EPSON

S1D13705 Embedded Memory LCD Controller

Programming Notes and Examples

Document Number: X27A-G-002-03

Copyright © 2001, 2002 Epson Research and Development, Inc. All Rights Reserved.

Information in this document is subject to change without notice.You may download and use this document, but only for your own use in
evaluating Seiko Epson/EPSON products. You may not modify the document. Epson Research and Development, Inc. disclaims any
representation that the contents of this document are accurate or current. The Programs/Technologies described in this document may contain
material protected under U.S. and/or International Patent laws.

EPSON is a registered trademark of Seiko Epson Corporation. All other Trademarks are the property of their respective owners

Page 2 Epson Research and Development
Vancouver Design Center

THIS PAGE LEFT BLANK

S1D13705 Programming Notes and Examples
X27A-G-002-03 Issue Date: 02/01/22

Issue Date: 02/01/22

Epson Research and Development Page 3
Vancouver Design Center
Table of Contents
Introduction e e e e e e e e 7
Initialization e e e e e e e e 8
2.1 Display Buffer Location .8
2.2 Register Values . .8
2.3 Frame Rate Calculation . .9
Memory Models e e e e 12
3.1 1Bit-Per-Pixel (2 Colors/Gray Shades) 12
3.2 2Bit-Per-Pixel (4 Colors/Gray Shades) . 13
3.3 4Bit-Per-Pixd (16 Colors/Gray Shades) . 13
3.4 Eight Bit-Per-Pixel (256 Colors) . . . 14
Look-Up Table (LUT) e e e e e 15
4.1 Look-Up Table Registers . 16
4.2 Look-Up Table Organization e e e 17
421 ColorModes. e e e 17
422 GrayShadeModes 22
Advanced Techniques e e e 25
5.1 Virtual Display . . 25
511 RegiSES. e e e e e e 26
512 EXamples e e 26
5.2 Panning and Scrolling e e e e e 27
521 RegiStES e e e 28
522 EXamples e e e 29
5.3 Split Screen 31
531 RegISES. e e e 32
532 EXamples e e 34
LCD Power Sequencing and Power Save Modes 35
6.1 LCD Power Sequencing . 35
6.2 Registers Co . 35
6.3 LCD Enable/Disable . . 36
Hardware Rotation e 37
7.1 Introduction To Hardware Rotation . .37
7.2 Default Portrait Mode . 37
7.3 Alternate Portrait Mode 39
74 Registers . 40
7.5 Limitations 42
7.6 Examples . . 43
Programming Notes and Examples S1D13705

X27A-G-002-03

Page 4 Epson Research and Development
Vancouver Design Center

8 Identifying the SID13705 e e e a7
9 Hardware Abstraction Layer (HAL) 48
9.1 Introduction P 21

9.2 ContentsoftheHALSTRUCT........................48
9.3 UsingtheHAL library4
94 APIfor13705HAL9

9.4.1 Initidization e 51
9.4.2 Genera HAL Support e 52
943 AdvancedHAL Functions 55
9.4.4 Register/ MeMOry ACCESS . . .« v v v o e e e e e e e e e e 58
945 POWErSaVe e 60
94.6 Drawing e 61
9.4.7 LUT Manipulation e e e e 62
9.5 Porting LIBSE to anew target platform e 7
9.5.1 Building the LIBSE library for SH3 target example 65
9.5.2 Buildingthe HAL library forthetargetexample 65

10 Sample Code e e e e 66

10.1 Sample codeusing the SID13705HAL AP66
10.2 Sample code without using the SID13705HALAPI68
10.3 Header Files. LT

S1D13705 Programming Notes and Examples
X27A-G-002-03 Issue Date: 02/01/22

Epson Research and Development Page 5
Vancouver Design Center
List of Tables
Table2-1: S1D13705 Initidlization Sequence 9
Table4-1: Recommended LUT Valuesfor 1BppColorMode. 17
Table4-2: Example LUT Valuesfor2BppColorMode 18
Table4-3: Suggested LUT Valuesto Simulate VGA Default 16 Color Palette 19
Table4-4: Suggested LUT Valuesto Simulate VGA Default 256 Color Palette 20
Table4-5; Recommended LUT Valuesfor 1BppGrayShade 22
Table4-6: Suggested Valuesfor 2Bpp Gray Shade 23
Table4-7: Suggested LUT Vauesfor4BppGray Shade 24
Table5-1: Number of PixelsPanned Using Start Address 28
Table 7-1: Default and Alternate Portrait Mode Comparison 42
Table9-1: HAL Functions e 49
List of Figures
Figure 3-1: Pixel Storagefor 1 Bpp (2 Colors/Gray Shades) in One Byte of Display Buffer 12
Figure 3-2: Pixel Storagefor 2 Bpp (4 Colors/Gray Shades) in One Byte of Display Buffer 13
Figure 3-3: Pixel Storage for 4 Bpp (16 Colors/Gray Shades) in One Byte of Display Buffer13
Figure 3-4: Pixel Storage for 8 Bpp (256 Colors) in One Byte of Display Buffer 14
Figure5-1: ViewportinsideaVirtua Display 25
Figure5-2: 320x240 Single Panel For SplitScreen 31
Figure 7-1: Relationship Between the Default Mode Screen Image and the Image
Refreshed by S1D13705 38
Figure 7-2: Relationship Between the Alternate M ode Screen Image and the Image
Refreshed by SID13705 o o 39
Programming Notes and Examples S1D13705

Issue Date: 02/01/22

X27A-G-002-03

Page 6 Epson Research and Development
Vancouver Design Center

THIS PAGE LEFT BLANK

S1D13705 Programming Notes and Examples
X27A-G-002-03 Issue Date: 02/01/22

Epson Research and Development Page 7
Vancouver Design Center

1 Introduction

This guide demonstrates how to program the S1D13705 Embedded Memory Color LCD
Controller. The guide presents the basic concepts of the LCD controller and provides
methodsto directly program theregisters. It explains some of the advanced techniques used
and the special features of the S1D13705.

The guide aso introduces the Hardware Abstraction Layer (HAL), which is designed to
make programming the S1D13705 as easy as possible. Future S1D1370x products will
support the HAL allowing OEM s the ability to upgrade to future chips with relative ease.

Programming Notes and Examples S1D13705
Issue Date: 02/01/22 X27A-G-002-03

Page 8

Epson Research and Development
Vancouver Design Center

2 Initialization

Prior to doing anything else with the S1D13705 the controller must be initialized. Initial-
ization isthe process of setting up the control registersto aknown state in order to generate
proper display signals.

2.1 Display Buffer Location

Before we can perform the initialization we have to know where to find the S1D13705
display memory and control registers.

