � � & � � � � �

� � � � �) � � 	
 � � �
�
 � � � � 	 � � � & � � � � �

�
 � � � � � � % � � � �

& � � � � �

* "

� � � � � � � � 	
 � � � � � � � �

"

+ "
' (� � �
 � �

�
 � � � � 	 � � � & � � � � �

� � � � �) � � 	
 � � �
�
 � � � � 	 � � � & � � � � �

�
 � � � � � � % � � � �

& � � � � �

� + � , � � - � + � , � � - � + � , � � -

. ! ! "

� � � � � � � � 	
 � � � � � � � �

� � � � � � � � 	
 � � � � � � � �

The following diagram illustrates the addressing/data flow of the look-up table:

Table Program Example

The following example shows how the table pointer and table data is defined and retrieved from

the HT48R06A-1/HT48C06 and HT48R07A-1/HT48C07 I/O microcontrollers. This example uses

raw table data located in the last page which is stored there using the ORG statement. The value

at this ORG statement is 	300H	 which refers to the start address of the last page within the 1K Pro-

gram Memory of the HT48R06A-1/HT48C06 and HT48R07A-1/HT48C07 microcontrollers. The ta-

ble pointer is setup here to have an initial value of 	06H	. This will ensure that the first data read

from the data table will be at the Program Memory address 	306H	 or 6 locations after the start of

the last page. Note that the value for the table pointer is referenced to the first address of the pres-

ent page if the 	TABRDC [m]	 instruction is being used. The high byte of the table data which in

this case is equal to zero will be transferred to the TBLH register automatically when the 	TABRDL

[m]	 instruction is executed.

tempreg1 db ? ; temporary register #1
tempreg2 db ? ; temporary register #2

:
:

mov a,06h ; initialize table pointer - note that this address
; is referenced

mov tblp,a ; to the last page or present page
:
:

tabrdl tempreg1 ; transfers value in table referenced by table pointer
; to tempregl
; data at prog. memory address 306H transferred to
; tempreg1 and TBLH

dec tblp ; reduce value of table pointer by one

tabrdl tempreg2 ; transfers value in table referenced by table pointer
; to tempreg2
; data at prog. memory address 305H transferred to
; tempreg2 and TBLH

; in this example the data 	1AH	 is transferred to

; tempreg1 and data 	0FH	 to register tempreg2

; the value 	00H	 will be transferred to the high byte
; register TBLH

:
:

org 300h ; sets initial address of last page
;(for HT48R06A-1 and HT48R07A-1)

dc 00Ah, 00Bh, 00Ch, 00Dh, 00Eh, 00Fh, 01Ah, 01Bh
:
:

16

Cost-Effective I/O Type MCU

� � � � � 	 � �
� � � � �

� � � � � � 	 � � � � � �
 � �
� � � � � � � (� � (� %
 �

� + ! �

� + ! D � $ � � � & � � � � % � C � E

D � � (� %
 � � � & �
 	 % � � � � � �
 � �
 � ! � G � %
 � � � & �
 	 % � � � � � �
 � �
 �

Because the TBLH register is a read-only register and cannot be restored, care should be taken to

ensure its protection if both the main routine and Interrupt Service Routine use table read instruc-

tions. If using the table read instructions, the Interrupt Service Routines may change the value of

the TBLH and subsequently cause errors if used again by the main routine. As a rule it is recom-

mended that simultaneous use of the table read instructions should be avoided. However, in situa-

tions where simultaneous use cannot be avoided, the interrupts should be disabled prior to the

execution of any main routine table-read instructions. Note that all table related instructions re-

quire two instruction cycles to complete their operation.

Instruction
Table Location Bits

b10 b9 b8 b7 b6 b5 b4 b3 b2 b1 b0

TABRDC [m] PC10 PC9 PC8 @7 @6 @5 @4 @3 @2 @1 @0

TABRDL [m] 1 1 1 @7 @6 @5 @4 @3 @2 @1 @0

Note 1. PC10~PC8: Current Program Counter bits

2. @7~@0: Table Pointer TBLP bits

3. For the HT48R05A-1/HT48C05, the Table address location is 9 bits, i.e. from b8~b0.

4. For the HT48R06A-1/HT48C06 and HT48R07A-1/HT48C07, the Table address location

is 10 bits, i.e. from b9~b0.

5. For the HT48R08A-1/HT48C08 and HT48R09A-1/HT48C09, the Table address location

is 11 bits, i.e. from b10~b0.

Data Memory

The Data Memory is a volatile area of 8-bit wide RAM internal memory and is the location where

temporary information is stored. Divided into two sections, the first of these is an area of RAM

where special function registers are located. These registers have fixed locations and are neces-

sary for correct operation of the device. Many of these registers can be read from and written to di-

rectly under program control, however, some remain protected from user manipulation. The

second area of Data Memory is reserved for general purpose use. All locations within this area are

read and write accessible under program control.

Organization

The two sections of Data Memory, the Special Purpose and General Purpose Data Memory are lo-

cated at consecutive locations. All are implemented in RAM and are 8 bits wide but the length of

each memory section is dictated by the type of microcontroller chosen. The start address of the

Data Memory for all devices is the address 	00H	. Registers which are common to all

microcontrollers, such as ACC, PCL, etc., have the same Data Memory address.

Chapter 1 Hardware Structure

17

� $ � � � 	 � � � � � $ � � �
� 	
 	 � � � � � �

4 4 D

3 4 D

6 ; D

. ; D

� � � � � 	 � � � � � $ � � �
� 	
 	 � � � � � �

Note Most of the Data Memory bits can be directly manipulated using the �SET [m].i� and �CLR [m].i�

with the exception of a few dedicated bits. The Data Memory can also be accessed through the

Memory Pointer register MP.

General Purpose Data Memory

All microcontroller programs require an area of read/write memory where temporary data can be

stored and retrieved for use later. It is this area of RAM memory that is known as General Purpose

Data Memory. This area of Data Memory is fully accessible by the user program for both read and

write operations. By using the �SET [m].i� and �CLR [m].i� instructions individual bits can be set or

reset under program control giving the user a large range of flexibility for bit manipulation in the

Data Memory.

Special Purpose Data Memory

This area of Data Memory is where registers, necessary for the correct operation of the

microcontroller, are stored. Most of the registers are both readable and writable but some are pro-

tected and are read only, the details of which are located under the relevant Special Function Reg-

ister section. Note that for locations that are unused, any read instruction to these addresses will

return the value �00H�.

The following diagram shows a detailed Special Purpose Data Memory organization map of the

Cost-Effective I/O Type microcontroller:

18

Cost-Effective I/O Type MCU

� � �

� � �

� � �

� � � � � � � � 	
 � � � � � � � �

� � �

� � �

� � �

� � � � � � � 	
 � � � � � � �

� � � � � � � � 	
 � � � � � � � �

� 	
 � � � � � 	 � � � � 	 � 	 � � � �

� � �

� � �

� � � � � � � � 	
 � � � � � � � �

� � � � � � � � 	
 � � � � � � � �

� � 	 � � � � � � 	 � � � � � � 	 � � � �

� � �

� �

� � �

� � �

 � � �

 � � �

! " #

�
 #

� $ �

 � �

 � � �

� �

� � �

� �

� � �

� �

� � �

� � �

� % �

� � �

� � �

� � �

� & �

� � �

� � �

� ' �

� � �

� � �

� � �

� � �

� " �

� (�

� � �

% � �

% % �

% � �

% � �

% � �

% & �

% � �

% � �

% ' �

� 	
 � � � � � 	 � � � � 	 � 	 � � � �% � �

Special Function Registers
To ensure successful operation of the microcontroller, certain internal registers are implemented

in the Data Memory area. These registers ensure correct operation of internal functions such as

timers, interrupts, Watchdog, etc., as well as external functions such as I/O data control. The loca-

tion of these registers within the Data Memory begins at the address 	00H	. Any unused Data

Memory locations between these special function registers and the point where the General Pur-

pose Memory begins is reserved for future expansion purposes, attempting to read data from

these locations will return a value of 	00H	.

Indirect Addressing Register � IAR

The IAR register, located at Data Memory address 	00H	, is not physically implemented. This spe-

cial register allows what is known as indirect addressing, which permits data manipulation using

Memory Pointers instead of the usual direct memory addressing method where the actual mem-

ory address is defined. Any actions on the IAR register will result in corresponding read/write oper-

ations to the memory location specified by the Memory Pointer MP. Reading the IAR register

indirectly will return a result of 	00H	 and writing to the register indirectly will result in no operation.

Memory Pointer � MP

One Memory Pointer, known as MP, is physically implemented in Data Memory. The Memory

Pointer can be written to and manipulated in the same way as normal registers providing an easy

way of addressing and tracking data. When using any operation on the indirect addressing regis-

ter IAR, it is actually the address specified by the Memory Pointer that the microcontroller will be di-

rected to.

Note The bit 7 of the Memory Pointer is not implemented. However, it must be noted that when the

Memory Pointer in these devices is read, a value of 	1	 will be read.

The following example shows how to clear a section of four RAM locations already defined as loca-

tions adres1 to adres4.

data .section �data�
adres1 db ?
adres2 db ?
adres3 db ?
adres4 db ?
block db ?

code .section at 0 �code�
org 00h

start:
mov a,04h ; setup size of block
mov block,a
mov a,offset adres1 ; Accumulator loaded with first RAM address
mov mp,a ; setup Memory Pointer with first RAM address

loop:
clr IAR ; clear the data at address defined by MP
inc mp ; increment Memory Pointer
sdz block ; check if last memory location has been cleared
jmp loop

continue:

The important point to note here is that in the example shown above, no reference made to spe-

cific RAM addresses.

Chapter 1 Hardware Structure

19

Accumulator � ACC

The Accumulator is central to the operation of any microcontroller and is closely related with opera-

tions carried out by the ALU. The Accumulator is the place where all intermediate results from the

ALU are stored. Without the Accumulator it would be necessary to write the result of each calcula-

tion or logical operation such as addition, subtraction, shift, etc., to the Data Memory resulting in

higher programming and timing overheads. Data transfer operations usually involve the tempo-

rary storage function of the Accumulator; for example, when transferring data between one user

defined register and another, it is necessary to do this by passing the data through the Accumula-

tor as no direct transfer between two registers is permitted.

Program Counter Low Register � PCL

To provide additional program control functions, the low byte of the Program Counter is made ac-

cessible to programmers by locating it within the Special Purpose area of the Data Memory. By ma-

nipulating this register, direct jumps to other program locations are easily implemented. Loading a

value directly into this PCL register will cause a jump to the specified Program Memory location,

however, as the register is only 8-bit wide, only jumps within the current Program Memory page

are permitted. When such operations are used, note that a dummy cycle will be inserted.

Look-up Table Registers � TBLP, TBLH

These two special function registers are used to control operation of the look-up table which is

stored in the Program Memory. TBLP is the table pointer and indicates the location where the table

data is located. Its value must be setup before any table read commands are executed. Its value

can be changed, for example using the 	INC	 or 	DEC	 instructions, allowing for easy table data

pointing and reading. TBLH is the location where the high order byte of the table data is stored af-

ter a table read data instruction has been executed. Note that the lower order table data byte is

transferred to a user defined location.

Watchdog Timer Register � WDTS

The Watchdog feature of the microcontroller provides an automatic reset function giving the

microcontroller a means of protection against spurious jumps to incorrect Program Memory ad-

dresses. To implement this, a timer is provided within the microcontroller which will issue a reset

command when its value overflows. To provide variable Watchdog Timer reset times, the Watch-

dog Timer clock source can be divided by various division ratios, the value of which is set using the

WDTS register. By writing directly to this register, the appropriate division ratio for the Watchdog

Timer clock source can be setup. Note that only the lower 3 bits are used to set division ratios be-

tween 1 and 128, the remaining 5 bits of the 8-bit register can be used by programmers for other

purposes.

20

Cost-Effective I/O Type MCU

Status Register � STATUS

This 8-bit register (0AH) contains the zero flag (Z), carry flag (C), auxiliary carry flag (AC), overflow

flag (OV), power down flag (PDF), and watchdog time-out flag (TO). It also records the status infor-

mation and controls the operation sequence.

With the exception of the TO and PDF flags, bits in the status register can be altered by in-

structions like most other registers. Any data written into the status register will not change

the TO or PDF flag. In addition, operations related to the status register may give different re-

sults due to the different instruction operations. The TO flag can be affected only by a system

power-up, a WDT time-out or by executing the 	CLR WDT	 or 	HALT	 instruction. The PDF

flag is affected only by executing the 	HALT	 or 	CLR WDT	 instruction or during a system

power-up.

The Z, OV, AC and C flags generally reflect the status of the latest operations.

� C is set if an operation results in a carry during an addition operation or if a borrow does not take

place during a subtraction operation; otherwise C is cleared. C is also affected by a rotate

through carry instruction.

� AC is set if an operation results in a carry out of the low nibbles in addition, or no borrow from the

high nibble into the low nibble in subtraction; otherwise AC is cleared.

� Z is set if the result of an arithmetic or logical operation is zero; otherwise Z is cleared.

� OV is set if an operation results in a carry into the highest-order bit but not a carry out of the high-

est-order bit, or vice versa; otherwise OV is cleared

� PDF is cleared by a system power-up or executing the 	CLR WDT	 instruction. PDF is set by ex-

ecuting the 	HALT	 instruction.

� TO is cleared by a system power-up or executing the 	CLR WDT	 or 	HALT	 instruction. TO is

set by a WDT time-out.

In addition, on entering an interrupt sequence or executing a subroutine call, the status register

will not be pushed onto the stack automatically. If the contents of the status register is important

and if the subroutine can corrupt the status register, precautions must be taken to correctly save it.

Chapter 1 Hardware Structure

21

� � � � ; � * 9 � � � � � � � � � � � � � � � � � �

� � �
 (� �
 � � � ! � � � � � � $ � � 	
 � � � � ; � 	 � �

� 	 � � � & � 	 �
� � > � � � 	 � � � 	 � � � & � 	 �
9 � � � � & � 	 �
� - � � & � � G � & � 	 �

� �
 � � � � 	 � 	 � � � � �
 � ; � 	 � �

� � G � � � � � G � � & � 	 �
� 	
 � (� � � �
 � � � # � �
 � & � 	 �

: �
 � � � $ � � � � �
 � � B � � � 	 � � 	 � � H 4 H

% 6 % 4

Interrupt Control Register � INTC

This 8-bit register, known as the INTC register, controls the operation of both external and internal

interrupts. By setting various bits within this register using standard bit manipulation instructions,

the enable/disable function of the external interrupt and each of the internal interrupts can be inde-

pendently controlled. A master interrupt bit within this register, the EMI bit, acts like a global en-

able/disable and is used to set all of the interrupt enable bits on or off. This bit is cleared when an

interrupt routine is entered to disable further interrupt and is set by the executing �RETI� instruc-

tion.

Note In situations where other interrupts may require servicing within present interrupt service routines,

the EMI bit can be manually set by the program after the present interrupt service routine has been

entered.

Timer/Event Counter Registers

All devices possess a single internal 8-bit count-up timer, known as TMR, whose internal clock

source originates from the system clock fSYS. The PC1/TMR input pin is provided to allow the timer

to be used to count external events, measure time intervals and pulse widths. The timer can also

be used to generate accurate time bases or PFD signals. To control the action of the timer two spe-

cial function registers are provided known as TMR and TMRC. The TMR register stores the actual

timer count-up value while the TMRC register is used to setup the various functions and options of

the timer. The TMR register can be preloaded with fixed data to allow different time intervals to be

programmed. The counter will begin counting from this preloaded value until full after which an in-

ternal interrupt signal is generated and the TMR register then automatically re-loaded with its

preload value.

Input/Output Ports and Control Registers

Within the area of Special Function Registers, the I/O registers and their associated control regis-

ters play a prominent role. All I/O ports have a designated register correspondingly labeled as PA,

PB and PC. These labeled I/O registers are mapped to specific addresses within the Data Memory

as shown in the Data Memory table which are used to transfer the appropriate output or input data

on that port. With each I/O port there is an associated control register labeled PAC, PBC and PCC,

also mapped to specific addresses with the Data Memory. The control register specifies which

pins of that port are set as inputs and which are set as outputs. To setup a pin as an input, the corre-

sponding bit of the control register must be set high, for an output it must be set low. During pro-

gram initialization, it is important to first setup the control registers to specify which pins are

outputs and which are inputs before reading data from or writing data to the I/O ports. One flexible

feature of these registers is the ability to directly program single bits using the �SET [m].i� and

�CLR [m].i� instructions. The ability to change I/O pins from output to input and vice-versa by ma-

nipulating specific bits of the I/O control registers during normal program operation is a useful fea-

ture of these devices.

22

Cost-Effective I/O Type MCU

Input/Output Ports

Holtek microcontrollers offer considerable flexibility on their I/O ports. With the input or output des-

ignation of every pin fully under user program control, pull-high option for all pins and wake-up op-

tions on certain pins, the user is provided with the I/O structures to meet the needs of a wide range

of application possibilities.

Depending upon which device is used, there are up to 19 bidirectional input/output lines in the

microcontroller labeled with port names PA, PB and PC. These I/O ports are mapped to the Data

Memory with specific addresses as shown in the Special Purpose Data Memory table. All of these

I/O ports can be used for input and output operations. For input operation, these ports are

non-latching, which means the inputs must be ready at the T2 rising edge of the instruction 	MOV

A,[m]	 where m denotes the port address. For output operation, all the data is latched and remains

unchanged until the output latch is rewritten.

Pull-high Resistors

Many product applications require pull-high resistors for their switch inputs, usually requiring the

use of an external resistor. To eliminate the need for these external resistors, all I/O pins, when con-

figured as an input, have the capability of being connected to an internal pull-high resistor. These

pull-high resistors are selectable via configuration options and are implemented using a weak

PMOS transistor. Note that on the HT48R05A-1/HT48C05 and HT48R06A-1/HT48C06 devices,

the single pull-high configuration option will connect all pins on all ports to pull high resistors, indi-

vidual ports or pins cannot be selected to have pull-high resistors. On the remaining devices each

individual port has a pull-high option which will connect all pins on the selected port to a pull-high

resistor.

Port A Wake-up

Each device has a HALT feature enabling the microcontroller to enter a Power Down Mode and

preserve power, a feature that is important for battery and other low power applications. Various

methods exist to wake-up the microcontroller, one of which is to change the logic condition on one

of the Port A pins from high to low. After a 	HALT	 instruction forces the microcontroller into enter-

ing a Halt condition, the processor will remain idle or in a low-power state until the logic condition of

the selected wake-up pin on Port A changes from high to low. This function is especially suitable

for applications that can be woken up via external switches. Note that each pin on Port A can be se-

lected individually to have this wake-up feature.

I/O Port Control Registers

Each I/O port has its own control register PAC, PBC and PCC, to control the input/output configura-

tion. With this control register, each CMOS output or Schmitt Trigger input can be reconfigured dy-

namically under software control. Each pin of the I/O ports is directly mapped to a bit in its

associated port control register. For the I/O pin to function as an input, the corresponding bit of the

control register must be written as a 	1	. This will then allow the logic state of the input pin to be di-

rectly read by instructions. When the corresponding bit of the control register is written as a 	0	,

the I/O pin will be setup as a CMOS output. If the pin is currently setup as an output, instructions

can still be used to read the output register. However, it should be noted that the program will in

fact only read the status of the output data latch and not the actual logic status of the output pin.