The S1D 13705 contains 80 kilobytes of internal display memory. External support logic
must be employed to decode the starting address for this display memory in CPU address
space. On the S5U13705B00x PC platform evaluation boards the addressis usualy fixed
at FO0000h. Alternatively the address can be set to DOOOOh.

The control registers are located by adding 1FFEOh (128 Kb less 32 bytes) to the base
memory address. Thus, on the typical PC platform, we access control register O at address
F1FFEOh. Control register 5 would be located at address FIFFES, etc.

2.2 Register Values

This section describes the register settings and sequence of setting theregisters. In addition
to these setting the L ook-Up Table must be programmed with appropriate colors. Look-Up
Table setupisnot covered here. See Section 4 on page 15 of thismanual for Look-Up Table
programming details.

Thefollowing initialization, presented in table form, shows the sequences and valuesto set
the registers. The notes column comments the reason for the particular value being written.

Thisexamplewritesto all the necessary registers. Initially, when the S1D13705 is powered
up, all registers, unless noted otherwise in the specification, are set to zero. This example
programs these registers to zero to establish aknown state. In practice, it may be possible
to write to only a subset of the registers.

The exampleinitializes a S1D13705 to control a panel with the following specifications:

320x240 color single passive LCD panel at 70Hz.
¢ Color Format 2, 8-bit data interface.

8 bit-per-pixel (256 colors).

¢ 6 MHz input clock (CLKI).

S1D13705
X27A-G-002-03

Programming Notes and Examples
Issue Date: 02/01/22

Epson Research and Development
Vancouver Design Center

Page 9

Table 2-1: S1D13705 Initialization Sequence

Register Value (hex) Notes See Also
[01] 0010 0011 (23) |Select a passive, Single, Color panel with an 8-bit data width
[02] 1100 0000 (C0O) |Select 8-bit per pixel color depth
[03] 0000 0011 (03) |Select normal power operation
[04] 0010 0111 (27) |Horizontal display size = (Reg[04]+1)*8 = (39+1) * 8 = 320 pixels
(03] 1110 1111 (EF) |Vertical display size = Reg[06][05] + 1
[06] 0000 0000 (00) |=0000 00001110 1111 +1 =239 +1 =240 lines
[07] 0000 0000 (00) |FPLINE start position (only required for TFT configuration)
- — P "
[08] | 00000000 (00) |HOrnizontal non-display period = (Reg[08] + 4) * 8 Frame Rate Calculation
=4*8 = 32 pixels

[09] 0000 0000 (00) |FPFRAME start position (only required for TFT configuration)
[0A] 0000 0011 (03) |Vertical non-display period = REG[0A] = 3 lines Frame Rate Calculation
[0B] 0000 0000 (00) |MOD rate is only required by some monochrome panels
[0C] 0000 0000 (00) L)

Screen 1 Start Address - set to O for initialization Split Screen on page 31
[0D] 0000 0000 (00)
[OE] 0000 0000 (00) L)

Screen 2 Start Address - set to O for initialization Split Screen on page 31
[OF] 0000 0000 (00)
[10] 0000 0000 (00) |Screen 1/ Screen 2 Start Address MSB - set to 0
[11] 0000 0000 (00) |Memory Address offset - not virtual setup - so set to 0 Virtual Display on page 25
[12] 1111 1111 (FF)))))

Set the vertical size to the maximum value. Split Screen on page 31
[13] 0000 0011 (03)
15 .
[15] Leave the LUT alone for now Look-Up Table (LUT) on
[17] page 15
[18] 0000 0000 (00))

GPIO control and status registers - set to “0".
[19] 0000 0000 (00)
[1A] 0000 0000 (00) |Set the scratch pad bits to “0”.
[1B] 0000 0000 (00) |This is not portrait mode so set this register to “0”. Introduction To Hardware
[1C] 0000 0000 (00) |Line Byte Count is only required for portrait mode. Rotation on page 37

2.3 Frame Rate Calculation

Frame rate specifies the number of complete frame which are drawn on the display in one
second. Configuring aframe rate that istoo high or too low adversely effectsthe quality of
the displayed image.

System configuration imposes certain non-variable limitations. For instance the width and
height of the display panel arefixed asis, typically, theinput clock to the S1D13705. From
the following formulait is evident that the two variables the programmer can use to adjust
frame rate are horizontal and vertical non-display periods.

Programming Notes and Examples

Issue Date: 02/01/22

S1D13705
X27A-G-002-03

Page 10 Epson Research and Development
Vancouver Design Center
Thefollowing are the formulae for determining the frame rate of a panel. The formulafor
asingle passive or TFT panel is calculated as follows:
FrameRate = PCLK
(HDP+ HNDP) x (VDP + VNDP)
for adual passive panel the formulais:
FrameRate = PCLK
2 x (HDP+ HNDP)xBVgP+VNDF%
where: PCLK = Pixel clock (in Hz)
HDP = Horizontal Display Period (in pixels)
HNDP = Horizontal Non-Display Period (in pixels)
VDP = Vertical Display Period (in lines)
VNDP = Vertical Non-Display Period (in lines)
In addition to varying the HNDP and VNDP times we can also select divider values which
will reduce CLKi to one half, one quarter up to one eight of the CLKi value. The example
below isaportion of a’C’ routineto calculate HNDP and VNDP from a desired frame rate.
for (int loop = 0; loop < 2; |oop++)
{
for (VNDP = 2; VNDP < Ox3F; VNDP += 3)
{
/1 Solve for HNDP
HNDP = (PCLK / (FrameRate * (VDP + VNDP))) - HDP;
if ((HNDP >= 32) && (HNDP <= 280))
{
/1 Solve for VNDP.
VNDP = (PCLK / (FrameRate * (HDP + HNDP))) - VDP;
/1 1f we have satisfied VNDP then we're done.
if ((VNDP >= 0) && (VNDP <= O0x3F))
got o DoneCal c;
}
}
/1 Divide Akl and try again.
/1 (Reg[02] allows us to dived CLKI by 2)
PCLK /= 2;
}
// If we still can't hit the frame rate - throw an error.
if ((VNDP < 0) || (VNDP > Ox3F) || (HNDP < 32) || (HNDP > 280))
{
sprintf("ERROR: Unable to set the desired frame rate.\n");
exit(1);
}
S1D13705 Programming Notes and Examples

X27A-G-002-03 Issue Date: 02/01/22

Epson Research and Development

Vancouver Design Center

Page 11

Thisroutinefirst performsaformularearrangement so that HNDP or VNDP can be solved.
Start with VNDP set to asmall value. Loop increasing VNDP and solving the equation for
HNDP until satisfactory HNDP and VNDP values are found. If no satisfactory values are

found then divide CLKI and repeat the process. If a satisfactory frame rate still can’t be
reached - return an error.