Chapter 1 Hardware Structure

23

Pin-shared Functions

The flexibility of the microcontroller range is greatly enhanced by the use of pins that have more

than one function. Limited numbers of pins can force serious design constraints on designers but

by supplying pins with multi-functions, many of these difficulties can be overcome. For some pins,

the chosen function of the multi-function I/O pins is set by configuration options while for others the

function is set by application program control.

Buzzer

Each device in the series contains a Buzzer function, whose output pins, BZ and BZ are

pin-shared with I/O pins PB0 and PB1. The output function of these pins is chosen via a configura-

tion option and remains fixed after the device is programmed. Note that the corresponding bits of

the port control register, PBC, must setup the pins as outputs to enable the Buzzer outputs. If the

PBC port control register has setup the pins as inputs, then the pins will function as normal logic in-

puts with the usual pull-high options, even if the Buzzer configuration option has been selected.

External Interrupt Input

The external interrupt pin INT is pin-shared with the I/O pin PC0. For this pin to operate as an ex-

ternal interrupt pin and not as a normal I/O pin the corresponding external interrupt enable bits in

the INTC interrupt control register must be correctly set. For applications not requiring an external

interrupt input, the pin can be used as a normal I/O pin, however, to do this, the external interrupt

enable bits in the INTC register must be disabled.

External Timer Clock Input

The external timer pin TMR is pin-shared with the I/O pin PC1. To configure it to operate as a timer

input, the corresponding control bits in the timer control register must be correctly set. For applica-

tions that do not require an external timer input, the pin can be used as a normal I/O pin. Note that

if used as a normal I/O pin the timer mode control bits in the timer control register must select the

timer mode (internal clock source) to prevent the I/O pin from interfering with the timer counter op-

eration.

24

Cost-Effective I/O Type MCU

* � �

�

�

� 	 " � # � $ � � $
 � � �� �
 � � � � 	 " � # � $

� � 	 � � � 	
 	 � � � � � �
 � �

� � �
 � � � � + �

� � � � # D � � (� � $
 � � �

� 	
 	 � + � �

� � �
 � � � � �
 � � � � � � � � �
 � �

� (� $ � � � � �

� � 	 � � � � �
 � � � � � � � � �
 � �

� � �
 � � � 	
 	 � � � � � �
 � �

� 	
 	 � + �

� � 4 I � � 6

� � 	 "
� � � � # � $� J

� F J
�

� J

� F J
�

PA Input/Output Ports

Chapter 1 Hardware Structure

25

� � �

�
�
�

� � � 	
 � � � � 	
� � � � � � � � � � � � 	 � � �

� � 	 � � � �

�
 � 	 � � � � � 	
 � � � � � � � � 	 �

� � � � � � � � � 	

� � � � � � � � 	
 � � � � � � � � 	 �

�
 � 	 � � � � 	 � � � � � � � 	 �

� � 	 � � � 	

� � � �
� � � � � � �� �

� � �

� �

� � �

� !
� " # � $
% � & ' (�) $ * � + , � & ' (�) $ -
� � & ' (�) . * � + , � & ' (�) . /
� �) , 0 1 &
� � + , & � �
� � !
% � & ' (�) $ * � + , � & ' (�) $ -
� � � & ' (�) . * � + , � & ' (�) . /

� � � � � � � 	 � � � � � � � 	 �

� � 0 1 & � % � �) � � � � 2 /
& � � � % � � + � � � � 2 /

PB2~PB7, PC0~PC2 Input/Output Ports

� � �

�
�
�

�
�
�� � � � � � � 	 � � � � � � � 	 �

� � � 	
 � � � � 	
� � � � � � � � � � � � 	 � � �

� � 	 � � � �

�
 � 	 � � � � � 	
 � � � � � � � � 	 �

� � � � � � � � � 	

� � � � � � � � 	
 � � � � � � � � 	 �

�
 � 	 � � � � 	 � � � � � � � 	 �

� � 	 � � � 	

�) � � � 	 � � � 	
 3 � % � + � � � � 2 /
 3 � % �) � � � � 2 / 3 � � � 	 � � �

�) , 3
� + , 3

� � � �
� � � � � � �� �

� � �

� �

� � �

PB0~PB1 Input/Output Ports

Programming Considerations

Within the user program, one of the first things to consider is port initialization. After a reset, all of

the I/O data and port control registers will be set high. This means that all I/O pins will default to an

input state, the level of which depends on the other connected circuitry and whether pull-high op-

tions have been selected. If the port control registers, PAC, PBC and PCC, are then programmed

to setup some pins as outputs, these output pins will have an initial high output value unless the as-

sociated port data registers, PA, PB and PC, are first programmed. Selecting which pins are inputs

and which are outputs can be achieved byte-wide by loading the correct values into the appropri-

ate port control register or by programming individual bits in the port control register using the

	SET [m].i	 and 	CLR [m].i	 instructions. Note that when using these bit control instructions a

read-modify-write operation takes place. The microcontroller must first read in the data on the en-

tire port, modify it to the required new bit values and then rewrite this data back to the output ports.

Port A has the additional capability of providing wake-up functions. When the chip is in the HALT

state, various methods are available to wake the device up. One of these is a high to low transition

of any of the Port A pins. Single or multiple pins on Port A can be setup to have this function.

Timer/Event Counters

The provision of timers form an important part of any microcontroller giving the designer a means

of carrying out time related functions. Each device contains an internal 8-bit count-up timer. With

three operating modes, the timers can be configured to operate as a general timer, external event

counter or as a pulse width measurement device. The provision of an internal 8-stage prescaler to

the timer clock circuitry gives added range to the timer.

There are two registers related to the Timer/Event Counter, TMR and TMRC. The TMR register is

the register that contains the actual timing value. Writing to TMR places an initial starting value in

the Timer/Event Counter preload register while reading TMR retrieves the contents of the

Timer/Event Counter. The TMRC is a Timer/Event Counter control register, which defines the

timer options, and determines how the timer is to be used. The timer clock source can be config-

ured to come from the internal clock source or from an external clock on shared pin PC1/TMR.

Configuring the Timer/Event Counter Input Clock Source

The internal timer�s clock source can originate from either the system clock or from an external

clock source. The system clock input timer source is used when the timer is in the timer mode or in

the pulse width measurement mode. The internal timer clock also passes through a prescaler, the

value of which is conditioned by the bits PSC0, PSC1 and PSC2.

26

Cost-Effective I/O Type MCU

� . � 3 � 2 � 1 � . � 3 � 2 � 1

� � �
 � �
 � � $ � �
 � � 	 � � & � � � � $ � �

� �
 � � � � � � � "

� � �
 � � 	
 	

An external clock source is used when the timer is in the event counting mode, the clock source

being provided on pin-shared pin PC1/TMR. Depending upon the condition of the TE bit, each

high to low, or low to high transition on the PC1/TMR pin will increment the counter by one.

Timer Register � TMR

The TMR register is an 8-bit special function register location within the special purpose Data

Memory where the actual timer value is stored. The value in the timer registers increases by one

each time an internal clock pulse is received or an external transition occurs on the PC1/TMR pin.

The timer will count from the initial value loaded by the preload register to the full count value of

FFH at which point the timer overflows and an internal interrupt signal generated. The timer value

will then be reset with the initial preload register value and continue counting. For a maximum full

range count of 00H to FFH the preload register must first be cleared to 00H. It should be noted that

after power-on the preload register will be in an unknown condition. Note that if the Timer/Event

Counter is in the OFF condition and data is written to its preload register, this data will be immedi-

ately written into the actual counter. However, if the counter is enabled and counting, any new data

written into the preload register during this period will remain in the preload register and will only

be written into the actual counter the next time an overflow occurs. Note also that when the TMR

register is read, the timer clock will be blocked to avoid errors, however as this may result in certain

timing errors, programmers must take this into account.

Timer Control Register � TMRC

The flexible features of the Holtek microcontroller Timer/Event Counters enable them to operate

in three different modes, the options of which are determined by the contents of the timer control

register TMRC. Together with the TMR register, these two registers control the full operation of the

Timer/Event Counters. Before the timer can be used, it is essential that the TMRC register is fully

programmed with the right data to ensure its correct operation, a process that is normally carried

out during program initialization.

To choose which of the three modes the timer is to operate in, the timer mode, the event counting

mode or the pulse width measurement mode, bits TM0 and TM1 must be set to the required logic

levels. The timer-on bit TON or bit 4 of the TMRC register provides the basic on/off control of the

timer, setting the bit high allows the counter to run, clearing the bit stops the counter. Bits 0~2 of

the TMRC register determine the division ratio of the input clock prescaler. The prescaler bit set-

tings have no effect if an external clock source is used. If the timer is in the event count or pulse

width measurement mode the active transition edge level type is selected by the logic level of the

TE or bit 3 of the TMRC register.

Chapter 1 Hardware Structure

27

� � . � � � �

� 8

� � � � � � 8 - � �
 � � � � �
 � �
� � � � � � � �
 � � �

� � :

� � � � � 	 � � � � � � �
 � �

� � � � � � 8 - � �
 � � � � �
 � �

� 	
 	 � + � �

� � � � 	 �

� - � � & � � G

 � � � �
 � � � � $

� 3 + 9

+ 9

7 # �
 	 � � � � � � � � 	 � � �& � @ �

� � � 3 I � � � 4
< . � 3 I . � 3 0 / =

7 # + �
 � � � � � � � 8 - � �
 � � � � �
 � �

� � . � � 4

8-bit Timer/Event Counter Structure

Configuring the Timer Mode

In this mode, the timer can be utilized to measure fixed time intervals, providing an internal inter-

rupt signal each time the counter overflows. To operate in this mode, bits TM1 (bit7) and TM0 (bit6)

of the TMRC register must be set to 1 and 0 respectively. In this mode, the internal clock is used as

the timer clock. The input clock frequency to the timer is fSYS divided by the value programmed into

the timer prescaler, the value of which is determined by bits PSC0~PSC2 of the TMRC register.

The timer-on bit, TON must be set high to enable the timer to run. Each time an internal clock high

to low transition occurs, the timer increments by one; when the timer is full and overflows, an inter-

rupt signal is generated and the timer will preload the value already loaded into the preload regis-

ter and continue counting. A timer overflow condition and corresponding internal interrupt is one of

the wake-up sources, however, the internal interrupts can be disabled by ensuring that the ETI bit

of the INTC register is reset to zero.

28

Cost-Effective I/O Type MCU

� � � � � � � � � � � � � � ! � � � 	 " � � � � � # � � � $ % � & � � � ! ' & � � �

: �
 � � � $ � � � � �
 � � B � � � 	 � � 	 � � H 4 H

% 6

8 - � �
 � � � � �
 � � � � �
 � - � � 8 � � � � � � � � �

. A � � � � �
 � � � � & 	 � � � � � � � � � �
4 A � � � � �
 � � � � � � � � � � � � � � � �

� 8� � :� � 4� � .

� � � � � � � � � � � 	 � � � � � 	
 � � � � � � �

� � � 3
4
4
4
4
.
.
.
.

% 4

� � � 3 � � � . � � � 4

� � � .
4
4
.
.
4
4
.
.

� � � 4
4
.
4
.
4
.
4
.

� � � � � � � 	
 �
� � � � � . A 3
� � � � � . A 1
� � � � � . A 7
� � � � � . A . /
� � � � � . A 2 3
� � � � � . A / 1
� � � � � . A . 3 7
� � � � � . A 3 0 /

� � � � � � 8 - � �
 � � � � �
 � � � � � � �
 � � � � 8 � 	 % � �
. A � � � 	 % � �
4 A � � � � 	 % � �

� $ � � 	
 � � � � � � � � � � � � � �

� � .
4
4
.
.

� � 4
4
.
4
.

� � � � � � � � 	 - 	 � � 	 % � �
� - � �
 � � � � �
 � � � � � � � �

 � � � � � � � � �
$ � � � � � G � �
 (� � � 	 � � � � � � �
 � � � � �

� � � � � � � � �
 (� � � 	 � � � � � � �
 � � �
 � - � � 8 � � � � � � � � �

. A � �
 	 �
 � � � � �
 � � � � � � � � � � � � � � � � � � B � �
 � $ � � � � & 	 � � � � � � � � � �
4 A � �
 	 �
 � � � � �
 � � � � � � � & 	 � � � � � � � � � � B � �
 � $ � � � � � � � � � � � � � � � �

� � � � � � � �

� � � � � � � � �
 � � � � � �

� � � � � 	 � � � � � �
 $ �

� � � � � � ? � . � � � � � � ? � 3 � � � � � � ? � : � � � � � � ? � : � ? � .

Timer Mode Timing Chart

Configuring the Event Counter Mode

In this mode, a number of externally changing logic events, occurring on external pin PC1/TMR,

can be recorded by the internal timer. For the timer to operate in the event counting mode, bits

TM1 and TM0 of the TMRC register must be set to 0 and 1 respectively. The timer-on bit, TON

must be set high to enable the timer to count. With TE low, the counter will increment each time the

PC1/TMR pin receives a low to high transition. If TE is high, the counter will increment each time

TMR receives a high to low transition. As in the case of the other two modes, when the counter is

full, the timer will overflow and generate an internal interrupt signal; the counter will preload the

value already loaded into the preload register. To ensure that the external pin PC1/TMR is config-

ured to operate as an event counter input pin, two things have to happen. The first is to ensure that

the TM0 and TM1 bits place the timer/event counter in the event counting mode, the second is to

ensure that the port control register configures the pin as an input. It should be noted that a timer

overflow is one of the interrupt and wake-up sources.

Configuring the Pulse Width Measurement Mode

In this mode, the width of external pulses applied to the pin-shared external pin PC1/TMR can be

measured. In the Pulse Width Measurement Mode, the timer clock source is supplied by the inter-

nal clock. For the timer to operate in this mode, bits TM0 and TM1 must both be set high. If the TE

bit is low, once a high to low transition has been received on the PC1/TMR pin, the timer will start

counting until the PC1/TMR pin returns to its original high level. At this point the TON bit will be au-

tomatically reset to zero and the timer will stop counting. If the TE bit is high, the timer will begin

counting once a low to high transition has been received on the PC1/TMR pin and stop counting

when the PC1/TMR pin returns to its original low level. As before, the TON bit will be automatically

reset to zero and the timer will stop counting. It is important to note that in the Pulse Width Mea-

surement Mode, the TON bit is automatically reset to zero when the external control signal on the

external timer pin returns to its original level, whereas in the other two modes the TON bit can only

be reset to zero under program control. The residual value in the timer, which can now be read by

the program, therefore represents the length of the pulse received on pin PC1/TMR. As the TON

bit has now been reset any further transitions on the PC1/TMR pin will be ignored. Not until the

TON bit is again set high by the program can the timer begin further pulse width measurements. In

this way single shot pulse measurements can be easily made. It should be noted that in this mode

the counter is controlled by logical transitions on the PC1/TMR pin and not by the logic level. As in

the case of the other two modes, when the counter is full, the timer will overflow and generate an in-

ternal interrupt signal. The counter will also be reset to the value already loaded into the preload

register. To ensure that the external pin PC1/TMR is configured to operate as a pulse width mea-

suring input pin, two things have to happen. The first is to ensure that the TM0 and TM1 bits place

the timer/event counter in the pulse width measuring mode, the second is to ensure that the port

control register configures the pin as an input. It should be noted that a timer overflow is one of the

interrupt and wake-up sources.

Chapter 1 Hardware Structure

29

� � � � � ? 3 � � � � � ? 2

8 >
 � � � 	 � � 8 - � �

� � � � � � � �

� � � � � � � � � �
 � � � � � � � ? .

Event Counter Mode Timing Chart

Programmable Frequency Divider (PFD) and Buzzer Application

Operating similar to a programmable frequency divider, the buzzer function within the

microcontroller provides a means of producing a variable frequency output suitable for applica-

tions such as piezo-buzzer driving or other interfaces requiring a precise frequency generator.

All devices have this feature, and depending upon which device is chosen, offer either a single BZ

or complimentary BZ and BZ pair of outputs. The function is selected via a configuration option,

however, if not selected, the pins can operate as normal I/O pins. Note that the BZ pin is the in-

verse of the BZ pin generating a kind of differential output and supplying more power to connected

interfaces such as buzzers.

The timer overflow signal is the clock source for the buzzer circuit. The output frequency is con-

trolled by loading the required values into the timer prescaler registers to give the required division

ratio. The counter, driven by the system clock which is divided by the prescaler value, will begin to

count-up from this preload register value until full, at which point an overflow signal is generated,

causing both the BZ and BZ outputs to change state. The counter will then be automatically re-

loaded with the preload register value and continue counting-up. Refer to the relevant Timer/Event

Counters section for details of its settings and operations.

For the buzzer outputs to function, it is essential that the Port B control register PBC bit 0 and PBC

bit 1 are setup as outputs. If they are setup as inputs the buzzer output will not function, and used

as normal input pins. The BZ and BZ outputs will only be activated if bit PB0 is set to 	1	. This out-

put data bit is used as the on/off control bit for the BZ and BZ outputs. Note that the BZ and BZ out-

puts will both be low if the PB0 output data bit is cleared to 	0	. Note that the condition of bit PB1

has no effect on the overall control of the BZ and BZ pins.

30

Cost-Effective I/O Type MCU

? . ? 3 ? 2 ? 1� � � � �

8 >
 � � � 	 � � � � �
� � � � � � $ �

� � : � < G �
 (� � 8 K 4 =

� � � � � 	 � � � � � �
 $ �

< G �
 (� � � � � " K & � @ � =

� � � � � � � �

� � � � � � � � � �
 � �

� � � � � 	 � � � � � �
 $ �
 � � � � � 	 � $ � � � � 	
 � � - � � � & 	 � � � � � � � � � � � � & � � . '

Pulse Width Measure Mode Timing Chart

Using this method of frequency generation, and if a crystal oscillator is used for the system clock,

very precise values of frequency can be generated.

Prescaler

Bits 0~2 of the TMRC can be used to define the pre-scaling stages of the internal clock sources of

the Timer/Event Counter. The Timer/Event Counter overflow signal can be used to generate sig-

nals for buzzer driving and Timer Interrupt.

I/O Interfacing

The Timer/Event Counter when configured to run in the event counter or pulse width measure-

ment mode, require the use of external pin PC1/TMR for correct operation. The PC1/TMR pin is

pin-shared with other I/O pins, so the correct configuration option must be selected if this pin is to

be configured as a timer input pin. Pull-high resistors can be selected for connection to the timer in-

put pins. The timer can also be setup to drive the pin-shared buzzer pins. When the buzzer pins

are selected by selecting the correct configuration option, the output of the timer can be made to

drive this at a frequency determined by the contents of the timer prescaler and the timer TMR regis-

ter.

Programming Considerations

When configured to run in the timer mode, the internal system clock is used as the timer clock

source and is therefore synchronized with the overall operation of the microcontroller. In this

mode, when the appropriate timer register is full, the microcontroller will generate an internal inter-

rupt signal directing the program flow to the respective internal interrupt vector. For the pulse width

measurement mode, the internal system clock is also used as the timer clock source but the timer

will only run when the correct logic condition appears on the timer input pin PC1/TMR. As this is an

external event and not synchronized with the internal timer clock, the microcontroller will only see

this external event when the next timer clock pulse arrives. As a result there may be small differ-

ences in measured values requiring programmers to take this into account during programming.