Note
Most passive (STN) panels are tolerant of nearly any combination of HNDP and VNDP
values, however panel specifications generally specify only afew lines of vertical non-
display period. The S1D13705 is capable of generating a vertical non-display period of
up to sixty-three lines. Thisamount of VNDP isfar too great a non-display period and

will likely degrade display quality. Similarly, setting alarge HNDP vaue may cause a
degrade in image quality.

If possible the system should be designed such that VNDP vaues of 7 or less lines and
HNDP values of 20 or less characters can be sel ected.

Programming Notes and Examples

Issue Date: 02/01/22

S1D13705
X27A-G-002-03

Page 12

Epson Research and Development
Vancouver Design Center

3 Memory Models

The S1D13705 is capable of operating at four different color depths. For each color depth
the dataformat is packed pixel. S1D13705 packed pixel modes can range from one byte
containing eight adjacent pixels (1-bpp) to one byte containing just one pixel (8-bpp).

Packed pixel datamay be envisioned asastream of pixels. Inthisstream, pixelsare packed
in adjacent to each other. If apixel requiresfour bitsthen it will be located in the four most
significant bits of abyte. The pixel to the immediate right on the display will occupy the
lower four bits of the same byte. The next two pixelsto the immediate right are located in
the following byte, etc.

3.1 1 Bit-Per-Pixel (2 Colors/Gray Shades)

1-bit pixels support two color/gray shades. In this memory format each byte of display
buffer contains eight adjacent pixels. Setting or resetting any pixel requires reading the
entire byte, masking out appropriate bits and, if necessary, setting bitsto “1”.

When using a color panel the two colors are derived by indexing into positions 0 and 1 of
the Look-Up Table. If thefirst two LUT elements are set to black (RGB = 0 0 0) and white
(RGB = F F F) then each “0” bit of display memory will display asablack pixel and each
“1" bit will display as awhite pixel. Thetwo LUT entries can be set to any desired colors,
for instance red and green or cyan and yellow.

For monochrome panels the two displayed gray shades are generated by indexing into the
first two elements of the green component of the Look-Up Table (LUT). Thus, by manip-
ulating thegreen LUT componentswe can set either of thetwo gray shadesto any of sixteen
possible levels.

Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
Pixel O Pixel 1 Pixel 2 Pixel 3 Pixel 4 Pixel 5 Pixel 6 Pixel 7
Figure 3-1: Pixel Sorage for 1 Bpp (2 Colors/Gray Shades) in One Byte of Display Buffer
S1D13705 Programming Notes and Examples

X27A-G-002-03

Issue Date: 02/01/22

Epson Research and Development

Vancouver Design Center

Page 13

3.2 2 Bit-Per-Pixel (4 Colors/Gray Shades)

2-hit pixels support four color/gray shades. In this memory format each byte of display
buffer contains four adjacent pixels. Setting or resetting any pixel requires reading the
entire byte, masking out the appropriate bits and, if necessary, setting bitsto “1”.

Color panelsderivetheir four colors by indexing into positions 0 through 3 of the Look-Up
Table. Thesefour LUT entries can be set to any of the 4096 possible color combinations.

Monochrome panels derive four gray shades by indexing into the first four el ements of the
green component of the Look-Up Table. Any of the four LUT entries can be set to any of
the sixteen possible gray shades.

Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
Pixel 0 Pixel 0 Pixel 1 Pixel 1 Pixel 2 Pixel 2 Pixel 3 Pixel 3
Bit 1 Bit 0 Bit 1 Bit 0 Bit 1 Bit0 Bit 1 Bit 0
Figure 3-2: Pixdl Soragefor 2 Bpp (4 Colors/Gray Shades) in One Byte of Display Buffer

3.3 4 Bit-Per-Pixel (16 Colors/Gray Shades)

Four bit pixels support 16 color/gray shades. In this memory format each byte of display
buffer containstwo adjacent pixels. Setting or resetting any pixel requiresreading theentire
byte, masking out the upper or lower nibble (4 bits) and setting the appropriate bitsto “1”.

Color panels can display up to sixteen colors simultaneously. These sixteen colors are
derived by indexing into the first sixteen elements of the Look-Up Table. Each of these
colors may be selected from the 4096 possible available colors.

On amonochrome panel the gray shades are generated by indexing into the first sixteen
green components of the LUT. Each of these sixteen possible gray shades can be adjusted
to any of the sixteen possible gray shades. For instance, one could program thefirst eight
green LUT entriesto be 0 and the second green LUT entries to be FFh. Thiswould result
in nibble values of 0 through 7 displaying as black and nibble values 8 through OFh
displaying as white.

Bit 7 Bit 6 Bit5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
Pixel 0 Pixel 0 Pixel 0 Pixel 0 Pixel 1 Pixel 1 Pixel 1 Pixel 1
Bit 3 Bit 2 Bit 1 Bit 0 Bit 3 Bit 2 Bit 1 Bit 0
Figure 3-3: Pixel Sorage for 4 Bpp (16 Colorg/Gray Shades) in One Byte of Display Buffer
S1D13705

Programming Notes and Examples

Issue Date: 02/01/22

X27A-G-002-03

Page 14

Epson Research and Development
Vancouver Design Center

3.4 Eight Bit-Per-Pixel (256 Colors)

In eight bit-per-pixel mode one byte of display buffer represents one pixel on the display.
At this color depth the read-modify-write cycles, required by the lessor pixel depths, are
eliminated.

When using a color panel, each byte of display memory acts as and index to one element
of the LUT. The displayed color is arrived at by taking the display memory value as an
index into the LUT.

Eight bit per pixel isnot supported for monochrome display modes. Thereason isthat each
element of the LUT supports a 4-bit (sixteen value) level for red, green and blue. In
monochrome display modes on the green value is used to set the gray intensity. Thus we
have sixteen possible grey vaues but, because of the color

Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
Red hit 2 Red hit 1 Red bit 0 Green hit 2 Green hit 1 Green hit 0 Blue bit 1 Blue bit 0
Figure 3-4: Pixel Sorage for 8 Bpp (256 Colors) in One Byte of Display Buffer
S1D13705 Programming Notes and Examples

X27A-G-002-03

Issue Date: 02/01/22

Epson Research and Development Page 15
Vancouver Design Center

4 Look-Up Table (LUT)

This section is supplementa to the description of the Look-Up Table architecture found in
the S1D13705 Hardware Functional Specification. Covered hereisareview of the LUT
registers, recommendations for the color and gray shade LUT values, and additional
programming considerations for the LUT. Refer to the S1D13705 Hardware Functional
Specification, document number X27A-A-001-xx for more detail.