The same applies if the timer is configured to be in the event counting mode which again is an ex-

ternal event and not synchronized with the internal system or timer clock.

Chapter 1 Hardware Structure

31

� � � � � � � - � � & � � G

+ � , , � � � � � � � "

� + 4 � � 	
 	

+ 9 � � �
 $ �
 � 	
 � � + 4

+ 9 � � �
 $ �
 � 	
 � � + .

PFD Output Control

Interrupts

The device provides both external interrupt and internal Timer/Event Counter interrupt functions.

The Interrupt Control Register (INTC;0BH) contains the interrupt control bits to set the enable/dis-

able and the interrupt request flags.

Interrupt Register

Once an interrupt subroutine is serviced, all the other interrupts will be blocked (by clearing the

EMI bit). This scheme may prevent any further interrupt nesting. Other interrupt requests may oc-

cur during this interval but only the interrupt request flag is recorded. If a certain interrupt requires

servicing within the service routine, the EMI bit and the corresponding bit of the INTC may be set to

allow interrupt nesting. If the stack is full, the interrupt request will not be acknowledged, even if the

related interrupt is enabled, until the Stack Pointer is decremented. If immediate service is desired,

the stack must be prevented from becoming full.

All of these interrupts have the capability of waking up the processor when in the Power Down

Mode. As an interrupt is serviced, a control transfer occurs by pushing the Program Counter onto

the stack, followed by a branch to a subroutine at a specified location in the Program Memory.

Only the Program Counter is pushed onto the stack. If the contents of the register or status register

are altered by the interrupt service program, which may corrupt the desired control sequence, then

the contents should be saved in advance.

32

Cost-Effective I/O Type MCU

� �
 � � 	
 � � 	 � � � � � � 	 � � � � % � � � �
� 	 � � 	 � � � � �
 � � � � � � � 	 � � � � % � � � &
 G 	 � �

8 >
 � � � 	 � � � �
 � � � � $

� � L � � �
 � ; � 	 � � 8 � ;

� � � � � � 8 - � �
 � � � � �
 � � �
� �
 � � � � $
 � � � L � � �
 � ; � 	 � � � ;

8 8 �

8 � �

8 � �

� � � � � �

� �
 � � � � $

� � � � � � �

D � � (

! � G

� �
 � � 	
 � � 	 � � � � � � 	 % � � � � % � � � �
� 	 � � % � � 8 � 	 % � � � � � 	 � � 	 � �

Interrupt Scheme

� (� � � � � � � � � � �

� 	 �
 � � � � �
 � � � � $
 � � � � % 	 � � 8 � 	 % � �
. A � � � � % 	 � � � � 	 % � �
4 A � � � � % 	 � � � � � 	 % � �

: �
 � � � $ � � � � �
 � � B � � � 	 � � 	 � � H 4 H

% 6 % 4

8 � � 8 8 � 8 � �

8 >
 � � � 	 � � � �
 � � � � $
 � 8 � 	 % � �
� � � � � � 8 - � �
 � � � � �
 � � � � �
 � � � � $
 � 8 � 	 % � �
. A � � � 	 % � �
4 A � � � � 	 % � �

8 >
 � � � 	 � � � �
 � � � � $
 � � � L � � �
 � ; � 	 �
� � � � � � 8 - � �
 � � � � �
 � � � � �
 � � � � $
 � � � L � � �
 � ; � 	 �
. A � � � L � � �
 � � � � � � �
4 A � � � L � � �
 � � �
 � � � � � � �

8 � ;� � ;

: �
 � � � $ � � � � �
 � � B � � � 	 � � 	 � � H 4 H

Interrupt Priority

Interrupts, occurring in the interval between the rising edges of two consecutive T2 pulses, will be

serviced on the latter of the two T2 pulses, if the corresponding interrupts are enabled. In case of

simultaneous requests, the following table shows the priority that is applied. These can be masked

by resetting the EMI bit.

Interrupt Source Priority Vector

External Interrupt 1 04H

Timer/Event Counter Overflow 2 08H

In cases where both external and internal interrupts are enabled and where an external and inter-

nal interrupt occurs simultaneously, the external interrupt will always have priority and will there-

fore be serviced first. Suitable masking of the individual interrupts using the INTC register can

prevent simultaneous occurrences.

External Interrupt

An external interrupt is triggered by a high to low transition of the INT line, after which the related in-

terrupt request flag (EIF; bit 4 of INTC) will be set. When the interrupt is enabled, the stack is not

full and the external interrupt is active, a subroutine call to location 04H will occur. The interrupt re-

quest flag EIF will be reset and the EMI bit will be cleared to disable other interrupts.

Timer/Event Counter Interrupt

The Timer/Event Counter interrupt is initialized when the Timer/Event Counter interrupt request

flag (TF; bit 5 of the INTC) is set, caused by a timer overflow. When the interrupt is enabled, the

stack is not full and the TF bit is set, a subroutine call to location 08H will occur. The related inter-

rupt request flag TF will be reset and the EMI bit cleared to disable further interrupts.

Programming Considerations

The Timer/Event Counters interrupt request flag TF, external interrupt request flag EIF, enable

Timer/Event Counter interrupt bit ETI, enable external interrupt bit EEI and enable master interrupt

bit EMI constitute an interrupt control register INTC which is located in the Data Memory. EMI, EEI

and ETI are used to control the enabling/disabling of interrupts. When disabled, these bits can pre-

vent the requested interrupt from being serviced. Once the interrupt request flags TF or EIF are

set, they will remain in the INTC register until the interrupts are serviced or cleared by a software in-

struction.

It is recommended that programs do not use the 	CALL subroutine	 within the interrupt subroutine.

Interrupts often occur in an unpredictable manner or need to be serviced immediately in some appli-

cations. If only one stack is left and enabling the interrupt is not well controlled, the original control se-

quence will be damaged once a 	CALL subroutine	 is executed in the interrupt subroutine.

Chapter 1 Hardware Structure

33

Reset and Initialization

A reset function is a fundamental part of any microcontroller ensuring that the device can be set to

some predetermined condition irrespective of outside parameters. The most important reset condi-

tion is after power is first applied to the microcontroller. In this case, internal circuitry will ensure

that the microcontroller, after a short delay, will be in a well defined state and ready to execute the

first program instruction. After this power-on reset, certain important internal registers will be set to

defined states before the program commences. One of these registers is the Program Counter,

which will be reset to zero forcing the microcontroller to begin program execution from the lowest

Program Memory address.

In addition to the power-on reset, situations may arise where it is necessary to forcefully apply a re-

set condition when the microcontroller is running. One example of this is where after power has

been applied and the microcontroller is already running, the RES line is forcefully pulled low. In

such a case, known as a normal operation reset, some of the microcontroller registers remain un-

changed allowing the microcontroller to proceed with normal operation after the reset line is al-

lowed to return high. Another type of reset is when the Watchdog Timer overflows and resets the

microcontroller. All types of reset operations result in different register conditions being setup.

Another reset exists in the form of a Low Voltage Reset, LVR, where a full reset, similar to the RES

reset is implemented in situations where the power supply voltage falls below a certain threshold.

Reset

There are five ways in which a microcontroller reset can occur, through events occurring both inter-

nally and externally:

Power-on Reset

The most fundamental and unavoidable reset is the one that occurs after power is first applied to

the microcontroller. As well as ensuring that the Program Memory begins execution from the first

memory address, a power-on reset also ensures that certain other registers are preset to known

conditions. All the I/O port and port control registers will power-up in a high condition ensuring that

all pins will be first set to inputs.

Although the microcontroller has an internal RC reset function, due to unstable power-on condi-

tions, an external RC network connected to the RES pin is generally recommended. This time de-

lay created by the RC network ensures that the RES pin remains low for an extended period while

the power supply stabilizes. During this time, normal operation of the microcontroller is inhibited.

After the RES line reaches a certain voltage value, the reset delay time tRSTD is invoked to provide

an extra delay time after which the microcontroller can begin normal operation. The abbreviation

SST in the figures stands for System Start-up Timer.

34

Cost-Effective I/O Type MCU

� 8 �

* � �

� � � � � � � � # � �

� �
 � � � 	 � � � � � �

4 ' 5 � * � �

 � � � �

Power-on Reset Timing Chart

RES Pin Reset

This type of reset occurs when the microcontroller is already running and the RES pin is forcefully

pulled low by external hardware such as an external switch. In this case as in the case of other re-

set, the Program Counter will reset to zero and program execution initiated from this point.

Low Voltage Reset � LVR

The microcontroller contains a low voltage reset circuit in order to monitor the supply voltage of the

device, which is selected via a configuration option. If the supply voltage of the device drops to

within a range of 0.9V~VLVR such as might occur when changing the battery, the LVR will automati-

cally reset the device internally. For a valid LVR signal, a low voltage, i.e. a voltage in the range be-

tween 0.9V~VLVR must exist for greater than 1ms. If the low voltage state does not exceed 1ms,

the LVR will ignore it and will not perform a reset function.

Watchdog Time-out Reset during Normal Operation

The Watchdog time-out reset during normal operation is the same as RES reset except that the

Watchdog time-out flag TO will be set to 	1	.

Chapter 1 Hardware Structure

35

! * �

� � � � � � � � # � �

� �
 � � � 	 � � � � � �

 � � � �

Low Voltage Reset Timing Chart

� 8 �

� � � � � � � � # � �

� �
 � � � 	 � � � � � �

4 ' 5 � * � �
4 ' 1 � * � �

 � � � �

RES Reset Timing Chart

� � � � � � � � # � �

� � � � � � � � # � �

� �
 � � � 	 � � � � � �

 � � � �

WDT Time-out Reset during Normal Operation Timing Chart

Watchdog Time-out Reset during HALT

The Watchdog time-out reset during HALT is a little different from other kinds of reset. Most of the

conditions remain unchanged except that the Program Counter and the Stack Pointer will be

cleared to 0 and the TO flag will be set to 1. Refer to A.C. Characteristics for tSST details.

The different types of resets described affect the reset flags in different ways. These flags known

as PDF and TO are located in the status register and are controlled by various microcontroller op-

erations such as the halt function or Watchdog Timer. The reset flags are shown below:

TO PDF RESET Conditions

0 0 RES reset during power-on

u u RES or LVR reset during normal operation

1 u WDT time-out reset during normal operation

1 1 WDT time-out reset during HALT

�u� stands for unchanged

The table indicates the way in which the various components of the microcontroller are affected af-

ter a power-on reset occurs.

Item Condition After RESET

Program Counter Reset to zero

Interrupts All interrupts will be disabled

WDT Clear after reset, WDT begins counting

Timer/Event Counter All Timer Counters will be turned off

Prescaler The Timer Counter Prescaler will be cleared

Input/Output Ports All I/O ports will be setup as inputs

Stack Pointer Stack Pointer will point to the top of the stack

Cost-Effective I/O Type MCU

36

� � � � � � � � � 	
 �

� � � � � � � � � 	
 �

� � � �

WDT Time-out Reset during HALT Timing Chart

The different kinds of reset all affect the internal registers of the microcontroller in different ways.

To ensure reliable continuation of normal program execution after a reset occurs, it is important to

know what condition the microcontroller is in after a particular reset occurs. The following table de-

scribes how each type of reset affects each of the microcontroller internal registers.

Register Reset (Power-on) RES or LVR Reset
WDT Time-out

(Normal Operation)
WDT Time-out

(HALT)

MP � x x x x x x x � u u u u u u u � u u u u u u u � u u u u u u u

ACC x x x x x x x x u

PCL 0

TBLP x x x x x x x x u

TBLH ��� x x x x x x � � u u u u u u � � u u u u u u � � u u u u u u

WDTS 0 0 0 0 0 1 1 1 0 0 0 0 0 1 1 1 0 0 0 0 0 1 1 1 u u u u u u u u

STATUS ��� 0 0 x x x x ��� u u u u u u ��� 1 u u u u u ��� 1 1 u u u u

INTC ��� 0 0 � 0 0 0 ��� 0 0 � 0 0 0 ��� 0 0 � 0 0 0 � � u u � u u u

TMR x u u u u u u u u

TMRC 0 0 � 0 1 0 0 0 0 0 � 0 1 0 0 0 0 0 � 0 1 0 0 0 u u � u u u u u

PA 1 u u u u u u u u

PAC 1 u u u u u u u u

PB 1 u u u u u u u u

PBC 1 u u u u u u u u

PC � � � � � 1 1 1 � � � � � 1 1 1 � � � � � 1 1 1 ��� � � � u u u

PCC � � � � � 1 1 1 � � � � � 1 1 1 � � � � � 1 1 1 ��� � � � u u u

	u	 stands for unchanged

	x	 stands for unknown

	�	 stands for unimplemented

Chapter 1 Hardware Structure

37

Oscillator

Various oscillator options offer the user a wide range of functions according to their various applica-

tion requirements. Two types of system clocks can be selected while various clock source options

for the Watchdog Timer are provided for maximum flexibility. All oscillator options are selected

through the configuration options.

System Clock Configurations

There are two methods of generating the system clock, using an external crystal/ceramic oscilla-

tor or an external RC network. The chosen method is selected through the configuration options.

System Crystal/Ceramic Oscillator

For most crystal oscillator configurations, the simple connection of a crystal across OSC1 and

OSC2 will create the necessary phase shift and feedback for oscillation. However, to ensure oscil-

lation for certain lower crystal frequencies and for all ceramic resonator applications, it is recom-

mended that two small value capacitors and a resistor, the values of which are shown in the table,

should be connected as shown in the diagram.

The table below shows the C1, C2 and R1 values for various crystal/ceramic oscillating frequencies.

Crystal or Resonator C1, C2 R1

4MHz Crystal 0pF 10k�

4MHz Resonator 10pF 12k�

3.58MHz Crystal 0pF 10k�

3.58MHz Resonator 25pF 10k�

2MHz Crystal & Resonator 25pF 10k�

1MHz Crystal 35pF 27k�

480kHz Resonator 300pF 9.1k�

455kHz Resonator 300pF 10k�

429kHz Resonator 300pF 10k�

The function of the resistor R1 is to ensure that the oscillator will switch off should low voltage con-

ditions occur. Such a low voltage, as mentioned here, is one which is less than the lowest value of

the MCU operating voltage. Note however that if the LVR is enabled then R1 can be removed.

Cost-Effective I/O Type MCU

38

� � � 3

� � � .

� 3

� .

� .

Crystal/Ceramic Oscillator

System RC Oscillator

Using the external RC network as an oscillator requires that a resistor, with a value between 24k�

and 1M�, is connected between OSC1 and VDD, and a 470pF capacitor is connected to ground.

The generated system clock divided by 4 will be provided on OSC2 as an output which can be

used for external synchronization purposes. Although this is a cost effective oscillator configura-

tion, the oscillation frequency can vary with VDD, temperature and process variations on the chip

itself and is therefore not suitable for applications where timing is critical or where accurate oscilla-

tor frequencies are required. For the value of the external resistor ROSC please refer to the Appen-

dix section for typical RC Oscillator vs. Temperature and VDD characteristics graphics.

Watchdog Timer Oscillator
The WDT oscillator is a fully self-contained free running on-chip RC oscillator with a typical period

of 65�s at 5V requiring no external components. When the device enters the Power Down Mode,

the system clock will stop running but the WDT oscillator continues to free-run and to keep the

Watchdog active. However, to preserve power in certain applications the WDT oscillator can be

disabled via a configuration option.

Power Down Mode and Wake-up

Power Down Mode
All of the Holtek microcontrollers have the ability to enter a Power Down Mode, also known as the

HALT Mode or Sleep Mode. When the device enters this mode, the normal operating current, will

be reduced to an extremely low standby current level. This occurs because when the device en-

ters the Power Down Mode, the system oscillator is stopped which reduces the power consump-

tion to extremely low levels, however, as the device maintains its present internal condition, it can

be woken up at a later stage and continue running, without requiring a full reset. This feature is ex-

tremely important in application areas where the MCU must have its power supply constantly main-

tained to keep the device in a known condition but where the power supply capacity is limited such

as in battery applications.

Entering the Power Down Mode

There is only one way for the device to enter the Power Down Mode and that is to execute the

	HALT	 instruction in the application program. When this instruction is executed, the following will oc-

cur:

� The system oscillator will stop running and the application program will stop at the 	HALT	 in-

struction.

� The Data Memory contents and registers will maintain their present condition.

Chapter 1 Hardware Structure

39

� � � � �) � * * + � ! �

� � � .

� � � 3& � @ � � 1 � : � � � � � $ � � � � � 	 � �

1 6 4 $;

* � �

� � � �

� The WDT will be cleared and resume counting if the WDT clock source is selected to come from

the WDT oscillator. The WDT will stop if its clock source originates from the system clock.

� The I/O ports will maintain their present condition.

� In the status register, the Power Down flag, PDF, will be set and the Watchdog time-out flag, TO,

will be cleared.

Standby Current Considerations
As the main reason for entering the Power Down Mode is to keep the current consumption of the

MCU to as low a value as possible, perhaps only in the order of several micro-amps, there are

other considerations which must also be taken into account by the circuit designer if the power con-

sumption is to be minimized. Special attention must be made to the I/O pins on the device. All

high-impedance input pins must be connected to either a fixed high or low level as any floating in-

put pins could create internal oscillations and result in increased current consumption. Care must

also be taken with the loads which are connected to I/Os which are setup as outputs. These

should be placed in a condition in which minimum current is drawn or connected only to external

circuits that do not draw current such as other CMOS inputs.

Wake-up
After the system enters the Power Down Mode, it can be woken up from one of various sources

listed as follows:

� An external reset

� An external falling edge on Port A

� A system interrupt

� A WDT overflow

If the system is woken up by an external reset, the device will experience a full system reset, how-

ever, if the device is woken up by a WDT overflow, a Watchdog Timer reset will be initiated. Al-

though both of these wake-up methods will initiate a reset operation, the actual source of the

wake-up can be determined by examining the TO and PDF flags. The PDF flag is cleared by a sys-

tem power-up or executing the clear Watchdog Timer instructions and is set when executing the

	HALT	 instruction. The TO flag is set if a WDT time-out occurs, and causes a wake-up that only re-

sets the Program Counter and Stack Pointer, the other flags remain in their original status.

If the system is woken up by an interrupt, then two possible situations may occur. The first is where

the related interrupt is disabled or the interrupt is enabled but the stack is full, in which case the pro-

gram will resume execution at the instruction following the 	HALT	 instruction. In this situation, the

interrupt which woke-up the device will not be immediately serviced, but will rather be serviced

later when the related interrupt is finally enabled or when a stack level becomes free. The other sit-

uation is where the related interrupt is enabled and the stack is not full, in which case the regular in-

terrupt response takes place. If an interrupt request flag is set to 1 before entering the Power

Down Mode, the wake-up function of the related interrupt will be disabled.

No matter what the source of the wake-up event, once a wake-up situation occurs, a time period

equal to 1024 system clock periods will be required before normal system operation resumes.

However, if the wake-up has originated due to an interrupt, the actual interrupt subroutine execu-

tion will be delayed by an additional one or more cycles. If the wake-up results in the execution of

the next instruction following the 	HALT	 instruction, this will be executed immediately after the

1024 system clock period delay has ended.