The S1D13705 Look-Up Table consists of 256 indexed red/green/blue entries. Each entry
is4 bitswide. Two registers, REG[15h] and REG[17h], control accessto the LUT.

Each L ook-Up Table entry consists of ared, green, and blue component. Each component
consisting of four bits, or sixteen intensity levels. Any Look-Up Table element can be
selected from a palette of 4096 (16x16x16) colors.

In color display modes, pixel values are used as an index to an RGB value stored in the
Look-Up Table. In monochrome modes, pixel values still index into the LUT, but only the
green component is used to determine display intensity.

The selected color depth determines how many index positions are used for image display.
For example at one bit-per-pixel (bpp) only index positions 0 and 1 of the Look-Up Table
are used. At 4-bpp thefirst 16 index positions of the Look-Up Table are used and at 8-bpp
all 256 Look-Up Table index positions are used.

The Look-Up Table mechanism itself consists of an index register and a dataregister. The
index, or address, register determines which element of the Look-Up Table will be
accessed. After setting theindex the LUT may be read or written through the data register.
The first data element read or written is the red component of the entry. Subsequent
read/write operations access the green and then the blue elements of the Look-Up Table.

The S1D13705 LUT architectureis designed to provide a high degree of similarity in
operation to a standard VGA RAMDAC. However, there are two considerations which
must be kept in mind.

» The S1D13705 Look-Up Table has four bits (16 levels) of intensity per primary color.
The standard VGA RAMDAC has six bits (64 levels). Thisfour to one difference must
be taken into consideration when converting from aVGA paletteto aLUT palette. One
suggestion isto divide the VGA intensity level by four to arrive at the LUT intensity.

However, most applications specify the red, green and blue components as eight bit
intensities. To determine the appropriate S1D13705 Look-Up Table value we recom-
mend using the four most significant bits.

Programming Notes and Examples S1D13705
Issue Date: 02/01/22 X27A-G-002-03

Page 16

Epson Research and Development

Vancouver Design Center

4.1 Look-Up Table Registers

REG[15h] Look-Up Table Address Register Rea d/Write
LUT Address | LUT Address | LUT Address | LUT Address | LUT Address | LUT Address | LUT Address | LUT Address
Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

LUT Address

TheLUT addressregister selectswhich of the 256 LUT entrieswill be accessed. After three
successive reads/writes to the data register thisregister is automatically incremented to
point to the next address.

REG[17h] Look-Up Table Data Register

LUT Data LUT Data LUT Data
Bit 3 Bit 2 Bit 1

Read/Write

LUT Data

Bit 0 n/a

n/a n/a n/a

LUT Data

Thisregister iswhere the 4-bit red/green/blue datavalue iswritten/read. Immediately after
setting the LUT index with register [15h] thisregister accessesthe red element of the L ook-
Up Table. With each successive write/read theinternal bank select isincremented. Thusthe
second access is from the green element and the third is from the blue element.

After the third accessthe LUT Addressisincremented by one, then next access to this
register will be the red element of the next Look-Up Table index.

S1D13705

Programming Notes and Examples
X27A-G-002-03

Issue Date: 02/01/22

Epson Research and Development

Vancouver Design Center

Page 17

4.2 Look-Up Table Organization

421 Color Modes

1 bpp color

When the S1D13705 is configured for 1 bpp color mode, the LUT islimited to selecting
colors from the first two entries. The two LUT entries can be any two RGB values but are
typically set to black-and-white.

Each bytein the display buffer contains eight adjacent pixels. If abit hasavaueof “0” then
thecolor in LUT Oindex isdisplayed. A bit value of “1” resultsin thecolor in LUT 1index

being displayed.

The following table shows the recommended values for obtaining a black-and-white mode
whilein 1 bpp on a color panel.

Table 4-1: Recommended LUT Values for 1 Bpp Color Mode

Index Red Green Blue
00 00 00 00
01 FO FO FO
02 00 00 00
00 00 00
FF 00 00 00

unused entries

Programming Notes and Examples

Issue Date: 02/01/22

S1D13705
X27A-G-002-03

Page 18 Epson Research and Development
Vancouver Design Center
2 bpp color
When the S1D13705 is configured for 2 bpp color mode, the displayed colors are selected
from the first four entries of the Look-Up Table. The LUT entries may be set to any of the
4096 possible colors.
Each byte in the display buffer contains four adjacent pixels. If abit combination has a
value of “00” then the color in LUT index 0 isdisplayed. A bit value of “01” resultsin the
color in LUT index 1 being displayed. Likewise the bit combination of “10” displaysfrom
the third LUT entry and “11” displays a color from the fourth LUT entry.
The following table shows the example values for 2 bit-per-pixel display mode.
Table 4-2: Example LUT Values for 2 Bpp Color Mode
Index Red Green Blue
00 00 00 00
01 70 70 70
02 A0 A0 A0
03 FO FO FO
04 00 00 00
00 00 00
FF 00 00 00
indicates unused entries
S1D13705 Programming Notes and Examples

X27A-G-002-03

Issue Date: 02/01/22

Epson Research and Development Page 19
Vancouver Design Center

4 bpp color

When the S1D13705 is configured for 4 bpp color mode, the displayed colors are selected
from the first sixteen entries of the Look-Up Table. The LUT entries may be set to any of
the 4096 possible colors.

Each byte in the display buffer contains two adjacent pixels. If a nibble has a value of
“0000" then the color in LUT index 0 isdisplayed. A nibble value of “0001” resultsin the
color in LUT index 1 being displayed. The pattern continuesto the nibble pattern of “1111"
which resultsin the sixteenth color of the Look-Up Table being displayed.

The following table shows the example values for 4 bit-per-pixel display mode. These
colors simulate the colors used by the sixteen color modes of aVGA.

Table 4-3: Suggested LUT Valuesto Smulate VGA Default 16 Color Palette

Index Red Green Blue
00 00 00 00
01 00 00 A0
02 00 A0 00
03 00 A0 A0
04 AO 00 00
05 A0 00 A0
06 AO A0 00
07 A0 A0 A0
08 00 00 00
09 00 00 FO
0A 00 FO 00
0B 00 FO FO
0oC FO 00 00
0D FO 00 FO
OE FO FO 00
OF FO FO FO
10 00 00 00

00 00 00
FF 00 00 00

indicates unused entries

Programming Notes and Examples S1D13705
Issue Date: 02/01/22 X27A-G-002-03

Page 20

Epson Research and Development
Vancouver Design Center

8 bpp color

When the S1D 13705 is configured for 8 bpp color mode the entire Look-Up Tableis used
to display images. Each of the LUT entries may be set to any of the 4096 possible colors.