40

Cost-Effective I/O Type MCU

Watchdog Timer

The Watchdog Timer is provided to prevent program malfunctions or sequences from jumping to

unknown locations, due to certain uncontrollable external events such as electrical noise. It oper-

ates by providing a 	chip reset	 when the WDT counter overflows. The WDT clock is supplied by

one of two sources selected by configuration option: its own self-contained dedicated internal

WDT oscillator, or the instruction clock (system clock divided by 4). Note that if the WDT configura-

tion option has been disabled, then any instruction relating to its operation will result in no opera-

tion.

The internal WDT oscillator has an approximate period of 65�s at a supply voltage of 5V. If se-

lected, it is first divided by 256 via an 8-stage counter to give a nominal period of 17ms. Note that

this period can vary with VDD, temperature and process variations. For longer WDT time-out peri-

ods the WDT prescaler can be utilized. By writing the required value to bits 0, 1 and 2 of the WDTS

register, known as WS0, WS1 and WS2, longer time-out periods can be achieved. With WS0,

WS1 and WS2 all equal to 1, the division ratio is 1:128 which gives a maximum time-out period of

about 2.1s. The high nibble and bit 3 of the WDTS are reserved for user defined flags, which can

be used to indicate some specified status.

The WDT oscillator can be disabled and the WDT clock source can be supplied from the instruc-

tion clock (system clock divided by 4). If the instruction clock is used as the clock source it should

be noted that when the system enters the Power Down Mode, then the instruction clock is stopped

and the WDT will lose its protecting purposes. In such cases the system can only be restarted via

external logic. For systems that operate in noisy environments, the internal WDT oscillator is

strongly recommended.

Chapter 1 Hardware Structure

41

� � 3 , � � � � � � � � � � � �

% 6 % 4

� � � � $ � � � � 	 � � � � � 	
 � � � � � � �

� � 3
4
4
4
4
.
.
.
.

� � .
4
4
.
.
4
4
.
.

� � 4
4
.
4
.
4
.
4
.

� � � � � 	
 �
� � � � � � . A .
� � � � � � . A 3
� � � � � � . A 1
� � � � � � . A 7
� � � � � � . A . /
� � � � � � . A 2 3
� � � � � � . A / 1
� � � � � � . A . 3 7

: �
 � � � � � B � � � � � � 	 � � � � � � % � �

� � . � � 4

Under normal program operation, the WDT time-out will initialize a 	chip reset	 and set the status

bit 	TO	. However, if the system is in the Power Down Mode, only a WDT time-out reset from

	HALT	 will be initialized which will only reset the Program Counter and Stack Pointer. Three meth-

ods can be adopted to clear the contents of the WDT including the WDT prescaler. The first is an

external hardware reset (a low level on the RES pin), the second is via software instructions and

the third is via a 	HALT	 instruction. There are two methods of using software instructions to clear

the Watchdog Timer, one of which must be chosen by configuration option. The first option is to

use the single 	CLR WDT	 instruction while the second is to use the two commands 	CLR WDT1	

and 	CLR WDT2	. For the first option, a simple execution of 	CLR WDT	 will clear the WDT while

for the second option, both 	CLR WDT1	 and 	CLR WDT2	 must both be executed to successfully

clear the WDT. Note that for this second option, if 	CLR WDT1	 is used to clear the WDT, succes-

sive executions of this instruction will have no effect, only the execution of a 	CLR WDT2	 instruc-

tion will clear the WDT. Similarly, after the 	CLR WDT2	 instruction has been executed, only a

successive 	CLR WDT1	 instruction can clear the Watchdog Timer.

42

Cost-Effective I/O Type MCU

& � @ � � 1

7 # % �
 � � � � �
 � �

� � � � � < � 3 0 / =
6 # % �
 � � � � � � 	 � � �

7 #
 � # . � � �

� � � � � � � � # � �

� � 4 I � � 3

� � � & � � '

� $
 � � �

� � � � �
� � � � � � � � � �
 $ �

� � � � � � � � � � � � � � � �

� � �
 � � �

! � � � �

� ! � � � � � . � ; � 	 � �

� ! � � � � � 3 � ; � 	 � �

. � � � � 3 � � � �
 � � �
 � � � � �

� ! � �
� ! � �

Watchdog Timer

Configuration Options

The various microcontroller configuration options selected using the HT-IDE are stored in the op-

tion memory. All bits must be defined for proper system function, the details of which are shown in

the table. After the configuration options have been programmed into the microcontroller by the

user, it is important to note that they cannot be altered later by the application program. For the

mask version devices, these configuration options, once defined, are implemented into the

microcontroller during the manufacturing process and therefore cannot be reconfigured by the

user.

HT48R05A-1/HT48C05, HT48R06A-1/HT48C06

No. Options

1 WDT clock source: WDT OSC or fSYS/4

2 WDT function: enable or disable

3 LVR function: enable or disable

4 CLRWDT instructions: 1 or 2 instructions

5 System oscillator: RC or Crystal/Ceramic

6 Pull-high resistors (PA~PC): enable or disable

7 Buzzer function: enable or disable

8 PA0~PA7 wake-up: enable or disable

HT48R07A-1/HT48C07, HT48R08A-1/HT48C08, HT48R09A-1/HT48C09

No. Options

1 WDT clock source: WDT OSC or fSYS/4

2 WDT function: enable or disable

3 LVR function: enable or disable

4 CLRWDT instructions: 1 or 2 instructions

5 System oscillator: RC or Crystal/Ceramic

6 PA pull-high: enable or disable

7 PB pull-high: enable or disable

8 PC pull-high: enable or disable

9 Buzzer function: enable or disable

10 PA0~PA7 wake-up: enable or disable

Chapter 1 Hardware Structure

43

Application Circuits

44

Cost-Effective I/O Type MCU

� � � .

� � � 3

� � - � � + * � � - � � � # � � �) � * * + � ! �
; � � � � � � $ � � � �
 � - 	 � � � � B
� � � � � �
 � � � � � � � 	
 � � � � � �
 � � �

� � � � - � � � # � � �) � * * + � ! �

3 1 " � M � � � � M . � �

* � �

� � � �

& � @ � � 1

� � � .

� � � 3
1 6 4 $;

� .

� .

� 3

� � � � � � �) ' � �

� � 4 � � : �
� � . � � � �

� � 3

� � 4 I � � 6

� + 4 � + 9
� + . � + 9

� + 3 I � + 6

� 8 �

4 ' . � ; N

. 4 4 " �

* � �

* � �

4 ' . � ;

* � �

4 ' 4 . � ; N

. 4 " �

� � � .

� � � 3

� � �
� � � � � �

� � � � " � * ! .

� � � � � � � � 	
 � � � � � � � �
� � � � � � � 	
 � � � � � � �

P a r t I I

Programming Language

Part II Programming Language

45

46

Cost-Effective I/O Type MCU

C h a p t e r 2

Instruction Set Introduction

Instruction Set

Central to the successful operation of any microcontroller is its instruction set, which is a set of pro-

gram instruction codes that directs the microcontroller to perform certain operations. In the case of

Holtek microcontrollers, a comprehensive and flexible set of over 60 instructions is provided to en-

able programmers to implement their application with the minimum of programming overheads.

For easier understanding of the various instruction codes, they have been subdivided into several

functional groupings.

Instruction Timing

Most instructions are implemented within one instruction cycle. The exceptions to this are branch,

call, or table read instructions where two instruction cycles are required. One instruction cycle is

equal to 4 system clock cycles, therefore in the case of an 8MHz system oscillator, most instruc-

tions would be implemented within 0.5�s and branch or call instructions would be implemented

within 1�s. Although instructions which require one more cycle to implement are generally limited

to the JMP, CALL, RET, RETI and table read instructions, it is important to realize that any other in-

structions which involve manipulation of the Program Counter Low register or PCL will also take

one more cycle to implement. As instructions which change the contents of the PCL will imply a di-

rect jump to that new address, one more cycle will be required. Examples of such instructions

would be 	CLR PCL	 or 	MOV PCL, A	. For the case of skip instructions, it must be noted that if

the result of the comparison involves a skip operation then this will also take one more cycle, if no

skip is involved then only one cycle is required.

Moving and Transferring Data

The transfer of data within the microcontroller program is one of the most frequently used opera-

tions. Making use of three kinds of MOV instructions, data can be transferred from registers to the

Accumulator and vice-versa as well as being able to move specific immediate data directly into the

Accumulator. One of the most important data transfer applications is to receive data from the input

ports and transfer data to the output ports.

Chapter 2 Instruction Set Introduction

47

2

Arithmetic Operations

The ability to perform certain arithmetic operations and data manipulation is a necessary feature

of most microcontroller applications. Within the Holtek microcontroller instruction set are a range

of add and subtract instruction mnemonics to enable the necessary arithmetic to be carried out.

Care must be taken to ensure correct handling of carry and borrow data when results exceed 255

for addition and less than 0 for subtraction. The increment and decrement instructions INC, INCA,

DEC and DECA provide a simple means of increasing or decreasing by a value of one of the val-

ues in the destination specified.

Logical and Rotate Operations

The standard logical operations such as AND, OR, XOR and CPL all have their own instruction

within the Holtek microcontroller instruction set. As with the case of most instructions involving

data manipulation, data must pass through the Accumulator which may involve additional pro-

gramming steps. In all logical data operations, the zero flag may be set if the result of the operation

is zero. Another form of logical data manipulation comes from the rotate instructions such as RR,

RL, RRC and RLC which provide a simple means of rotating one bit right or left. Different rotate

instructions exist depending on program requirements. Rotate instructions are useful for serial

port programming applications where data can be rotated from an internal register into the carry

bit from where it can be examined and the necessary serial bit set high or low. Another application

where rotate data operations are used is to implement multiplication and division calculations.

Branches and Control Transfer

Program branching takes the form of either jumps to specified locations using the JMP instruction

or to a subroutine using the CALL instruction. They differ in the sense that in the case of a subrou-

tine call, the program must return to the instruction immediately when the subroutine has been car-

ried out. This is done by placing a return instruction RET in the subroutine which will cause the

program to jump back to the address right after the CALL instruction. In the case of a JMP instruc-

tion, the program simply jumps to the desired location. There is no requirement to jump back to the

original jumping off point as in the case of the CALL. One special and extremely useful set of

branch instructions are the conditional branches. Here a decision is first made regarding the condi-

tion of a certain Data Memory or individual bits. Depending upon the conditions, the program will

continue with the next instruction or skip over it and jump to the following instruction. These instruc-

tions are the key to decision making and branching within the program, perhaps determined by the

condition of certain input switches or by the condition of internal data bits.

Bit Operations

The ability to provide single bit operations on Data Memory is an extremely flexible feature of all

Holtek microcontrollers. This feature is especially useful for output port bit programming where in-

dividual bits or port pins can be directly set high or low using either the 	SET [m].i	 or 	CLR [m].i	 in-

structions respectively. The feature removes the need for programmers to first read the 8-bit

output port, manipulate the input data to ensure that other bits are not changed and then output

the port with the correct new data. This read-modify-write process is taken care of automatically

when these bit operation instructions are used.

48

Cost-Effective I/O Type MCU

Table Read Operations

Data storage is normally implemented by using registers. However, when working with large

amounts of fixed data, the volume involved often makes it inconvenient to store the fixed data in in-

dividual memory. To overcome this problem, Holtek microcontrollers allow an area of Program

Memory to be setup as a table where data can be directly stored. A set of easy to use instructions

provides the means by which this fixed data can be referenced and retrieved from the Program

Memory.

Other Operations

In addition to the above functional instructions, a range of other instructions also exist such as

	HALT	 instruction for power-down operation and instructions to control the operation of the

Watchdog Timer for reliable program operations under extreme electric or electromagnetic envi-

ronment. For their relevant operations, refer to the functional related sections.

Instruction Set Summary

Convention

X: Bits immediate data

m: Data Memory address

A: Accumulator

i: 0~7 number of bits

addr: Program Memory address

Mnemonic Description Cycles Flag Affected

Arithmetic

ADD A,[m]

ADDM A,[m]

ADD A,x

ADC A,[m]

ADCM A,[m]

SUB A,x

SUB A,[m]

SUBM A,[m]

SBC A,[m]

SBCM A,[m]

DAA [m]

Add Data Memory to ACC

Add ACC to Data Memory

Add immediate data to ACC

Add Data Memory to ACC with Carry

Add ACC to Data Memory with Carry

Subtract immediate data from the ACC

Subtract Data Memory from ACC

Subtract Data Memory from ACC with result in Data Memory

Subtract Data Memory from ACC with Carry

Subtract Data Memory from ACC with Carry, result in Data Memory

Decimal adjust ACC for addition with result in Data Memory

1

1Note

1

1

1Note

1

1

1Note

1

1Note

1Note

Z, C, AC, OV

Z, C, AC, OV

Z, C, AC, OV

Z, C, AC, OV

Z, C, AC, OV

Z, C, AC, OV

Z, C, AC, OV

Z, C, AC, OV

Z, C, AC, OV

Z, C, AC, OV

C

Chapter 2 Instruction Set Introduction

49

Mnemonic Description Cycles Flag Affected

Logic Operation

AND A,[m]

OR A,[m]

XOR A,[m]

ANDM A,[m]

ORM A,[m]

XORM A,[m]

AND A,x

OR A,x

XOR A,x

CPL [m]

CPLA [m]

Logical AND Data Memory to ACC

Logical OR Data Memory to ACC

Logical XOR Data Memory to ACC

Logical AND ACC to Data Memory

Logical OR ACC to Data Memory

Logical XOR ACC to Data Memory

Logical AND immediate data to ACC

Logical OR immediate data to ACC

Logical XOR immediate data to ACC

Complement Data Memory

Complement Data Memory with result in ACC

1

1

1

1Note

1Note

1Note

1

1

1

1Note

1

Z

Z

Z

Z

Z

Z

Z

Z

Z

Z

Z

Increment & Decrement

INCA [m]

INC [m]

DECA [m]

DEC [m]

Increment Data Memory with result in ACC

Increment Data Memory

Decrement Data Memory with result in ACC

Decrement Data Memory

1

1Note

1

1Note

Z

Z

Z

Z

Rotate

RRA [m]

RR [m]

RRCA [m]

RRC [m]

RLA [m]

RL [m]

RLCA [m]

RLC [m]

Rotate Data Memory right with result in ACC

Rotate Data Memory right

Rotate Data Memory right through Carry with result in ACC

Rotate Data Memory right through Carry

Rotate Data Memory left with result in ACC

Rotate Data Memory left

Rotate Data Memory left through Carry with result in ACC

Rotate Data Memory left through Carry

1

1Note

1

1Note

1

1Note

1

1Note

None

None

C

C

None

None

C

C

Data Move

MOV A,[m]

MOV [m],A

MOV A,x

Move Data Memory to ACC

Move ACC to Data Memory

Move immediate data to ACC

1

1Note

1

None

None

None

Bit Operation

CLR [m].i

SET [m].i

Clear bit of Data Memory

Set bit of Data Memory

1Note

1Note

None

None

50

Cost-Effective I/O Type MCU

Mnemonic Description Cycles Flag Affected

Branch

JMP addr

SZ [m]

SZA [m]

SZ [m].i

SNZ [m].i

SIZ [m]

SDZ [m]

SIZA [m]

SDZA [m]

CALL addr

RET

RET A,x

RETI

Jump unconditionally

Skip if Data Memory is zero

Skip if Data Memory is zero with data movement to ACC

Skip if bit i of Data Memory is zero

Skip if bit i of Data Memory is not zero

Skip if increment Data Memory is zero

Skip if decrement Data Memory is zero

Skip if increment Data Memory is zero with result in ACC

Skip if decrement Data Memory is zero with result in ACC

Subroutine call

Return from subroutine

Return from subroutine and load immediate data to ACC

Return from interrupt

2

1Note

1Note

1Note

1Note

1Note

1Note

1Note

1Note

2

2

2

2

None

None

None

None

None

None

None

None

None

None

None

None

None

Table Read

TABRDC [m]

TABRDL [m]

Read table (current page) to TBLH and Data Memory

Read table (last page) to TBLH and Data Memory

(This instruction is not valid for HT48R05A-1/HT48C05.)

2Note

2Note

None

None

Miscellaneous

NOP

CLR [m]

SET [m]

CLR WDT

CLR WDT1

CLR WDT2

SWAP [m]

SWAPA [m]

HALT

No operation

Clear Data Memory

Set Data Memory

Clear Watchdog Timer

Pre-clear Watchdog Timer

Pre-clear Watchdog Timer

Swap nibbles of Data Memory

Swap nibbles of Data Memory with result in ACC

Enter Power Down Mode

1

1Note

1Note

1

1

1

1Note

1

1

None

None

None

TO, PDF

TO, PDF

TO, PDF

None

None

TO, PDF

Note 1. For skip instructions, if the result of the comparison involves a skip then two cycles are required,

if no skip takes place only one cycle is required.

2. Any instruction which changes the contents of the PCL will also require 2 cycles for execution.

3. For the 	CLR WDT1	 and 	CLR WDT2	 instructions the TO and PDF flags may be affected by

the execution status. The TO and PDF flags are cleared after both 	CLR WDT1	 and

	CLR WDT2	 instructions are consecutively executed. Otherwise the TO and PDF flags

remain unchanged.

Chapter 2 Instruction Set Introduction

51

52

Cost-Effective I/O Type MCU

C h a p t e r 3

Instruction Definition

ADC A,[m] Add Data Memory to ACC with Carry

Description The contents of the specified Data Memory, Accumulator and the carry flag are added. The

result is stored in the Accumulator.

Operation ACC ACC + [m] + C

Affected flag(s) OV, Z, AC, C

ADCM A,[m] Add ACC to Data Memory with Carry

Description The contents of the specified Data Memory, Accumulator and the carry flag are added. The

result is stored in the specified Data Memory.

Operation [m] ACC + [m] + C

Affected flag(s) OV, Z, AC, C

ADD A,[m] Add Data Memory to ACC

Description The contents of the specified Data Memory and the Accumulator are added. The result is

stored in the Accumulator.

Operation ACC ACC + [m]

Affected flag(s) OV, Z, AC, C

ADD A,x Add immediate data to ACC

Description The contents of the Accumulator and the specified immediate data are added. The result is

stored in the Accumulator.

Operation ACC ACC + x

Affected flag(s) OV, Z, AC, C

ADDM A,[m] Add ACC to Data Memory

Description The contents of the specified Data Memory and the Accumulator are added. The result is

stored in the specified Data Memory.

Operation [m] ACC + [m]

Affected flag(s) OV, Z, AC, C

Chapter 3 Instruction Definition

53

3

AND A,[m] Logical AND Data Memory to ACC

Description Data in the Accumulator and the specified Data Memory perform a bitwise logical AND op-

eration. The result is stored in the Accumulator.

Operation ACC ACC 	AND	 [m]

Affected flag(s) Z

AND A,x Logical AND immediate data to ACC

Description Data in the Accumulator and the specified immediate data perform a bitwise logical AND

operation. The result is stored in the Accumulator.

Operation ACC ACC 	AND	 x

Affected flag(s) Z

ANDM A,[m] Logical AND ACC to Data Memory

Description Data in the specified Data Memory and the Accumulator perform a bitwise logical AND op-

eration. The result is stored in the Data Memory.