Each byte in the display buffer represents one pixels. The byte value is used directly as an

index into one of the 256 LUT entries. A display memory byte with a value of 00h will

display the color contained in the first Look-Up Table entry while a display memory byte

of FFh will display a color formed byte the two hundred and fifty sixth Look-Up Table

entry.

Thefollowing table depicts LUT values which approximate the VGA default 256 color

palette.

Table 4-4; Suggested LUT Values to Smulate VGA Default 256 Color Palette
Index| R G B |[Index| R G B |{Index| R G B |{Index| R G B
00 00 00 00 || 40 FO | 70 70 80 30 30 70 || co | 00 | 40 00
01 00 00 | A0 || 41 FO | 90 70 81 40 30 70 || C1 | 00 | 40 10
02 00 | A0 | 00 || 42 FO | BO | 70 82 50 30 70 || c2 | 00 | 40 20
03 00 | A0 | AO || 43 FO A DO | 70 83 60 30 70 || C3 | 00 | 40 30
04 | AO | 00 00 || 44 FO | FO | 70 84 70 30 70 || c4 | 00 | 40 | 40
05 | ADO | 00 | AO || 45 | DO | FO | 70 85 70 30 60 || C5 | 00 30 | 40
06 | AO | 50 00 || 46 BO | FO | 70 86 70 30 50 || C6 | 00 20 | 40
07 | AO | A0 | AO || 47 90 FO | 70 87 70 30 40 || c7 | 00 10 | 40
08 50 50 50 || 48 70 FO | 70 88 70 30 30 || c8 | 20 20 | 40
09 50 50 FO || 49 70 FO | 90 89 70 | 40 30 || Cc9 | 20 20 | 40
OA | 50 FO | 50 || 4A | 70 FO A BO || 8A | 70 50 30 || cA | 30 20 | 40
0B | 50 FO | FO || 4B | 70 FO A DO || 8B | 70 60 30 || cB | 30 20 | 40
oc | FO | 50 50 || 4C | 70 FO A FO || 8C | 70 70 30 || cC | 40 20 | 40
oD | FO | 50 FO || 4D | 70 | DO | FO || 8D | 60 70 30 || CD | 40 20 30
OE | FO | FO | 50 || 4E | 70 | BO | FO || 8E | 50 70 30 || CE | 40 20 30
OF | FO | FO | FO || 4F | 70 90 FO || 8F | 40 70 30 || CF | 40 20 20
10 00 00 00 50 BO | BO | FO || 90 30 70 30 || DO | 40 20 20
11 10 10 10 51 | coO | BO | FO || 91 30 70 | 40 || D1 | 40 20 20
12 20 20 20 52 | DO | BO | FO || 92 30 70 50 || D2 | 40 30 20
13 20 20 20 53 EO | BO | FO || 93 30 70 60 || D3 | 40 30 20
14 30 30 30 54 FO A BO | FO || 94 30 70 70 || D4 | 40 | 40 20
15 40 | 40 | 40 55 FO | BO | EO || 95 30 60 70 || D5 | 30 | 40 20
16 50 50 50 56 FO A BO | DO || 96 30 50 70 || D6 | 30 | 40 20
17 60 60 60 57 FO | BO | CO || 97 30 | 40 70 || D7 | 20 | 40 20
18 70 70 70 58 FO A BO | BO || 98 50 50 70 || D8 | 20 | 40 20
19 80 80 80 59 FO A CO | BO || 99 50 50 70 || D9 | 20 | 40 20
1A | 90 90 9 || 5A | FO | DO | BO || 9A | 60 50 70 || DA | 20 | 40 30
1B | AO A A0 | A0 || 5B | FO | EO | BO || 9B | 60 50 70 || DB | 20 | 40 30
S1D13705 Programming Notes and Examples

X27A-G-002-03

Issue Date: 02/01/22

Epson Research and Development Page 21
Vancouver Design Center
Table 4-4: Suggested LUT Values to Smulate VGA Default 256 Color Palette (Continued)

Index| R G B |/Index| R G B |/Index| R G B |/Index| R G B
1C BO BO BO 5C FO FO BO 9C 70 50 70 DC 20 40 40
1D Co Co Co 5D EO FO BO 9D 70 50 60 DD 20 30 40
1E EO EO EO 5E DO FO BO 9E 70 50 60 DE 20 30 40
1F FO FO FO 5F Co FO BO 9F 70 50 50 DF 20 20 40
20 00 00 FO 60 BO FO BO A0 70 50 50 EO 20 20 40
21 40 00 FO 61 BO FO Co Al 70 50 50 El 30 20 40
22 70 00 FO 62 BO FO DO A2 70 60 50 E2 30 20 40
23 BO 00 FO 63 BO FO EO A3 70 60 50 E3 30 20 40
24 FO 00 FO 64 BO FO FO A4 70 70 50 E4 40 20 40
25 FO 00 BO 65 BO EO FO A5 60 70 50 ES5 40 20 30
26 FO 00 70 66 BO DO FO A6 60 70 50 E6 40 20 30
27 FO 00 40 67 BO Co FO A7 50 70 50 E7 40 20 30
28 FO 00 00 68 00 00 70 A8 50 70 50 E8 40 20 20
29 FO 40 00 69 10 00 70 A9 50 70 50 E9 40 30 20
2A FO 70 00 6A 30 00 70 AA 50 70 60 EA 40 30 20
2B FO BO 00 6B 50 00 70 AB 50 70 60 EB 40 30 20
2C FO FO 00 6C 70 00 70 AC 50 70 70 EC 40 40 20
2D BO FO 00 6D 70 00 50 AD 50 60 70 ED 30 40 20
2E 70 FO 00 6E 70 00 30 AE 50 60 70 EE 30 40 20
2F 40 FO 00 6F 70 00 10 AF 50 50 70 EF 30 40 20
30 00 FO 00 70 70 00 00 BO 00 00 40 FO 20 40 20
31 00 FO 40 71 70 10 00 Bl 10 00 40 F1 20 40 30
32 00 FO 70 72 70 30 00 B2 20 00 40 F2 20 40 30
33 00 FO BO 73 70 50 00 B3 30 00 40 F3 20 40 30
34 00 FO FO 74 70 70 00 B4 40 00 40 F4 20 40 40
35 00 BO FO 75 50 70 00 B5 40 00 30 F5 20 30 40
36 00 70 FO 76 30 70 00 B6 40 00 20 F6 20 30 40
37 00 40 FO 7 10 70 00 B7 40 00 10 F7 20 30 40
38 70 70 FO 78 00 70 00 B8 40 00 00 F8 00 00 00
39 90 70 FO 79 00 70 10 B9 40 10 00 F9 00 00 00
3A BO 70 FO TA 00 70 30 BA 40 20 00 FA 00 00 00
3B DO 70 FO 7B 00 70 50 BB 40 30 00 FB 00 00 00
3C FO 70 FO 7C 00 70 70 BC 40 40 00 FC 00 00 00
3D FO 70 DO 7D 00 50 70 BD 30 40 00 FD 00 00 00
3E FO 70 BO 7E 00 30 70 BE 20 40 00 FE 00 00 00
3F FO 70 90 7F 00 10 70 BF 10 40 00 FF 00 00 00