Operation [m] ACC 	AND	 [m]

Affected flag(s) Z

CALL addr Subroutine call

Description Unconditionally calls a subroutine at the specified address. The Program Counter then in-

crements by 1 to obtain the address of the next instruction which is then pushed onto the

stack. The specified address is then loaded and the program continues execution from this

new address. As this instruction requires an additional operation, it is a two cycle instruc-

tion.

Operation Stack Program Counter + 1

Program Counter addr

Affected flag(s) None

CLR [m] Clear Data Memory

Description Each bit of the specified Data Memory is cleared to 0.

Operation [m] 00H

Affected flag(s) None

CLR [m].i Clear bit of Data Memory

Description Bit i of the specified Data Memory is cleared to 0.

Operation [m].i 0

Affected flag(s) None

54

Cost-Effective I/O Type MCU

CLR WDT Clear Watchdog Timer

Description The TO, PDF flags and the WDT are all cleared.

Operation WDT cleared

TO 0

PDF 0

Affected flag(s) TO, PDF

CLR WDT1 Pre-clear Watchdog Timer

Description The TO, PDF flags and the WDT are all cleared. Note that this instruction works in conjunc-

tion with CLR WDT2 and must be executed alternately with CLR WDT2 to have effect. Re-

petitively executing this instruction without alternately executing CLR WDT2 will have no

effect.

Operation WDT cleared

TO 0

PDF 0

Affected flag(s) TO, PDF

CLR WDT2 Pre-clear Watchdog Timer

Description The TO, PDF flags and the WDT are all cleared. Note that this instruction works in conjunc-

tion with CLR WDT1 and must be executed alternately with CLR WDT1 to have effect. Re-

petitively executing this instruction without alternately executing CLR WDT1 will have no

effect.

Operation WDT cleared

TO 0

PDF 0

Affected flag(s) TO, PDF

CPL [m] Complement Data Memory

Description Each bit of the specified Data Memory is logically complemented (1�s complement). Bits

which previously contained a 1 are changed to 0 and vice versa.

Operation [m] [m]

Affected flag(s) Z

CPLA [m] Complement Data Memory with result in ACC

Description Each bit of the specified Data Memory is logically complemented (1�s complement). Bits

which previously contained a 1 are changed to 0 and vice versa. The complemented result

is stored in the Accumulator and the contents of the Data Memory remain unchanged.

Operation ACC [m]

Affected flag(s) Z

Chapter 3 Instruction Definition

55

DAA [m] Decimal-Adjust ACC for addition with result in Data Memory

Description Convert the contents of the Accumulator value to a BCD (Binary Coded Decimal) value re-

sulting from the previous addition of two BCD variables. If the low nibble is greater than 9 or

if AC flag is set, then a value of 6 will be added to the low nibble. Otherwise the low nibble

remains unchanged. If the high nibble is greater than 9 or if the C flag is set, then a value of

6 will be added to the high nibble. Essentially, the decimal conversion is performed by add-

ing 00H, 06H, 60H or 66H depending on the Accumulator and flag conditions. Only the C

flag may be affected by this instruction which indicates that if the original BCD sum is

greater than 100, it allows multiple precision decimal addition.

Operation [m] ACC + 00H or

[m] ACC + 06H or

[m] ACC + 60H or

[m] ACC + 66H

Affected flag(s) C

DEC [m] Decrement Data Memory

Description Data in the specified Data Memory is decremented by 1.

Operation [m] [m] � 1

Affected flag(s) Z

DECA [m] Decrement Data Memory with result in ACC

Description Data in the specified Data Memory is decremented by 1. The result is stored in the Accu-

mulator. The contents of the Data Memory remain unchanged.

Operation ACC [m] � 1

Affected flag(s) Z

HALT Enter Power Down Mode

Description This instruction stops the program execution and turns off the system clock. The contents

of the Data Memory and registers are retained. The WDT and prescaler are cleared. The

Power Down flag PDF is set and the WDT time-out flag TO is cleared.

Operation TO 0

PDF 1

Affected flag(s) TO, PDF

INC [m] Increment Data Memory

Description Data in the specified Data Memory is incremented by 1.

Operation [m] [m] � 1

Affected flag(s) Z

56

Cost-Effective I/O Type MCU

INCA [m] Increment Data Memory with result in ACC

Description Data in the specified Data Memory is incremented by 1. The result is stored in the Accumu-

lator. The contents of the Data Memory remain unchanged.

Operation ACC [m] � 1

Affected flag(s) Z

JMP addr Jump unconditionally

Description The contents of the Program Counter are replaced with the specified address. Program

execution then continues from this new address. As this requires the insertion of a dummy

instruction while the new address is loaded, it is a two cycle instruction.

Operation Program Counter addr

Affected flag(s) None

MOV A,[m] Move Data Memory to ACC

Description The contents of the specified Data Memory are copied to the Accumulator.

Operation ACC [m]

Affected flag(s) None

MOV A,x Move immediate data to ACC

Description The immediate data specified is loaded into the Accumulator.

Operation ACC x

Affected flag(s) None

MOV [m],A Move ACC to Data Memory

Description The contents of the Accumulator are copied to the specified Data Memory.

Operation [m] ACC

Affected flag(s) None

NOP No operation

Description No operation is performed. Execution continues with the next instruction.

Operation No operation

Affected flag(s) None

OR A,[m] Logical OR Data Memory to ACC

Description Data in the Accumulator and the specified Data Memory perform a bitwise logical OR oper-

ation. The result is stored in the Accumulator.

Operation ACC ACC 	OR	 [m]

Affected flag(s) Z

Chapter 3 Instruction Definition

57

OR A,x Logical OR immediate data to ACC

Description Data in the Accumulator and the specified immediate data perform a bitwise logical OR op-

eration. The result is stored in the Accumulator.

Operation ACC ACC 	OR	 x

Affected flag(s) Z

ORM A,[m] Logical OR ACC to Data Memory

Description Data in the specified Data Memory and the Accumulator perform a bitwise logical OR oper-

ation. The result is stored in the Data Memory.

Operation [m] ACC 	OR	 [m]

Affected flag(s) Z

RET Return from subroutine

Description The Program Counter is restored from the stack. Program execution continues at the

restored address.

Operation Program Counter Stack

Affected flag(s) None

RET A,x Return from subroutine and load immediate data to ACC

Description The Program Counter is restored from the stack and the Accumulator loaded with the

specified immediate data. Program execution continues at the restored address.

Operation Program Counter Stack

ACC x

Affected flag(s) None

RETI Return from interrupt

Description The Program Counter is restored from the stack and the interrupts are re-enabled by set-

ting the EMI bit. EMI is the enable master (global) interrupt bit (bit 0; register INTC). If an in-

terrupt was pending when the RETI instruction is executed, the pending Interrupt routine

will be processed before returning to the main program.

Operation Program Counter Stack

EMI 1

Affected flag(s) None

RL [m] Rotate Data Memory left

Description The contents of the specified Data Memory are rotated left by 1 bit with bit 7 rotated into bit

0.

Operation [m].(i+1) [m].i; (i = 0~6)

[m].0 [m].7

Affected flag(s) None

58

Cost-Effective I/O Type MCU

RLA [m] Rotate Data Memory left with result in ACC

Description The contents of the specified Data Memory are rotated left by 1 bit with bit 7 rotated into bit

0. The rotated result is stored in the Accumulator and the contents of the Data Memory re-

main unchanged.

Operation ACC.(i+1) [m].i; (i = 0~6)

ACC.0 [m].7

Affected flag(s) None

RLC [m] Rotate Data Memory Left through Carry

Description The contents of the specified Data Memory and the carry flag are rotated left by 1 bit. Bit 7

replaces the carry bit and the original carry flag is rotated into bit 0.

Operation [m].(i+1) [m].i; (i = 0~6)

[m].0 C

C [m].7

Affected flag(s) C

RLCA [m] Rotate Data Memory left through Carry with result in ACC

Description Data in the specified Data Memory and the carry flag are rotated left by 1 bit. Bit 7 replaces

the carry bit and the original carry flag is rotated into the bit 0. The rotated result is stored in

the Accumulator and the contents of the Data Memory remain unchanged.

Operation ACC.(i+1) [m].i; (i = 0~6)

ACC.0 C

C [m].7

Affected flag(s) C

RR [m] Rotate Data Memory right

Description The contents of the specified Data Memory are rotated right by 1 bit with bit 0 rotated into

bit 7.

Operation [m].i [m].(i+1); (i = 0~6)

[m].7 [m].0

Affected flag(s) None

RRA [m] Rotate Data Memory right with result in ACC

Description Data in the specified Data Memory and the carry flag are rotated right by 1 bit with bit 0 ro-

tated into bit 7. The rotated result is stored in the Accumulator and the contents of the Data

Memory remain unchanged.

Operation ACC.i [m].(i+1); (i = 0~6)

ACC.7 [m].0

Affected flag(s) None

Chapter 3 Instruction Definition

59

RRC [m] Rotate Data Memory right through Carry

Description The contents of the specified Data Memory and the carry flag are rotated right by 1 bit. Bit 0

replaces the carry bit and the original carry flag is rotated into bit 7.

Operation [m].i [m].(i+1); (i = 0~6)

[m].7 C

C [m].0

Affected flag(s) C

RRCA [m] Rotate Data Memory right through Carry with result in ACC

Description Data in the specified Data Memory and the carry flag are rotated right by 1 bit. Bit 0 re-

places the carry bit and the original carry flag is rotated into bit 7. The rotated result is

stored in the Accumulator and the contents of the Data Memory remain unchanged.

Operation ACC.i [m].(i+1); (i = 0~6)

ACC.7 C

C [m].0

Affected flag(s) C

SBC A,[m] Subtract Data Memory from ACC with Carry

Description The contents of the specified Data Memory and the complement of the carry flag are

subtracted from the Accumulator, The result is stored in the Accumulator. Note that if the

result of subtraction is negative, the C flag will be cleared to 0, otherwise if the result is pos-

itive or zero the C flag will be set to 1.

Operation ACC ACC � [m] � C

Affected flag(s) OV, Z, AC, C

SBCM A,[m] Subtract Data Memory from ACC with Carry and result in Data Memory

Description The contents of the specified Data Memory and the complement of the carry flag are sub-

tracted from the Accumulator. The result is stored in the Data Memory. Note that if the re-

sult of subtraction is negative, the C flag will be cleared to 0, otherwise if the result is

positive or zero the C flag will be set to 1.

Operation [m] ACC � [m] � C

Affected flag(s) OV, Z, AC, C

SDZ [m] Skip if decrement Data Memory is 0

Description The contents of the specified Data Memory are first decremented by 1. If the result is 0 the

following instruction is skipped. As this requires the insertion of a dummy instruction while

the next instruction is fetched, it is a two cycle instruction. If the result is not 0 the program

proceeds with the following instruction.

Operation [m] [m] � 1

Skip if [m] = 0

Affected flag(s) None

60

Cost-Effective I/O Type MCU

SDZA [m] Skip if decrement Data Memory is zero with result in ACC

Description The contents of the specified Data Memory are first decremented by 1. If the result is 0, the

following instruction is skipped. The result is stored in the Accumulator but the specified

Data Memory contents remain unchanged. As this requires the insertion of a dummy in-

struction while the next instruction is fetched, it is a two cycle instruction. If the result is not

0, the program proceeds with the following instruction.

Operation ACC [m] � 1

Skip if ACC = 0

Affected flag(s) None

SET [m] Set Data Memory

Description Each bit of the specified Data Memory is set to 1.

Operation [m] FFH

Affected flag(s) None

SET [m].i Set bit of Data Memory

Description Bit i of the specified Data Memory is set to 1.

Operation [m].i 1

Affected flag(s) None

SIZ [m] Skip if increment Data Memory is 0

Description The contents of the specified Data Memory are first incremented by 1. If the result is 0, the

following instruction is skipped. As this requires the insertion of a dummy instruction while

the next instruction is fetched, it is a two cycle instruction. If the result is not 0 the program

proceeds with the following instruction.

Operation [m] [m] + 1

Skip if [m] = 0

Affected flag(s) None

SIZA [m] Skip if increment Data Memory is zero with result in ACC

Description The contents of the specified Data Memory are first incremented by 1. If the result is 0, the

following instruction is skipped. The result is stored in the Accumulator but the specified

Data Memory contents remain unchanged. As this requires the insertion of a dummy in-

struction while the next instruction is fetched, it is a two cycle instruction. If the result is not

0 the program proceeds with the following instruction.

Operation ACC [m] + 1

Skip if ACC = 0

Affected flag(s) None

Chapter 3 Instruction Definition

61

SNZ [m].i Skip if bit i of Data Memory is not 0

Description If bit i of the specified Data Memory is not 0, the following instruction is skipped. As this re-

quires the insertion of a dummy instruction while the next instruction is fetched, it is a two

cycle instruction. If the result is 0 the program proceeds with the following instruction.

Operation Skip if [m].i � 0

Affected flag(s) None

SUB A,[m] Subtract Data Memory from ACC

Description The specified Data Memory is subtracted from the contents of the Accumulator. The result

is stored in the Accumulator. Note that if the result of subtraction is negative, the C flag will

be cleared to 0, otherwise if the result is positive or zero the C flag will be set to 1.

Operation ACC ACC � [m]

Affected flag(s) OV, Z, AC, C

SUBM A,[m] Subtract Data Memory from ACC with result in Data Memory

Description The specified Data Memory is subtracted from the contents of the Accumulator. The result

is stored in the Data Memory. Note that if the result of subtraction is negative, the C flag will

be cleared to 0, otherwise if the result is positive or zero the C flag will be set to 1.

Operation [m] ACC � [m]

Affected flag(s) OV, Z, AC, C

SUB A,x Subtract immediate data from ACC

Description The immediate data specified by the code is subtracted from the contents of the Accumu-

lator. The result is stored in the Accumulator. Note that if the result of subtraction is nega-

tive, the C flag will be cleared to 0, otherwise if the result is positive or zero the C flag will be

set to 1.

Operation ACC ACC � x

Affected flag(s) OV, Z, AC, C

SWAP [m] Swap nibbles of Data Memory

Description The low-order and high-order nibbles of the specified Data Memory are interchanged.

Operation [m].3~[m].0 � [m].7 ~ [m].4

Affected flag(s) None

SWAPA [m] Swap nibbles of Data Memory with result in ACC

Description The low-order and high-order nibbles of the specified Data Memory are interchanged. The

result is stored in the Accumulator. The contents of the Data Memory remain unchanged.

Operation ACC.3 ~ ACC.0 [m].7 ~ [m].4

ACC.7 ~ ACC.4 [m].3 ~ [m].0

Affected flag(s) None

62

Cost-Effective I/O Type MCU

SZ [m] Skip if Data Memory is 0

Description If the contents of the specified Data Memory is 0, the following instruction is skipped. As

this requires the insertion of a dummy instruction while the next instruction is fetched, it is a

two cycle instruction. If the result is not 0 the program proceeds with the following instruc-

tion.

Operation Skip if [m] = 0

Affected flag(s) None

SZA [m] Skip if Data Memory is 0 with data movement to ACC

Description The contents of the specified Data Memory are copied to the Accumulator. If the value is

zero, the following instruction is skipped. As this requires the insertion of a dummy instruc-

tion while the next instruction is fetched, it is a two cycle instruction. If the result is not 0 the

program proceeds with the following instruction.

Operation ACC [m]

Skip if [m] = 0

Affected flag(s) None

SZ [m].i Skip if bit i of Data Memory is 0

Description If bit i of the specified Data Memory is 0, the following instruction is skipped. As this re-

quires the insertion of a dummy instruction while the next instruction is fetched, it is a two

cycle instruction. If the result is not 0, the program proceeds with the following instruction.

Operation Skip if [m].i = 0

Affected flag(s) None

TABRDC [m] Read table (current page) to TBLH and Data Memory

Description The low byte of the program code (current page) addressed by the table pointer (TBLP) is

moved to the specified Data Memory and the high byte moved to TBLH.

Operation [m] program code (low byte)

TBLH program code (high byte)

Affected flag(s) None

TABRDL [m] Read table (last page) to TBLH and Data Memory

Description The low byte of the program code (last page) addressed by the table pointer (TBLP) is

moved to the specified Data Memory and the high byte moved to TBLH. Note that this in-

struction is not valid for HT48R05A-1/HT48C05.

Operation [m] program code (low byte)

TBLH program code (high byte)

Affected flag(s) None

Chapter 3 Instruction Definition

63

XOR A,[m] Logical XOR Data Memory to ACC

Description Data in the Accumulator and the specified Data Memory perform a bitwise logical XOR op-

eration. The result is stored in the Accumulator.

Operation ACC ACC 	XOR	 [m]

Affected flag(s) Z

XORM A,[m] Logical XOR ACC to Data Memory

Description Data in the specified Data Memory and the Accumulator perform a bitwise logical XOR op-

eration. The result is stored in the Data Memory.

Operation [m] ACC 	XOR	 [m]

Affected flag(s) Z

XOR A,x Logical XOR immediate data to ACC

Description Data in the Accumulator and the specified immediate data perform a bitwise logical XOR

operation. The result is stored in the Accumulator.

Operation ACC ACC 	XOR	 x

Affected flag(s) Z

64

Cost-Effective I/O Type MCU

C h a p t e r 4

Assembly Language and

Cross Assembler

Assembly-Language programs are written as source files. They can be assembled into object files

by the Holtek Cross Assembler. Object files are combined by the Cross Linker to generate a task

file.

A source program is made up of statements and look up tables, giving directions to the Cross As-

sembler at assembly time or to the processor at run time. Statements are constituted by mnemon-

ics (operations), operands and comments.

Notational Conventions

The following list describes the notations used by this document.

Example of convention Description of convention

[optional items]

Syntax elements that are enclosed by a pair of brackets are

optional. For example, the syntax of the command line is as

follows:

HASM [options] filename [;]

In the above command line, options and semicolon; are both

optional, but filename is required, except for the following

case:

Brackets in the instruction operands. In this case, the brack-

ets refer to memory address.

{choice1 | choice2}

Braces and vertical bars stand for a choice between two or

more items. Braces enclose the choices whereas vertical

bars separate the choices. Only one item can be chosen.

Chapter 4 Assembly Language and Cross Assembler

65

4

Example of convention Description of convention

Repeating elements...

Three dots following an item signify that more items with the

same form may be entered. For example, the directive PUB-

LIC has the following form:

PUBLIC name1 [,name2 [,...]]

In the above form, the three dots following name2 indicate

that many names can be entered as long as each is pre-

ceded by a comma.

Statement Syntax

The construction of each statement is as follows:

[name] [operation] [operands] [;comment]

� All fields are optional.

� Each field (except the comment field) must be separated from other fields by at least one space

or one tab character.

� Fields are not case-sensitive, i.e., lower-case characters are changed to upper-case characters

before processing.

Name

Statements can be assigned labels to enable easy access by other statements. A name consists

of the following characters:

A~Z a~z 0~9 ? _ @

with the following restrictions :

� 0~9 cannot be the first character of a name

� ? cannot stand alone as a name

� Only the first 31 characters are recognized

Operation

The operation defines the statement action of which two types exist, directives and instructions. Di-

rectives give directions to the Cross Assembler, specifying the manner in which the Cross Assem-

bler is to generate the object code at assembly time. Instructions, on the other hand, give

directions to the processor. They are translated to object code at assembly time, the object code in

turn controls the behavior of the processor at run time.