Programming Notes and Examples S1D13705

Issue Date: 02/01/22

X27A-G-002-03

Page 22

Epson Research and Development
Vancouver Design Center

4.2.2 Gray Shade Modes

Gray shade modes are monochrome display modes. Monochrome display modes use the
Look-Up Table in avery similar fashion to the color modes. This most significant
difference is that the monochrome display modes use only the intensity of the green
element of the Look-Up Tableto form the gray level.

Oneside effect of using only green for intensity selectionisthat in gray shade modesthere
are only sixteen possible intensities. 8 bit-per-pixel is not supported for gray shade modes.

1 bpp gray shade
When the S1D13705 is configured for 1 bpp gray shade mode, the LUT islimited to

selecting colors from the first two green entries. Thetwo LUT entries can be set to any of
sixteen possible intensities. Typically they would be set to Oh (black) and Fh (white).

Each bytein the display buffer contains eight adjacent pixels. If abit hasavalueof “0” then
the color in the green LUT Oindex is displayed. A bit value of “1” resultsin the color in
green LUT 1 index being displayed.

The following table shows the recommended values 1 bpp gray shade display mode.

Table 4-5. Recommended LUT Valuesfor 1 Bpp Gray Shade

Address Red Green Blue
00 00 00 00
01 00 FO 00
02 00 00 00
00 00 00
FF 00 00 00

unused entries

2 bpp gray shade

When the S1D13705 is configured for 2 bpp gray shade, the displayed colors are selected
from the first four green entriesin the Look-Up Table. The remaining entries of the LUT
are unused. Each of the four entries can be set to any of the sixteen possible colors.

Each byte in the display buffer contains four adjacent pixels. If abit combination has a
value of “00” then theintensity in the green LUT index O isdisplayed. A bit value of “01”
resultsin the intensity represented by the greenin LUT index 1 being displayed. Likewise
the bit combination of “10” displaysfrom thethird LUT entry and “11” displaysafromthe
fourth LUT entry.

S1D13705
X27A-G-002-03

Programming Notes and Examples
Issue Date: 02/01/22

Epson Research and Development
Vancouver Design Center

Page 23

The following table shows the example values for 2 bit-per-pixel display mode.

Table 4-6: Suggested Values for 2 Bpp Gray Shade

Index Red Green Blue

0 00 00 00

1 00 50 00

2 00 A0 00

3 00 FO 00

4 00 00 00
00 00 00

FF 00 00 00

indicates unused entries

Programming Notes and Examples
Issue Date: 02/01/22

S1D13705
X27A-G-002-03

Page 24

Epson Research and Development

Vancouver Design Center

4 bpp gray shade

When the S1D13705 is configured for 4 bpp gray shade mode the displayed colors are
selected from the green values of the first sixteen entries of the Look-Up Table. Each of the
sixteen entries can be set to any of the sixteen possible intensity levels.

Each byte in the display buffer contains two adjacent pixels. If a nibble patternis“0000”
then the green intensity of LUT index O isdisplayed. A nibble value of “0001” resultsin
the green intensity in LUT index 1 being displayed. The pattern continues to the nibble
pattern of “1111” which resultsin the sixteenth intensity of Look-Up Table being

displayed.

The following table shows the example values for 4 bit-per-pixel display mode.

Table 4-7: Suggested LUT Values for 4 Bpp Gray Shade

Index Red Green Blue
00 00 00 00
01 00 10 00
02 00 20 00
03 00 30 00
04 00 40 00
05 00 50 00
06 00 60 00
07 00 70 00
08 00 80 00
09 00 90 00
OA 00 AO 00
0B 00 BO 00
oC 00 (6{0] 00
oD 00 DO 00
OE 00 EO 00
OF 00 FO 00
10 00 00 00
00 00 00
FF 00 00 00

indicates unused entries

S1D13705
X27A-G-002-03

Programming Notes and Examples
Issue Date: 02/01/22

Epson Research and Development Page 25
Vancouver Design Center

5 Advanced Techniques

This section contains programming suggestions for the following:
* virtua display
 panning and scrolling

* gplit screen display

5.1 Virtual Display

Virtual display refersto the situation where the image to be viewed is larger than the
physical display. The difference can bein the horizontal, vertical or both dimensions. To
view theimage, the display is used as awindow into the display buffer. At any given time
only aportion of theimageisvisible. Panning and scrolling are used to view the full image.

The Memory Address Offset register determines the number of horizontal pixelsin the
virtual image. The offset register can be used to specify from 0 to 255 additional words for
each scan line. At 1 bpp, 255 words span an additional 4,080 pixels. At 8 bpp, 255 words
span an additional 510 pixels.

The maximum vertical size of the virtual image is the result of dividing 81920 bytes of
display memory by the number of byteson each line (i.e. at 1 bpp with a320x240 panel set
for avirtual width of 640x480 there is enough memory for 1024 lines).

Figure 5-1: “Viewport Inside a Virtual Display,” depictsatypical use of avirtual display.
The display panel is 320x240 pixels, an image of 640x480 pixels can be viewed by
navigating a 320x240 pixel viewport around the image using panning and scrolling.

320x240 —
Viewport

640x480
“Virtual” Display

Figure5-1: Viewport Inside a Virtual Display

Programming Notes and Examples S1D13705
Issue Date: 02/01/22 X27A-G-002-03

Page 26

Epson Research and Development
Vancouver Design Center

5.1.1 Registers

REG[11h] Memory Address Offset Register

Memory
Address
Offset
Bit 7

Memory Memory Memory Memory Memory Memory Memory
Address Address Address Address Address Address Address
Offset Offset Offset Offset Offset Offset Offset
Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

5.1.2 Examples

Memory Address Offset Register

REG[11h] forms an 8-hit value called the Memory Address Offset. This offset isthe
number of additional words on each line of the display. If the offset is set to zero thereis
no virtual width.

Note

This value does not represent the number of words to be shown on the display. The dis-
play width is set in the Horizontal Display Width register.

Example 1:In this example we go through the calculations to display a 640x480 im-
age on a 320x240 panel at 2 bpp.

Step 1: Calculate the number of pixels per word for this color depth.

At 2 bpp each byteis comprised of 4 pixels, therefore each word contains 8 pixels.
pixels per word=16/bpp=16/2=8

Step 2: Calculate the Memory Address Offset register value

Werequireatotal of 640 pixels. The horizontal display register will account for 320 pixels,
this leaves 320 pixels for the Memory Address Offset register to account for.

offset = pixels/ pixels per_word =320/ 8 =40 = 28h

The Memory Address Offset register, REG[11h], will have to be set to 28h to satisfy the
above condition.

S1D13705

X27A-G-002-03

Programming Notes and Examples
Issue Date: 02/01/22

Epson Research and Development Page 27
Vancouver Design Center

Example 2: From the above, what is the maximum number of lines our image can
contain?

Step 1: Calculate the number of bytes on each line.

bytes per_line = pixels_per_line/ pixels_per_byte= 640/ 4 = 160
Each line of the display requires 160 bytes.

Step 2: Calculate the number of lines the S1D13705 is capable of.
total_lines = memory / bytes per_line = 81920/ 160 = 512

We can display amaximum of 512 lines. Our example image requires 480 lines so this
example can be done.

5.2 Panning and Scrolling

Panning and scrolling describe the operation of moving a physical display viewport about
avirtual imagein order to view the entireimage aportion at time. For exampl e, after setting
up the previous example (virtual display) and drawing an image into it we would only be
able to view one quarter of the image. Panning and scrolling are used to reveal the rest of
theimage.

Panning describesthe horizontal (sideto side) motion of the viewport. When panning to the
right the image in the viewport appears to slide to the left. When panning to the left the
imageto appearsto slideto theright. Scrolling describesthe vertical (up and down) motion
of the viewport. Scrolling down causes the image to appear to slide up and scrolling up
causes the image to appear to dide down.

Both panning and scrolling are performed by modifying the start addressregister. The start
address registersin the S1D13705 are a word offset to the datato be displayed in the top
left corner of aframe. Changing the start address by one means a change on the display of
the number of pixelsin one word. The number of pixelsin word varies according to the
color depth. At 1 bit-per-pixel aword contains sixteen pixels. At 2 bit-per-pixel there are
eight pixels, at 4 bit-per-pixel there are four pixelsand at 8 bit-per-pixel thereistwo pixes
in each word. The number of pixelsin each word represent the finest step we can pan to the
left or right.

When portrait mode (see Hardware Rotation on page 37) is enabled the start address
registers become offsetsto bytes. In this mode the step rate for the start address registers if
halved making for smoother panning.

Programming Notes and Examples S1D13705
Issue Date: 02/01/22 X27A-G-002-03

Page 28

Epson Research and Development

Vancouver Design Center

5.2.1 Registers

REG[0Ch] Screen 1 Display Start Address 0 (LSB)
Start Addr Start Addr Start Addr Start Addr Start Addr Start Addr Start Addr Start Addr
Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
REG[0Dh] Screen 1 Display Start Address 1 (MSB)
Start Addr Start Addr Start Addr Start Addr Start Addr Start Addr Start Addr Start Addr
Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8
REG[10h] Screen 1 Display Start Address 2 (MSB)
Start Addr
n/a n/a n/a n/a n/a n/a n/a Bit 16

Screen 1 Start Address Registers

These three registers form the seventeen bit screen 1 start address. Screen 1 is displayed
starting at the top left corner of the display.

In landscape mode these registers form the word offset to the first byte in display memory
to be displayed in the upper left corner of the screen. Changing these registers by one will
shift the display image 2 to 16 pixels, depending on the current color depth.

In portrait mode these registers form the offset to the display memory byte where screen 1
will start displaying. Changing these registersin portrait mode will result in a shift of 1 to
8 pixels depending on the color depth.

Refer to Table 5-1: “Number of Pixels Panned Using Start Address’ to see the minimum
number of pixes affected by a change of one to these registers

Table 5-1: Number of Pixels Panned Using Start Address

Color Depth (bpp)

Pixels per Word

Landscape Mode
Number of Pixels Panned

Pixels Per Byte

Portrait Mode
Number of Pixels Panned

1 16 16 8 8
2 8 8 4 4
4 4 4 2 2
8 2 2 1 1

S1D13705
X27A-G-002-03

Programming Notes and Examples
Issue Date: 02/01/22

Epson Research and Development Page 29
Vancouver Design Center

5.2.2 Examples

For the following examples we base our calculations on a 4 bit-per-pixel image displayed
on a 256w x 64h panel. We have set up avirtua size of 320w x 240h. Width is greater than
height so we are in landscape display mode. Refer to Section 2, “Initialization” on page 8
and Section 5.1, “Virtual Display” on page 25 for assistance with these settings.

These examples are shown using a C-like syntax.

Example 3: Panning (Right and Left)

To pan to theright increase the start address value by one. To pan to the left decrease the
start address value. Keep in mind that, with the exception of 8 bit-per-pixel portrait display
mode, the display will jump by more than one pixel asaresult of changing the start address
registers.

Panning to the right.

StartWord = Get Start Address();
StartWord ++;
Set St art Address(StartWord);

Panning to the [eft.

StartWord = Get Start Address();
StartWrd --;
if (StartWord < 0)
StartWrd = 0;
Set St art Address(StartWrd);

The routine GetStartAddress() is one which will read the start address registers and return
the start address as along value. It would be written similar to:

| ong Get StartAddress()

{
}

return ((REG 10] & 1) * 65536) + (REOD] * 256) + (REGO0Q]);

Theroutine SetStartAddress() break up its long integer argument into three register values
and store the values.

voi d Set Start Address(l ong SA)

{
REG 0C] = SA & OXFF;
REGOD] = (SA >> 8) & OxFF;
Reg[10] = (SA >> 16) & OxFF;
}
In this example code the notation REG[] refers to whatever mechanism is employed to
read/write the registers.
Programming Notes and Examples S1D13705

Issue Date: 02/01/22

X27A-G-002-03

Page 30 Epson Research and Development
Vancouver Design Center

Example 4: Scrolling (Up and Down)

To scroll down, increase the value in the Screen 1 Display Start Address Register by the
number of wordsin one virtual scan line. To scroll up, decrease the value in the Screen 1
Display Start Address Register by the number of wordsin one virtual scan line. A virtual
scan line includes both the number of bytes required by the physical display and any extra
bytes that may be being used for creating a virtual width on the display.