Operand

Operands define the data used by directives and instructions. They can be made up of symbols,

constants, expressions and registers.

66

Cost-Effective I/O Type MCU

Comment

Comments are the descriptions of codes. They are used for documentation only and are ignored

by the Cross Assembler. Any text following a semicolon is considered a comment.

Assembly Directives

Directives give direction to the Cross Assembler, specifying the manner in which the Cross Assem-

bler generates object code at assembly time. Directives can be further classified according to their

behavior as described below.

Conditional Assembly Directives

The conditional block has the following form:

IF

statements

[ELSE

statements]

ENDIF

Syntax

IF expression

IFE expression

� Description

The directives IF and IFE test the expression following them.

The IF directive grants assembly if the value of the expression is true, i.e. non-zero.

The IFE directive grants assembly if the value of the expression is false, i.e. zero.

� Example
IF debugcase

ACC1 equ 5

extern username: byte

ENDIF

In this example, the value of the variable ACC1 is set to 5 and the username is declared as an

external variable if the symbol debugcase is evaluated as true, i.e. nonzero.

Syntax

IFDEF name

IFNDEF name

� Description

The directives IFDEF and IFNDEF test whether or not the given name has been defined. The

IFDEF directive grants assembly only if the name is a label, a variable or a symbol. The IFNDEF di-

rective grants assembly only if the name has not yet been defined. The conditional assembly direc-

tives support a nesting structure, with a maximum nesting level of 7.

� Example
IFDEF buf_flag

buffer DB 20 dup(?)

ENDIF

In this example, the buffer is allocated only if the buf_flag has been previously defined.

Chapter 4 Assembly Language and Cross Assembler

67

File Control Directives

Syntax

INCLUDE file-name

or

INCLUDE �file-name�

� Description

This directive inserts source codes from the source file given by file-name into the current

source file during assembly. Cross Assembler supports at most 7 nesting levels.

� Example
INCLUDE macro.def

In this example, the Cross Assembler inserts the source codes from the file macro.def into the

current source file.

Syntax

PAGE size

� Description

This directive specifies the number of the lines in a page of the program listing file. The page

size must be within the range from 10 to 255, the default page size is 60.

� Example

PAGE 57

This example sets the maximum page size of the listing file to 57 lines.

Syntax

.LIST

.NOLIST

� Description

The directives .LIST and .NOLIST decide whether or not the source program lines are to be

copied to the program listing file. .NOLIST suppresses copying of subsequent source lines to

the program listing file. .LIST restores the copying of subsequent source lines to the program

listing file. The default is .LIST.

� Example

.NOLIST

mov a, 1

mov b1, a

.LIST

In this example, the two instructions in the block enclosed by .NOLIST and .LIST are sup-

pressed from copying to the source listing file.

Syntax

.LISTMACRO

.NOLISTMACRO

� Description

The directive .LISTMACRO causes the Cross Assembler to list all the source statements, in-

cluding comments, in a macro. The directive .NOLISTMACRO suppresses the listing of all macro

expansions. The default is .NOLISTMACRO.

68

Cost-Effective I/O Type MCU

Syntax

.LISTINCLUDE

.NOLISTINCLUDE

� Description

The directive .LISTINCLUDE inserts the contents of all included files into the program listing.

The directive .NOLISTINCLUDE suppresses the addition of included files. The default is

.NOLISTINCLUDE.

Syntax

MESSAGE �text-string�

� Description

The directive MESSAGE directs the Cross Assembler to display the text-string on the

screen. The characters in the text-string must be enclosed by a pair of single quotation

marks.

Syntax

ERRMESSAGE �error-string�

� Description

The directive ERRMESSAGE directs the Cross Assembler to issue an error. The characters in the

error-string must be enclosed by a pair of single quotation marks.

Program Directives

Syntax (comment)

; text

� Description

A comment consists of characters preceded by a semicolon (;) and terminated by an embedded

carriage-return/line-feed.

Syntax

name .SECTION [align] [combine] �class�

� Description

The .SECTION directive marks the beginning of a program section. A program section is a col-

lection of instructions and/or data whose addresses are relative to the section beginning with the

name which defines that section. The name of a section can be unique or be the same as the

name given to other sections in the program. Sections with the same complete names are

treated as the same section.

The optional align type defines the alignment of the given section. It can be one of the follow-

ing:

BYTE uses any byte address (the default align type)

WORD uses any word address

PARA uses a paragraph address

PAGE uses a page address

For the CODE section, the byte address is in a single instruction unit. BYTE aligns the section at

any instruction address, WORD aligns the section at any even instruction address, PARA aligns

the section at any instruction address which is a multiple of 16, and PAGE aligns the section at

any instruction address with a multiple of 256.

Chapter 4 Assembly Language and Cross Assembler

69

For DATA sections, the byte address is in one byte units (8 bits/byte). BYTE aligns the section at

any byte address, WORD aligns the section at any even address, PARA aligns the section at

any address which is a multiple of 16, and PAGE aligns the section at any address which is a

multiple of 256.

The optional combine type defines the way of combining sections having the same complete

name (section and class name). It can be any one of the following:

� COMMON

Creates overlapping sections by placing the start of all sections with the same complete name

at the same address. The length of the resulting area is the length of the longest section.

� AT address

Causes all label and variable addresses defined in a section to be relative to the given ad-

dress. The address can be any valid expression except a forward reference. It is an absolute

address in a specified ROM/RAM bank and must be within the ROM/RAM range.

If no combine type is given, the section is combinative, i.e., this section can be concatenated

with all sections having the same complete name to form a single, contiguous section.

The class type defines the sections that are to be loaded in the contiguous memory. Sections

with the same class name are loaded into the memory one after another. The class name CODE

is used for sections stored in ROM, and the class name DATA is used for sections stored in

RAM. The complete name of a section consists of a section name and a class name. The named

section includes all codes and data below (after) it until the next section is defined.

Syntax

ROMBANK banknum section-name [,section-name,...]

� Description

This directive declares which sections are allocated to the specified ROM bank. The banknum

specifies the ROM bank, ranging from 0 to the maximum bank number of the destination MCU.

The section-name is the name of the section defined previously in the program. More than

one section can be declared in a bank as long as the total size of the sections does not exceed

the bank size of 8K words. If this directive is not declared, bank 0 is assumed and all CODE sec-

tions defined in this program will be in bank 0. If a CODE section is not declared in any ROM

bank, then bank 0 is assumed.

Syntax

RAMBANK banknum section-name [,section-name,...]

� Description

This directive is similar to ROMBANK except that it specifies the RAM bank, the size of RAM bank

is 256 bytes.

Syntax

END

� Description

This directive marks the end of a program. Adding this directive to any included file should be

avoided.

70

Cost-Effective I/O Type MCU

Syntax

ORG expression

� Description

This directive sets the location counter to expression. The subsequent code and data offsets

begin at the new offset specified by expression. The code or data offset is relative to the be-

ginning of the section where the directive ORG is defined. The attribute of a section determines

the actual value of offset, absolute or relative.

� Example
ORG 8

mov A, 1

In this example, the statement mov A, 1 begins at location 8 in the current section.

Syntax

PUBLIC name1 [,name2 [,...]]

EXTERN name1:type [,name2:type [, ...]]

� Description

The PUBLIC directive marks the variable or label specified by a name that is available to other

modules in the program. The EXTERN directive, on the other hand, declares an external vari-

able, label or symbol of the specified name and type. The type can be one of the four types:

BYTE, WORD and BIT (these three types are for data variables), and NEAR (a label type and

used by call or jmp).

� Example
PUBLIC start, setflag

EXTERN tmpbuf:byte

CODE .SECTION �CODE�
start:

mov a, 55h

call setflag

....

setflag proc

mov tmpbuf, a

ret

setflag endp

end

In this example, both the label start and the procedure setflag are declared as public vari-

ables. Programs in other sources may refer to these variables. The variable tmpbuf is also de-

clared as external. There should be a source file defining a byte that is named tmpbuf and is

declared as a public variable.

Chapter 4 Assembly Language and Cross Assembler

71

Syntax

name PROC

name ENDP

� Description

The PROC and ENDP directives mark a block of code which can be called or jumped to from other

modules. The PROC creates a label name which stands for the address of the first instruction of a

procedure. The Cross Assembler will set the value of the label to the current value of the location

counter.

� Example
toggle PROC

mov tmpbuf, a

mov a, 1

xorm a, flag

mov a, tmpbuf

ret

toggle ENDP

Syntax

[label:] DC expression1 [,expression2 [,...]]

� Description

The DC directive stores the value of expression1, expression2 etc., in consecutive mem-

ory locations. This directive is used for the CODE section only. The bit size of the result value is

dependent on the ROM size of the MCU. The Cross Assembler will clear any redundant bits;

expression1 has to be a value or a label. This directive may also be employed to setup the ta-

ble in the code section.

� Example
table1: DC 0128h, 025CH

In this example, the Cross Assembler reserves two units of ROM space and also stores 0128H

and 025CH into these two ROM units.

Data Definition Directives

An assembly language program consists of one or more statements and comments. A statement or

comment is a composition of characters, numbers, and names. The assembly language supports inte-

ger numbers. An integer number is a collection of binary, octal, decimal, or hexadecimal digits along

with an optional radix. If no radix is given, the Cross Assembler uses the default radix (decimal). The ta-

ble lists the digits that can be used with each radix.

Radix Type Digits

B Binary 01

O Octal 01234567

D Decimal 0123456789

H Hexadecimal 0123456789ABCDEF

72

Cost-Effective I/O Type MCU

Syntax

[name] DB value1 [,value2 [, ...]]

[name] DW value1 [,value2 [, ...]]

[name] DBIT

[name] DB repeated-count DUP(?)

[name] DW repeated-count DUP(?)

� Description

These directives reserve the number of bytes/words specified by the repeated-count or reserve

bytes/words only. value1 and value2 should be ? due to the microcontroller RAM. The Cross

Assembler will not initialize the RAM data. DBIT reserves a bit. The content ? denotes

uninitialized data, i.e., reserves the space of the data. The Cross Assembler will gather every 8

DBIT together and reserve a byte for these 8 DBIT variables.

� Example

DATA .SECTION �DATA�
tbuf DB ?

chksum DW ?

flag1 DBIT

sbuf DB ?

cflag DBIT

In this example, the Cross Assembler reserves byte location 0 for tbuf, location 1 and 2 for

chksum, bit 0 of location 3 for flag1, location 4 for sbuf and bit 1 of location 3 for cflag.

Syntax

name LABEL {BIT|BYTE|WORD}

� Description

The name with the data type has the same address as the following data variable

� Example
lab1 LABEL WORD

d1 DB ?

d2 DB ?

In this example, d1 is the low byte of lab1 and d2 is the high byte of lab1.

Syntax

name EQU expression

� Description

The EQU directive creates absolute symbols, aliases, or text symbols by assigning an expres-

sion to name. An absolute symbol is a name standing for a 16-bit value; an alias is a name rep-

resenting another symbol; a text symbol is a name for another combination of characters. The

namemust be unique, i.e. not having been defined previously. The expression can be an inte-

ger, a string constant, an instruction mnemonic, a constant expression, or an address expres-

sion.

� Example
accreg EQU 5

bmove EQU mov

In this example, the variable accreg is equal to 5, and bmove is equal to the instruction mov.

Chapter 4 Assembly Language and Cross Assembler

73

Macro Directives

Macro directives enable a block of source statements to be named, and then that name to be

re-used in the source file to represent the statements. During assembly, the Cross Assembler auto-

matically replaces each occurrence of the macro name with the statements in the macro definition.

A macro can be defined at any place in the source file as long as the definition precedes the first

source line that calls this macro. In the macro definition, the macro to be defined may refer to other

macros which have been previously defined. The Cross Assembler supports a maximum of 7 nest-

ing levels.

Syntax

name MACRO [dummy-parameter [, ...]]
statements
ENDM

The Cross Assembler supports a directive LOCAL for the macro definition.

Syntax

name LOCAL dummy-name [, ...]

� Description

The LOCAL directive defines symbols available only in the defined macro. It must be the first line

following the MACRO directive, if it is present. The dummy-name is a temporary name that is re-

placed by a unique name when the macro is expanded. The Cross Assembler creates a new ac-

tual name for dummy-name each time the macro is expanded. The actual name has the form

??digit, where digit is a hexadecimal number within the range from 0000 to FFFF. A label

should be added to the LOCAL directive when labels are used within the MACRO/ENDM block.

Otherwise, the Cross Assembler will issue an error if this MACRO is referred to more than once in

the source file.

In the following example, tmp1 and tmp2 are both dummy parameters, and are replaced by ac-

tual parameters when calling this macro. label1 and label2 are both declared LOCAL, and

are replaced by ??0000 and ??0001 respectively at the first reference, if no other MACRO is re-

ferred. If no LOCAL declaration takes place, label1 and label2will be referred to labels, simi-

lar to the declaration in the source program. At the second reference of this macro, a multiple

define error message is displayed.

Delay MACRO tmp1, tmp2

LOCAL label1, label2

mov a, 70h

mov tmp1, a

label1:

mov tmp2, a

label2:

clr wdt1

clr wdt2

sdz tmp2

jmp label2

sdz tmp1

jmp label1

ENDM

74

Cost-Effective I/O Type MCU

The following source program refers to the macro Delay ...

The Cross Assembler will expand the macro Delay as shown in the following listing file. Note that

the offset of each line in the macro body, from line 4 to line 17, is 0000. Line 24 is expanded to 11

lines and forms the macro body. In addition the formal parameters, tmp1 and tmp2, are replaced

with the actual parameters, BCnt and SCnt, respectively.

Chapter 4 Assembly Language and Cross Assembler

75

� � � � � � �

� � � � � 	
 � � �
 � � � 	 � � � � � � � � � �

� � � � � � � � �

� � � � � � � � � � � � � � 	
 � � � � 	
 �

� �

� � � � � � 	 � � � � � � � � � ! "

� � � � � � 	 � � � � � � � 	
 � � � �

� � � � � � #

� � � � � � 	 � � � � � � � 	
 � � � �

� � � � � � #

� � � � � � � � � � � � $ % � �

� � � � � � � � � � � � $ % � �

� � � � � � � % & � � � � � 	
 �

� � � � � � ' 	
 � � � � � � � � � �

� � � � � � � % & � � � � � 	
 �

� � � � � � ' 	
 � � � � � � � � � �

� � � � � � () � �

% � � � � � � � � � � � * � + % � � � +

, � * � � % � � -

� � * � � % � � -

� � % � � � � � � � � � * � � � � ! � + � � % � +

� � � � � � , � * � � � � � * �

� * %

. � � � # � � � � � 	 � � � � � � � � � / � � � � 0 � � � � � 1 � � � � 	 � � � � � 2 � � � � * � � � 3 ! � � � � � � 4 � � � � �

� � � � � � ! ! ! ! �

� � � � � � ! ! ! ! � � � � � � � � � � � � � � � � � � � 	
 � � �
 � � � 	 � � � � � � � � � �

� � � 5 � � ! ! ! ! � �

� � � 6 � � ! ! ! ! � 	
 � � � � 	
 �

� � � 7 � � ! ! ! ! �

� � � 8 � � ! ! ! ! � 	 � � � � � � � � � ! "

� � � � � ! ! ! ! � 	 � � � � � � � 	
 � � � �

� � � 3 � � ! ! ! ! � #

� � � 9 � � ! ! ! ! � 	 � � � � � � � 	
 � � � �

� � � ! � � ! ! ! ! � #

� � � � � � ! ! ! ! � � � � � $ % � �

� � � � � � ! ! ! ! � � � � � $ % � �

� � � 5 � � ! ! ! ! � % & � � � � � 	
 �

� � � 6 � � ! ! ! ! � ' 	
 � � � � � � � � � �

� � � 7 � � ! ! ! ! � % & � � � � � 	
 �

� � � 8 � � ! ! ! ! � ' 	
 � � � � � � � � � �

� � � � � ! ! ! ! � () � �

� � � 3 � � ! ! ! !

� � � 9 � � ! ! ! ! � � � � � � � � � � � � � � % � � � � � � � � � � � * � + % � � � +

� � � ! � � ! ! ! ! � � ! ! � � � � � � � � � � , � * � � % � � -

� � � � � � ! ! ! � � � ! ! � � � � � � � � � � � � * � � % � � -

� � � � � � ! ! ! �

� � � 5 � � ! ! ! ! � � � � � � � � � � � � � � � � % � � � � � � � � � * � � � � ! � + � � % � +

� � � 6 � � ! ! ! ! � , � * � � � � � * �

� � � 6 � � ! ! ! ! � � ! . ! � � � � � � � � � � � � � � 	 � � � � � � � � � ! "

� � � 6 � � ! ! ! � � � ! ! 3 ! � � � � � � � � � � � � � � 	 � � � � � � , � * � � � �

� � � 6 � � ! ! ! � � � � � � � � � � � � � � � � - - ! ! ! ! #

� � � 6 � � ! ! ! � � � ! ! 3 ! � � � � � � � � � � � � � � 	 � � � � � � � � * � � � �

� � � 6 � � ! ! ! 5 � � � � � � � � � � � � � � � - - ! ! ! � #

� � � 6 � � ! ! ! 5 � � ! ! ! � � � � � � � � � � � � � � � � � � � � � $ % � �

� � � 6 � � ! ! ! 6 � � ! ! ! 7 � � � � � � � � � � � � � � � � � � � � $ % � �

� � � 6 � � ! ! ! 7 � � � 3 ! � � � � � � � � � � � � � � � % & � � � � � � * �

� � � 6 � � ! ! ! 8 � � � 3 ! 5 � � � � � � � � � � � � � � ' 	
 � � � � - - ! ! ! �

� � � 6 � � ! ! ! � � � 3 ! � � � � � � � � � � � � � � � % & � � � � , � * �

� � � 6 � � ! ! ! 3 � � � 3 ! � � � � � � � � � � � � � � � ' 	
 � � � � - - ! ! ! !

� � � 7 � � ! ! ! 9 � � � � � � � � � � � � � � � * %

� � � � � � � � ! � (� �

Assembly Instructions

The syntax of an instruction has the following form:

[name:] mnemonic [operand1[,operand2]] [;comment]

where

name: � label name

mnemonic � instruction name (keywords)

operand1 � registers

memory address

operand2 � registers

memory address

immediate value

Name

A name is made up of letters, digits, and special characters, and is used as a label.

Mnemonic

Mnemonic is an instruction name dependent upon the type of the MCU used in the source pro-

gram.

Operand, Operator and Expression

Operands (source or destination) are the argument defining values that are to be acted on by in-

structions. They can be constants, variables, registers, expressions or keywords. When using the

instruction statements, care must be taken to select the correct operand type, i.e. source operand

or destination operand. The dollar sign $ is a special operand, namely, the current location oper-

and.

An expression consists of many operands that are combined to describe a value or a memory loca-

tion. The combined operators are evaluated at assembly time. They can contain constants, sym-

bols, or any combination of constants and symbols that are separated by arithmetic operators.

Operators specify the operations to be performed while combining the operands of an expression.

The Cross Assembler provides many operators to combine and evaluate operands. Some opera-

tors work with integer constants, some with memory values, and some with both. Operators han-

dle the calculation of constant values that are known at the assembly time. The following are some

operators provided by the Cross Assembler.

� Arithmetic operators + - * / % (MOD)

� SHL and SHR operators

� Syntax
expression SHR count
expression SHL count

76

Cost-Effective I/O Type MCU

The values of these shift bit operators are all constant values. The expression is shifted right

SHR or left SHL by the number of bits specified by count. If bits are shifted out of position, the

corresponding bits that are shifted in are zero-filled. The following are such examples:
mov A, 01110111b SHR 3 ; result ACC=00001110b

mov A, 01110111b SHL 4 ; result ACC=01110000b

� Bitwise operators NOT, AND, OR, XOR

� Syntax
NOT expression
expression1 AND expression2
expression1 OR expression2
expression1 XOR expression2

NOT is a bitwise complement.

AND is a bitwise AND.

OR is a bitwise inclusive OR.

XOR is a bitwise exclusive OR.

� OFFSET operator

� Syntax
OFFSET expression

The OFFSET operator returns the offset address of an expression. The expression can be

a label, a variable, or other direct memory operand. The value returned by the OFFSET operator

is an immediate operand.

� LOW, MID and HIGH operator

� Syntax
LOW expression
MID expression
HIGH expression

The LOW/MID/HIGH operator returns the value of an expression if the result of the expres-

sion is an immediate value. The LOW/MID/HIGH operators will then take the low/middle/high

byte of this value. But if the expression is a label, the LOW/MID/HIGH operator will take the

values of the low/middle/high byte of the program count of this label.

� BANK operator

� Syntax
BANK name

The BANK operator returns the bank number allocated to the section of the name declared. If the

name is a label then it returns the rom bank number. If the name is a data variable then it returns

the ram bank number. The format of the bank number is the same as the BP defined. For more

information of the format please refer to the data sheets of the corresponding MCUs. (Note: The

format of the BP might be different between MCUs.)

Example 1:

mov A, BANK start
mov BP,A
jmp start

Chapter 4 Assembly Language and Cross Assembler

77

Example 2:

mov A, BANK var
mov BP,A
mov A, OFFSET var
mov MP1,A
mov A,IAR1

� Operator precedence

Precedence Operators

1 (Highest)

2

3

4

5

6

7

8

9 (Lowest)

(), []

+, � (unary), LOW, MID, HIGH, OFFSET, BANK

*, /, %, SHL, SHR

+, � (binary)

> (greater than), >= (greater than or equal to),

< (less than), <= (less than or equal to)

== (equal to), != (not equal to)

! (bitwise NOT)

& (bitwise AND)

|(bitwise OR), ^(bitwise XOR)

Miscellaneous

Forward References
The Cross Assembler allows reference to labels, variable names, and other symbols before they

are declared in the source code (forward named references). But symbols to the right of EQU are

not allowed to be forward referenced.

Local Labels

A local label is a label with a fixed form such as $number. The number can be 0~29. The function of

a local label is the same as a label except that the local label can be used repeatedly. The local la-

bel should be used between any two consecutive labels and the same local label name may used

between other two consecutive labels. The Cross Assembler will transfer every local label into a

unique label before assembling the source file. At most 30 local labels can be defined between two

consecutive labels.

Example.

Label1: ; label

$1: ;; local label

mov a, 1

jmp $3

$2: ;; local label

mov a, 2

jmp $1

$3: ;; local label

jmp $2

Label2: ; label

jmp $1

$0: ;; local label

jmp Label1

$1: jmp $0

Label3:

78

Cost-Effective I/O Type MCU

Reserved Assembly Language Words

The following tables list all reserved words used by the assembly language.

� Reserved Names (directives, operators)

$ DUP INCLUDE NOT

* DW LABEL OFFSET

+ ELSE .LIST OR

� END .LISTINCLUDE ORG

. ENDIF .LISTMACRO PAGE

/ ENDM LOCAL PARA

= ENDP LOW PROC

? EQU MACRO PUBLIC

[] ERRMESSAGE MESSAGE RAMBANK

AND EXTERN MID ROMBANK

BANK HIGH MOD .SECTION

BYTE IF NEAR SHL

DB IFDEF .NOLIST SHR

DBIT IFE .NOLISTINCLUDE WORD

DC IFNDEF .NOLISTMACRO XOR

� Reserved Names (instruction mnemonics)

ADC HALT RLCA SUB

ADCM INC RR SUBM

ADD INCA RRA SWAP

ADDM JMP RRC SWAPA

AND MOV RRCA SZ

ANDM NOP SBC SZA

CALL OR SBCM TABRDC

CLR ORM SDZ TABRDL

CPL RET SDZA XOR

CPLA RETI SET XORM

DAA RL SIZ

DEC RLA SIZA

DECA RLC SNZ

� Reserved Names (registers names)

A WDT WDT1 WDT2

Chapter 4 Assembly Language and Cross Assembler

79

Cross Assembler Options

The Cross Assembler options can be set via the Options menu Project command in HT-IDE3000.

The Cross Assembler Options is located on the center part of the Project Option dialog box.

The symbols could be defined in the Define Symbol edit box.

Syntax

symbol1[=value1] [, symbol2[=value2] [, ...]]

� Example,
debugflag=1, newver=3

The check box of the Generate listing file is used to decide whether the listing file should be gener-

ated or not. If the check box is checked, the listing file will be generated. Otherwise, it won�t be gen-

erated.

Assembly Listing File Format

The Assembly Listing File contains the source program listing and summary information. The first

line of each page is a title line which include company name, the Cross Assembler version num-

ber, source file name, date/time of assembly and page number.

Source Program Listing

Each line in the source program has the following syntax:

line-number offset [code] statement

� Line-number is the number of the line starting from the first statement in the assembly source

file (4 decimal digits).

� The 2nd field � offset � is the offset from the beginning of the current section to the code (4

hexadecimal digits)

� The 3rd field � code � is present only if the statement generates code or data (two hexadecimal

4-digit data)

The code shows the numeric value in hexadecimal if the value is known at assembly time. Oth-

erwise, a proper flag will indicate the action required to compute the value. The following two

flags may appear behind the code field.

R � relocatable address (Cross Linker must resolve)

E � external symbol (Cross Linker must resolve)

The following flag may appear before the code field

= � EQU or equal-sign directive

The following 2 flags may appear in the code field

---- � section address (Cross Linker must resolve)

nn[xx] � DUP expression: nn DUP(?)

� The 4th field � statement � is the source statement shown exactly as it appears in the source

file, or as expanded by a macro. The following flags may appear before a statement.

n � Macro-expansion nesting level

C � line from INCLUDE file

80

Cost-Effective I/O Type MCU

� Summary

l l l l � line number (4 digits, right alignment)

oooo � offset of code (4 digits)

hhhh � two 4-digits for opcode

E � external reference

C � statement from included file

R � relocatable name

n � Macro-expansion nesting level

Summary of Assembly

The total warning number and total error number is the information provided at the end of the

Cross Assembler listing file.

Miscellaneous

If any errors occur during assembly, each error message and error number will appear directly be-

low the statement where the error occurred.

Chapter 4 Assembly Language and Cross Assembler

81

. 3 2 1 0 / 6 7 5 4 . 3 2 1 0 / 6 7 5 4 . 3 2 1 0 / 6 7 5 4 . 3 2 1 0 / 6 7 5 4 . 3 2 1 0 / 6 7 5 4 . 3 2 1 0 / 6 7 5 4
4 . 3 2 1 0 /

' ' '
� � � � � � � � � � � � � � � � � � ((((� � (((($ � � � � � � � # $ � � � � 	 � # �
 	
 � � � �

� &
� � � �

Example of Assembly Listing File

82

Cost-Effective I/O Type MCU

. � � � # � � � � 4 � (� � � � � � � � / � � � � 0 � � � � � 1 � � � � 	 � � � � � 2 � � � � * � � � 3 8 � � � � � � 4 � � � � �

�

�

5

6

7

8

�

�

5

6

7

8

3

9

� !

� �

� �

� 5

� 6

� 7

� 8

�

� 3

� 9

� !

� �

� �

� 5

� 6

� 7

� 8

�

� 3

� 9

5 !

5 �

5 �

5 5

5 5

5 5

5 5

5 5

5 6

5 7

5 8

5

5 3

5 9

6 !

! ! ! !

! ! ! !

! ! ! !

! ! ! !

! ! ! !

! ! ! !

! ! ! !

! ! ! !

! ! ! !

! ! ! !

! ! ! !

! ! ! !

! ! ! !

! ! ! !

! ! ! !

! ! ! !

! ! ! !

! ! ! !

! ! ! !

! ! ! !

! ! ! !

! ! ! !

! ! ! !

! ! ! !

! ! ! !

! ! ! !

! ! ! !

! ! ! !

! ! ! !

! ! ! !

! ! ! �

! ! ! �

! ! ! 5

! ! ! !

! ! ! !

! ! ! �

! ! ! �

! ! ! 5

! ! ! 6

! ! ! 7

! ! ! 7

! ! ! 8

! ! !

! ! !

! ! ! 3

! ! ! 9

! ! ! �

! ! ! ,

! ! ! �

! ! ! �

! ! � !

� � !

�

�

�

�

�

�

�

! !

! !

! !

! . 7 7

! ! 3 !

! ! 3 !

! . � �

! ! 9 5

! . ! !

! ! 9 �

� . � 6

! ! !

! . ! !

! . ! !

� 3 ! !

� � 5 6

� , � �

(� �

 � � � � 8 !

� � � � � � * � � : % �
� � � � � 	 � � �

 �

 � �

 �

 � �

 �

 � �

� ; :

� ; :

� ; :

� ; :

� ; :

� ; :

< � � " =

< � 5 " =

< � 6 " =

< � 7 " =

< � 8 " =

< � " =

> � * � � : % � ? � � 	
 � � � � * � ?

� @ � � *

� @ � � *

� �
 �

� � �
 �

� * % 	

	 � � �

� @ � � � �

� @ � � �

* � �

� � � �

� �
 �

	 � � � � �

	 � � �
 � �

� �
 �

� * % 	

% � � �

� �

� �

� � � �

� � % �

	 � �

	 � �

	 � �

	 � �

	 � �

� �
 �

	 � � � �

	 � �

� �
 �

� �

	 � �

	 � �

	 � �

' 	

7 8 3

(. � �

�

(

(

(

�

(

�

�

�

�

� � � � � � � * � + % � � � +

� % � � -

� % � � -

� % � � �

� � � � � � � * � + � � % � +

� � � ! 7 7 "

� � � � �

� @ � � � � � �

� � � ! � � "

 � � � � �

� � ! ! "

� � � � �

� � � � � * 0 � � @ � � � �

� � � � � � � � � � � @ � � �

� @ � � � �

� � 5 6 " � � 7 8 3 " � � ! � � � % " � � ! � � � � "

	 � � � � � � + � � 	
 � � � 4 � � � 	 � � +

#

#

	 � � �

! ! "
�

< � � " = � � �

< � 6 " =

� * %

% $

P a r t I I I

Development Tools

Part III Development Tools

83

84

Cost-Effective I/O Type MCU

C h a p t e r 5

MCU Programming Tools

To ease the process of application development, the importance and availability of supporting

tools for microcontrollers cannot be underestimated. To support its range of MCUs, Holtek is fully

committed to the development and release of easy to use and fully functional tools for its full range

of devices. The overall development environment is known as the HT-IDE, while the operating soft-

ware is known as the HT-IDE3000. The software provides an extremely user friendly Windows

based approach for program editing and debugging while the HT-ICE emulator hardware provides

full real time emulation with multi functional trace, stepping and breakpoint functions. With a com-

plete set of interface cards for its full device range and regular software Service Pack updates, the

HT-IDE development environment ensures that designers have the best tools to maximize effi-

ciency in the design and release of their microcontroller applications.

HT-IDE Development Environment

The Holtek Integrated Development Environment, otherwise known as the HT-IDE, is a high per-

formance integrated development environment designed around Holtek�s series of 8-bit MCU de-

vices. Incorporated within the system is the hardware and software tools necessary for rapid and

easy development of applications based on the Holtek range of 8-bit MCUs. The key component

within the HT-IDE system is the HT-ICE In-Circuit Emulator, capable of emulating the Holtek 8-bit

MCU in real time, in addition to providing powerful debugging and trace features. The latest ver-

sion of the HT-ICE In-Circuit Emulator also incorporates a complete OTP writer which provides the

user with all the tools required to design, debug and program their OTP devices.

As for the software, the HT-IDE3000 provides a friendly workbench to ease the process of applica-

tion program development, by integrating all of the software tools, such as editor, Cross Assem-

bler, Cross Linker, library and symbolic debugger into a user friendly Windows based

environment. In addition, the HT-IDE3000 provides a software simulator which is capable of simu-

lating the behavior of Holtek�s 8-bit MCU range without connection to the HT-ICE. All fundamental

functions of the HT-ICE hardware are valid for the simulator.

More detailed information on the HT-IDE3000 development system is contained within the

HT-IDE3000 User�s Guide. Installed in conjunction with the HT-IDE3000 and to ensure that the de-

velopment system contains information on new microcontrollers and the latest software updates,

Holtek provides regular HT-IDE3000 Service Packs. These Service Packs, which can be down-

loaded from the Holtek website, do not replace the HT-IDE3000 but are installed after the

HT-IDE3000 system software has been installed.

Chapter 5 MCU Programming Tools

85

5

Some of the special features provided by the HT-IDE3000 include:

Emulation

� Real-time program instruction emulation

Hardware

� Easy installation and usage

� Either internal or external oscillator

� Breakpoint mechanism

� Trace functions and trigger qualification supported by trace emulation chip

� Printer port for connecting the HT-ICE to a host computer

� I/O interface card for connecting the user�s application board to the HT-ICE

� OTP writer hardware integrated within the HT-ICE

Software

� Windows based software utilities

� Source program level debugger (symbolic debugger)

� Workbench for multiple source program files (more than one source program file in one applica-

tion project)

� All tools are included for the development, debug, evaluation and generation of the final applica-

tion program code (mask ROM file and OTP file)

� Library for the setting up of common procedures which can be linked at a later date to other pro-

jects.

� Simulator can simulate and debug programs without connection to the HT-ICE hardware

� Virtual Peripheral Manager (VPM) simulates the behavior of the peripheral devices.

� LCD simulator simulates the behavior of the LCD panel.

Holtek In-Circuit Emulator � HT-ICE

Developed alongside the Holtek 8-bit microcontroller device range, the Holtek ICE is a fully func-

tional in-circuit emulator for Holtek�s 8-bit microcontroller devices. Incorporated within the system

are a comprehensive set of hardware and software tools for rapid and easy development of user

applications. Central to the system is the in-circuit hardware emulator, capable of emulating all of

Holtek�s 8-bit devices in real-time, while also providing a range of powerful debugging and trace fa-

cilities. Regarding software functions, the system incorporates a user-friendly Windows based

workbench which integrates together functions such as program editor, Cross Assembler, Cross

Linker and library manager. In addition, the system is capable of running in software simulation

mode without connection to the HT-ICE hardware.

HT-ICE Interface Card

The interface cards supplied with the HT-ICE can be used for most applications, however, it is pos-

sible for the user to omit the supplied interface card and design their own interface card. By includ-

ing the necessary interface circuitry on their own interface card, the user has a means of directly

connecting their target boards to the CN1 and CN2 connectors of the HT-ICE.

86

Cost-Effective I/O Type MCU

OTP Programmer

Holtek�s OTP devices are fully supported by a range of programmers. For engineering level OTP

device programming, Holtek supplies its stand alone programming tool which provides a quick

and efficient means for low volume OTP programming. The HT-ICE In-Circuit Emulators has inte-

grated a writer as part of the hardware package, facilitating complete design, debug and OTP de-

vice programming all within the HT-ICE. More programmers from other suppliers are available

which provide more efficient and higher volume production capability. Refer to our website for fur-

ther suppliers information.

OTP Adapter Card

The Holtek OTP programmers are supplied with a standard Textool chip socket. The OTP Adapter

Card is used to connect the Holtek OTP programmers to the various sizes of available OTP chip

packages that are unable to use this supplied socket.

System Configuration

The HT-IDE system configuration is shown below, in which the host computer is a Pentium compat-

ible machine with Windows 95/98/NT/2000/XP or later. Note that if Windows NT/2000/XP or later

systems are used, then the HT-IDE3000 software must be installed in the Supervisor Privilege

mode.

The HT-IDE system contains the following hardware components:

� The HT-ICE box contains the emulator box with 1 printer port connector for connecting to the

host machine, I/O signal connector and one power-on LED

� I/O interface card for connecting the target board to the HT-ICE box

� Power Adapter, output 16V

� 25-pin D-type printer cable

� Integrated OTP writer

Chapter 5 MCU Programming Tools

87

� � � �
 � � � � 	 % � �

� � � � � � �
 � �

� � G � � � � � 	 $
 � �

8 � � � 	
 � � � + � >
D � # � � 8

� 	 � � �

+ � 	 � �

8 � � � 	
 � �
; � 	
 � � 	 % � �

� �
 � � & 	 � �
� 	 � �

?

� � 	 � � $ � / � ! & � � 0 � � .

� � 	 � � $ � � � + � � 0 � � .

� : .� : 3

� � � �
 � � � � � �
 � � � �
 � � � . / *

HT-ICE Interface Card Settings

The HT-ICE interface card (CPCB48E000004A) as shown below, is a PCB used to connect the

HT-ICE emulator to the user�s target board. It has the following functions:

� External clock source

� MCU socket pin assignment

The external clock source has two modes, RC and Crystal. If a crystal clock is to be used, posi-

tions 2 and 3 should be shorted on J2 and a suitable crystal inserted into location Y1. Otherwise, if

an RC clock is to be used, positions 1 and 2 should be shorted and the system frequency adjusted

using VR1. Refer to the Tools/Mask Option Menu of the HT-IDE3000 User�s Guide for the clock

source and system frequency selection.

The J1 connector provides the I/O port connections as well as other pins. The DIP switch, SW1,

should be set according to which device is selected and in accordance with the following table:

Part No. Package Socket
SW1

1 2 3 4 5 6 7 8

HT48R05A-1/HT48C05
HT48R06A-1/HT48C06
HT48R08A-1/HT48C08

16SSOP U4

OFF OFF ON OFF ON OFF OFF �
18DIP/SOP U5

HT48R07A-1/HT48C07
HT48R09A-1/HT48C09

24SKDIP/
SOP/SSOP

U1

The pin assignments in locations U1, U4 and U5 are defined so as to match the datasheet pin

assignments. The interface card VME connectors directly interface to the CON1 and CON2 con-

nectors on the HT-ICE.

88

Cost-Effective I/O Type MCU

� �

� �

� �

� �

� �

� �

� �

	 �

 � �

	 �

	 �

� �

� �

� � � �� � � �

Installation

System Requirement

The hardware and software requirements for installing HT-IDE3000 system are as follows:

� PC/AT compatible machine with Pentium or higher CPU

� SVGA color monitor

� At least 32M RAM for best performance

� CD ROM drive (for CD installation)

� At least 20M free disk space

� Parallel port to connect PC and HT-ICE

� Windows 95/98/NT/2000/XP

Windows 95/98/NT/2000/XP are trademarks of Microsoft Corporation.

Hardware Installation

� Step 1

Plug the power adapter into the power connector of the HT-ICE

� Step 2

Connect the target board to the HT-ICE by using the I/O interface card or flat cable

� Step 3

Connect the HT-ICE to the host machine using the printer cable

The LED on the HT-ICE should now be lit, if not, there is an error and your dealer should be con-

tacted.

Caution Exercise care when using the power adapter. Do not use a power adapter whose output voltage is

not 16V, otherwise the HT-ICE may be damaged. It is strongly recommended that only the power

adapter supplied by Holtek be used. First plug the power adapter to the power connector of the

HT-ICE.

Software Installation

� Step1

Insert the HT-IDE3000 CD into the CD ROM drive, the following dialog will be shown.

Chapter 5 MCU Programming Tools

89

Click <HT-IDE3000> button and the following dialog will be shown.

Click <HT-IDE3000> or <Service Pack> as you want.

Here�s an Example of installing HT-IDE3000

Click <HT-IDE3000> button.

� Step 2

Press the <Next> button to continue setup or press <Cancel> button to abort.

90

Cost-Effective I/O Type MCU

� Step 3

The following dialog will be shown to ask the user to enter a directory name.

Chapter 5 MCU Programming Tools

91

� Step 4

Specify the path you want to install the HT-IDE3000 and click <Next> button.

� Step 5

Setup will copy all files to the specified directory.

92

Cost-Effective I/O Type MCU

� Step 6

If the process is successful a dialog will be shown.

� Step 7

Press the Finish button and restart the computer system. Then you can run HT-IDE3000 now.

SETUP will create four subdirectories, BIN, INCLUDE, LIB, SAMPLE, under the destination di-

rectory you specified in Step 4. The BIN subdirectory contains all the system executables

(EXE), dynamic link libraries (DLL) and configuration files (CFG, FMT) for all supported MCU.

The INCLUDE subdirectory contains all the include files (.H, .INC) provided by Holtek. The LIB

subdirectory contains the library files (.LIB) provided by Holtek. The SAMPLE subdirectory con-

tains some sample programs.

Note that before running the HT-IDE3000 for the first time, the system will ask for company infor-

mation as shown in the figure below. Select appropriate area and fill in the company name and

ID. The HT-IDE3000 provider can be requested to supply an ID number.

Chapter 5 MCU Programming Tools

93

94

Cost-Effective I/O Type MCU

C h a p t e r 6

Quick Start

This chapter gives a brief description of using HT-IDE3000 to develop an application project.

Step 1 � Create a New Project

� Click on Project menu and select New command

� Enter your project name and select an MCU from the combo box

� Click OK button and the system will ask you to setup the configuration options

� Setup all configuration options and click Save button

Step 2 � Add Source Program Files to the Project

� Create your source files by using File/New command

� Write your program and save them with a file name, say TEST.ASM

� Click on Project menu and select Edit command

� An Edit Project dialog will ask you to add/delete files to/from the project

� Select a source file name, say TEST.ASM, and click Add button

� Click OK button after you setup all files in the project

Step 3 � Build the Project

� Click on Project menu and select Build command

� The system will assemble/compile all source files in the project

� If there are some errors in the programs, double click on the error message line and the sys-

tem will prompt you the position where the error happened.

� If all the program files are error free, the system will create a Task file and download to the

HT-ICE for debug.

� You may repeat this step before you finish debugging your programs

Step 4 � Programming the OTP Device

� Build the project for creating the .OTP file

� Click on Tools menu and select the Writer command to program the OTP devices

Chapter 6 Quick Start

95

6

Step 5 � Transmit Code to Holtek

� Click on Project menu and select Print Option Table command

� Send the .COD file and the Option Approval Sheet to Holtek

The Programming and data flow is illustrated by the following diagram:

96

Cost-Effective I/O Type MCU

1 � (� 1 � � �

1 � 1 �

� � � P � �
 � �
� � � � � % � � � � � � $ � � �

1 / � �

1 2 � �

� � � P � �
 � �
+ � � � � �
� � % � � � � � � � �
. ' � � � � � � % � � � � � � $ � � �
3 ' � ! � � " � �
2 ' � ! � 	 � � �
1 ' � � � � � � � � � � � 	
 � �

1 � 3 4

� � � � � � �
! � % � 	 � � � 	 � 	 � � �

1 2 � 3

! � � " � �
� � � 	
 � � � 	 � " � ; � � �

1 � � �

1 � 3 5

� � % � � � �
� �
� � �
 � � � � � � � �
O � � $ �
 � � � � � � � �
�
 � $ � � � 	 � � � �
 � $
� � � �

� � G � � # � � � � � � �

� � � �
 � � � 	 � �
�
 � $ � � �
 � � � - � � � � �

�
 � $ $ � � �

! � 	 � � �
� � G � � � 	 � �
 � � � � 8

� � � � � � � � � � 	
 � �

1 � � �

1 � � �
� � � � � � �

� 	 � " � � $
 � � �

1 � / 5

1 � � �1 � � �
� � � � � � �

� � � �
 � � $
 � � � � � 	 % � �
� � � � � � �

D 	 � � � � �
 � �

� $
 � � �
� $ $ � � - 	 � � � (� �

� � �
� � �

� + � 6
� � �� ! * � � 6

Appendix

Appendix

97

98

Cost-Effective I/O Type MCU

A p p e n d i x A

Device Characteristic Graphics

The following characteristic graphics depicts typical device behavior. The data presented here is a

statistical summary of data gathered on units from different lots over a period of time. This is for in-

formation only and the figures were not tested during manufacturing.

In some of the graphs, the data exceeding the specified operating range are shown for information

purposes only. The device will operate properly only within the specified range.

Appendix A Device Characteristic Graphics

99

A

Typical RC OSC vs. Temperature

Typical RC Oscillator Frequency vs. VDD

100

Cost-Effective I/O Type MCU

� K 3 1 " �

� K 2 4 " �

� K 2 / " �

� K 0 / " �

� K . 4 4 " �

� K 3 4 4 " �

� K 0 . 4 " �

. 4

5

7

6

/

0

1

2

3

.

4
3 ' 1 3 ' / 3 ' 7 2 2 ' 3 2 ' 1 2 ' / 2 ' 7 1 1 ' 3 1 ' 1 1 ' / 1 ' 7 0 0 ' 3 0 ' 1 0 ' / 0 ' 7 /3 ' 3

& �
@
�
�<
�
D
,
=

* � � � < * � �
 � =

� � < � � =

&�
�
�

&�
�
�
�<
3
0
� �

=

4 ' 5 6

4 ' 5 6 0

4 ' 5 7

4 ' 5 7 0

4 ' 5 5

4 ' 5 5 0

.

. ' 4 4 0

. ' 4 .

. ' 4 . 0

. ' 4 3

. ' 4 3 0

/ 4 # 1 4 # 3 4 4 3 4 1 4 / 4 7 4 . 4 4

* � � K 0 *

* � � K 2 *

* � � K 2 *

* � � K 0 *

IOH vs. VOH, VDD=3V

IOH vs. VOH, VDD=5V

Appendix A Device Characteristic Graphics

101

��
D
�<
�
�
=

* � D � < * � �
 � =

7 0 � �

3 0 � �

4 � �

1 4 � �

4

. 4

3 4

2 4

1 4

0 4

/ 4

6 4

7 4

5 4

3 ' 0 2 2 ' 0 1 1 ' 0 0

��
D
�<
�
�
=

4

0

. 4

. 0

3 4

3 0

2 4

2 0

1 4

. ' 0 . ' 7 3 ' . 3 ' 1 3 ' 6 2

7 0 � �

3 0 � �

4 � �

1 4 � �

* � D � < * � �
 � =

IOL vs. VOL, VDD=3V

IOL vs. VOL, VDD=5V

102

Cost-Effective I/O Type MCU

��
!
�<
�
�
=

* � ! � < * � �
 � =

7 0 � �

3 0 � �

1 4 � �

4 � �

6 4

/ 4

0 4

1 4

2 4

3 4

. 4

4

7 4

4 4 ' 2 4 ' / 4 ' 5 . ' 3 . ' 0

��
!
�<
�
�
=

* � ! � < * � �
 � =

. 1 4

. 3 4

. 4 4

7 4

/ 4

1 4

3 4

4

4 4 ' 0 . . ' 0 3 3 ' 0

7 0 � �

3 0 � �

1 4 � �

4 � �

Typical RPH vs. VDD

Typical VIH, VIL vs. VDD in -40�C to +85�C

Appendix A Device Characteristic Graphics

103

7 0 � �
3 0 � �
4 � �
1 4 � �

. 3 4

. . 4

. 4 4

5 4

7 4

6 4

/ 4

0 4

1 4

2 4

3 4

. 4

4
3 ' 1 3 ' / 3 ' 7 2 2 ' 3 2 ' 1 2 ' / 2 ' 7 1 1 ' 3 1 ' 1 1 ' / 1 ' 7 0 0 ' 3 0 ' 1 0 ' / 0 ' 7 /3 ' 3

�
�
D
�<
"
�
=

* � � � < * � �
 � =

3

3 ' 1 3 ' / 3 ' 7 2 2 ' 3 2 ' 1 2 ' / 2 ' 7 1 1 ' 3 1 ' 1 1 ' / 1 ' 7 0 0 ' 3 0 ' 1 0 ' / 0 ' 7 /3 ' 33

1

2 ' 0

2

3 ' 0

3

. ' 0

.

4 ' 0

4

*
�D
B�
*
�!
�<
*
�
�

�
=

* � � � < * � �
 � =

* � D � < � 	 > ' =

* � D � < � � � ' =

* � ! � < � 	 > ' =

* � ! � < � � � ' =

Typical ISTB vs. VDD Watchdog Enable

Typical tWDTOSC vs. VDD

104

Cost-Effective I/O Type MCU

7 0 � �

3 0 � �
4 � �

1 4 � �

5

7

6

/

0

1

2

3

.

4
3 ' 1 3 ' / 3 ' 7 2 2 ' 3 2 ' 1 2 ' / 2 ' 7 1 1 ' 3 1 ' 1 1 ' / 1 ' 7 0 0 ' 3 0 ' 1 0 ' / 0 ' 7 /3 ' 33

� �
�
+
�<
�
�
=

* � � � < * � �
 � =

3 ' 1 3 ' / 3 ' 7 2 2 ' 3 2 ' 1 2 ' / 2 ' 7 1 1 ' 3 1 ' 1 1 ' / 1 ' 7 0 0 ' 3 0 ' 1 0 ' / 0 ' 7 /3 ' 33

7 0 � �

3 0 � �

4 � �

1 4 � �

. / 4

. 0 4

. 1 4

. 2 4

. 3 4

. . 4

. 4 4

5 4

7 4

6 4

/ 4

0 4

1 4

 �
�
�
�
�
�
�<
�
�
=

* � � � < * � �
 � =

Typical IDD vs. Frequency (External Clock, Ta=-40�C)

Typical IDD vs. Frequency (External Clock, Ta=0�C)

Appendix A Device Characteristic Graphics

105

4 0 4 4 4 . 4 4 4 4 . 0 4 4 4 3 4 4 4 4

7

6

/

0

1

2

3

.

4

3 ' 1 *
3 ' 3 *

2 ' 2 *
2 *

0 *

1 *

/ *

0 ' 0 *

� �
�
�<
�
�
=

; � 8 I 8 : � @ � < " D , =

��
�
�<
�
�
=

; � 8 I 8 : � @ � < " D , =

4 0 4 4 4 . 4 4 4 4 . 0 4 4 4 3 4 4 4 4

7

6

/

0

1

2

3

.

4

/ *

0 ' 0 *

2 ' 2 *
2 *

0 *

1 *

3 ' 1 *
3 ' 3 *

Typical IDD vs. Frequency (External Clock, Ta=+25�C)

Typical IDD vs. Frequency (External Clock, Ta=+85�C)

106

Cost-Effective I/O Type MCU

� �
�
�<
�
�
=

; � 8 I 8 : � @ � < " D , =

4 0 4 4 4 . 4 4 4 4 . 0 4 4 4 3 4 4 4 4

7

6

/

0

1

2

3

.

4

/ *

0 ' 0 *

2 ' 2 *
2 *

0 *

1 *

3 ' 1 *
3 ' 3 *

� �
�
�<
�
�
=

; � 8 I 8 : � @ � < " D , =

4 0 4 4 4 . 4 4 4 4 . 0 4 4 4 3 4 4 4 4

7

6

/

0

1

2

3

.

4

/ *

0 ' 0 *

2 ' 2 *
2 *

0 *

1 *

3 ' 1 *
3 ' 3 *

Typical VLVR vs. Temperature

Appendix A Device Characteristic Graphics

107

/ 4 # 1 4 # 3 4 4 3 4 1 4 / 4 7 4 . 4 4

*
!
*
�
�<
*
�
�

�
=

� � < � � =

. 3 4

2 ' /

2 ' 0

2 ' 1

2 ' 2

2 ' 3

2 ' .

2 ' 4

3 ' 5

3 ' 7

3 ' 6

3 ' /

3 ' 0

3 ' 1

108

Cost-Effective I/O Type MCU

A p p e n d i x B

Package Information

Appendix B Package Information

109

B

16-pin SSOP (150mil) Outline Dimensions

Symbol
Dimensions in mil

Min. Nom. Max.

A 228
 244

B 150
 157

C 8
 12

C� 189
 197

D 54
 60

E
 25

F 4
 10

G 22
 28

H 7
 10

� 0�
 8�

110

Cost-Effective I/O Type MCU

. /

.

5

7

� +

�

�

8 ;

� �
�

D

�

18-pin DIP (300mil) Outline Dimensions

Symbol
Dimensions in mil

Min. Nom. Max.

A 895
 915

B 240
 260

C 125
 135

D 125
 145

E 16
 20

F 50
 70

G
 100

H 295
 315

I 335
 375

� 0�
 15�

Appendix B Package Information

111

. 7

.

. 4

5

�

�

+

�

�

8

;

�

D

�

18-pin SOP (300mil) Outline Dimensions

Symbol
Dimensions in mil

Min. Nom. Max.

A 394
 419

B 290
 300

C 14
 20

C� 447
 460

D 92
 104

E
 50

F 4

G 32
 38

H 4
 12

� 0�
 10�

112

Cost-Effective I/O Type MCU

. 7

.

. 4

5

� +

�

�

8 ;

�

D

�

� �

24-pin SKDIP (300mil) Outline Dimensions

Symbol
Dimensions in mil

Min. Nom. Max.

A 1235
 1265

B 255
 265

C 125
 135

D 125
 145

E 16
 20

F 50
 70

G
 100

H 295
 315

I 345
 360

� 0�
 15�

Appendix B Package Information

113

3 1

.

. 2

. 3

�

�

+

�

�

8 ; �

D

�

24-pin SOP (300mil) Outline Dimensions

Symbol
Dimensions in mil

Min. Nom. Max.

A 394
 419

B 290
 300

C 14
 20

C� 590
 614

D 92
 104

E
 50

F 4

G 32
 38

H 4
 12

� 0�
 10�

114

Cost-Effective I/O Type MCU

3 1

.

. 2

. 3

� +

�

�

8 ;

� �
�

D

�

24-pin SSOP (150mil) Outline Dimensions

Symbol
Dimensions in mil

Min. Nom. Max.

A 228
 244

B 150
 157

C 8
 12

C� 335
 346

D 54
 60

E
 25

F 4
 10

G 22
 28

H 7
 10

� 0�
 8�

Appendix B Package Information

115

3 1

.

. 2

. 3

� +

�

�

8 ;

� �
�

D

�

116

Cost-Effective I/O Type MCU

Headquarters & Subsidiaries

Copyright � 2006 by HOLTEK SEMICONDUCTOR INC.

The information appearing in this Handbook is believed to be accurate at the time of publication. However, Holtek assumes
no responsibility arising from the use of the specifications described. The applications mentioned herein are used solely for
the purpose of illustration and Holtek makes no warranty or representation that such applications will be suitable without
further modification, nor recommends the use of its products for application that may present a risk to human life due to

malfunction or otherwise. Holtek�s products are not authorized for use as critical components in life support devices or sys-
tems. Holtek reserves the right to alter its products without prior notification. For the most up-to-date information, please
visit our web site at http://www.holtek.com.tw.

Holtek Semiconductor Inc. (Headquarters)
No.3, Creation Rd. II, Science Park, Hsinchu, Taiwan
Tel: 886-3-563-1999
Fax: 886-3-563-1189
http://www.holtek.com.tw

Holtek Semiconductor Inc. (Taipei Sales Office)
4F-2, No. 3-2, YuanQu St., Nankang Software Park, Taipei 115, Taiwan
Tel: 886-2-2655-7070
Fax: 886-2-2655-7373
Fax: 886-2-2655-7383 (International sales hotline)

Holtek Semiconductor Inc. (Shanghai Sales Office)
7th Floor, Building 2, No.889, Yi Shan Rd., Shanghai, China 200233
Tel: 021-6485-5560
Fax: 021-6485-0313
http://www.holtek.com.cn

Holtek Semiconductor Inc. (Shenzhen Sales Office)
5/F, Unit A, Productivity Building, Cross of Science M 3rd Road and Gaoxin M 2nd Road, Science Park, Nanshan District,
Shenzhen, China 518057
Tel: 0755-8616-9908, 8616-9308
Fax: 0755-8616-9533

Holtek Semiconductor Inc. (Beijing Sales Office)
Suite 1721, Jinyu Tower, A129 West Xuan Wu Men Street, Xicheng District, Beijing, China 100031
Tel: 010-6641-0030, 6641-7751, 6641-7752
Fax: 010-6641-0125

Holtek Semiconductor Inc. (Chengdu Sales Office)
709, Building 3, Champagne Plaza, No.97 Dongda Street, Chengdu, Sichuan, China 610016
Tel: 028-6653-6590
Fax: 028-6653-6591

Holmate Semiconductor, Inc. (North America Sales Office)
46729 Fremont Blvd., Fremont, CA 94538
Tel: 510-252-9880
Fax: 510-252-9885
http://www.holmate.com

Amendments

	Contents
	Preface
	Part I
Microcontroller Profile
	Chapter 1
Hardware Structure
	Introduction
	Features
	Selection Table
	Block Diagram
	Pin Assignment
	Pin Description
	Absolute Maximum Ratings
	D.C. Characteristics
	A.C. Characteristics
	System Architecture
	Program Memory
	Data Memory
	Special Function Registers
	Input/Output Ports
	Timer/Event Counters
	Interrupts
	Reset and Initialization
	Oscillator
	Power Down Mode and Wake-up
	Watchdog Timer
	Configuration Options
	Application Circuits

	Part II
Programming Language
	Chapter 2
Instruction Set Introduction
	Instruction Set
	Instruction Set Summary

	Chapter 3
Instruction Definition
	Chapter 4
Assembly Language and
Cross Assembler
	Notational Conventions
	Statement Syntax
	Assembly Directives
	Assembly Instructions
	Miscellaneous
	Cross Assembler Options
	Assembly Listing File Format

	Part III
Development Tools
	Chapter 5
MCU Programming Tools
	HT-IDE Development Environment
	Holtek In-Circuit Emulator -- HT-ICE
	System Configuration
	Installation

	Chapter 6
Quick Start

	Appendix
	Appendix A
Device Characteristic Graphics
	Appendix B
Package Information