The previous dimensions are still in effect for this example (i.e. 320w x 240h virtual size,
256h x 64w physical size at 4 bpp)

Step 1: Determine the number of words in one virtual scanline.
bytes per_line = pixels per_line/ pixels per byte=320/2 =160
words_per_line = bytes per_line/2=160/2 =80

Step 2: Scroll up or down

To scroll up.

StartWord = Get Start Address();
StartWord -= words_per _line;
if (StartWwrd < 0)

StartWrd = 0;
Set St art Address(StartWrd);

To scroll down.

StartWord = Get Start Address();
StartWrd += words_per _|ine;
Set St art Address(StartWrd);

}

S1D13705 Programming Notes and Examples
X27A-G-002-03 Issue Date: 02/01/22

Epson Research and Develo
Vancouver Design Center

pment Page 31

5.3 Split Screen

Occasionally the need arisesto display two different but related images. Take, for example,
agame where the main play arearequires rapid updates and game status, displayed at the
bottom of the screen, requires infrequent updates.

The Split Screen feature of the S1D13705 alows a programmer to setup adisplay in such
amanor. When correctly configured the programmer has only to updatethe main areaon a
regular basis. Occasionally, asthe need arises, the secondary areais updated.

The figure below illustrates how a 320x240 panel may be configured to have one image
displaying from scan line O to scan line 199 and image 2 displaying from scan line 200 to
scan line 239. Although this example picks specific values, the split between image 1 and
image 2 may occur at any line of the display.

Scan Line O
Image 1
Scan Line 199
Scan Line 200
Image 2

Scan Line 239

Screen 1 Vertical Size Registers = 199 lines

Figure 5-2: 320x240 Sngle Panel For Split Screen

In split screen operation “Image 1" istaken from the display memory location pointed to
by the Screen 1 Start Addressregistersand isawayslocated at the top of the screen. “ Image
2" istaken from the display memory location pointed to by the Screen 2 Start Address
registers. Thelinewhere “Image 1" end and “Image 2" beginsis determined by the Screen
1 Vertica Sizeregister.

Programming Notes and Examples S1D13705

Issue Date: 02/01/22

X27A-G-002-03

Page 32

Epson Research and Development
Vancouver Design Center

5.3.1 Registers

Split screen operation is performed primarily by manipulating three register sets. Screen 1
Start Addressand Screen 2 Start Address determine from wherein display memory thefirst
and second images will be taken from. The Vertical Size registers determine how many

lines Screen 1 will use. Thefollowing isadescription of the registers used to do split screen.

REG[12] Screen 1 Vertical Size (LSB)

Bit 7

Bit 6

Bit5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

REG[13] Screen 1 Vertical Size (MSB)

n/a

n/a

n/a n/a n/a n/a Bit 9 Bit 8

Screen 1 Vertical Size

These two registers form aten bit value which determines the size of screen 1. When the
vertical sizeisequa to or greater than the physical number of lines being displayed there
is no visible effect on the display. When the vertical size value isless than the number of
physical display lines, operation is like this:

1. From the beginning of aframeto the number of linesindicated by vertical sizethe dis-
play datawill come from the memory area pointed to by the Screen 1 Display Start
Address.

2. After vertical sizelines have been displayed the system will begin displaying data
from the memory area pointed to by Screen 2 Display Start Address.

On thing that must be pointed out here isthat Screen 1 memory is always displayed at the
top of the screen followed by screen 2 memory. This relationship holds true regardless of
wherein display memory Screen 1 Start Address and Screen 2 Start Address are pointing.
For instance, Screen 2 Start Address may point to offset zero of display memory while
Screen 1 Start Address pointsto alocation several thousand bytes higher. Screen 1 will still
be shown first on the display. While not particularly useful, it is even possible to set screen
1 and screen 2 to the same address.

S1D13705
X27A-G-002-03

Programming Notes and Examples
Issue Date: 02/01/22

Epson Research and Development
Vancouver Design Center

Page 33

REG[OEh] Screen 2 Display Start Address 0 (LSB)

Start Addr Bit
7

Start Addr Bit
6

Start Addr Bit
5

Start Addr Bit
4

Start Addr Bit
3

Start Addr Bit
2

Start Addr Bit
1

Start Addr Bit
0

REG[OFh] Screen 2 Display Start Address 1

(MSB)

Start Addr Bit
15

Start Addr Bit
14

Start Addr Bit
13

Start Addr Bit
12

Start Addr Bit
11

Start Addr Bit
10

Start Addr Bit
9

Start Addr Bit
8

Screen 2 Start Address Registers

These three registers form the seventeen bit Screen 2 Start Address. Screen 2 is dways

displayed immediately following the screen 1 data and will begin at the |eft-most pixel on
aline. Keepinmindthat if the Screen 1 Vertica Sizeisegual to or greater than the physical
display then Screen 2 will not be shown.

In landscape mode these registers form the word offset to the first byte in display memory
to be displayed. Changing these registers by one will shift the display image 2 to 16 pixels,
depending on the current color depth.

The S1D13705 does not support split screen operation in portrait mode. Screen 2 will never
be used if portrait mode is selected.

Refer to Table 5-1: “Number of Pixels Panned Using Start Address” to see the minimum

number of pixels affected by achange of one to these registers

Screen 1 Start Address registers, REG[0C], REG[0D] and REG[10] are discussed in
Section 5.2.1 on page 28

Programming Notes and Examples

Issue Date: 02/01/22

S1D13705
X27A-G-002-03

Page 34 Epson Research and Development
Vancouver Design Center

5.3.2 Examples

Example 5: Display 200 scanlines of image 1 and 40 scanlines of image 2. Image 2 is
located first (offset 0) in the display buffer followed immediately by im-
age 1. Assume a 320x240 display and a color depth of 4 bpp.

1. Calculate the Screen 1Vertical Size register values.
vertica_size=200=C8h

Writethe Vertical Size LSB, REG[12h], with C8h and Vertical Size MSB, REG[13h],
with a 00h.

2. Calculate the Screen 1 Start Word Address register values.

Screen 2 islocated first in display memory, therefore we must calculate the number of
bytes taken up by the screen 2 data.

bytes per_line= pixels per_line/ pixels per_byte=320/2 =160
total bytes = bytes per_line x lines= 160 x 40 = 6400.

Screen 2 requires 6400 bytes (0 to 6399) therefore the start address offset for screen 1
must be 6400 bytes. (6400 bytes = 3200 words = C80h words)

Set the Screen 1 Start Word Address MSB, REG[0Dh], to OCh and the Screen 1 Start
Word Address LSB, REG[0Ch], to 80h.

3. Calculate the Screen 2 Start Word Address register values.

Screen 2 display datais coming from the very beginning of the display buffer. All thereis
to do hereis ensure that both the LSB and M SB of the Screen 2 Start Word Address
registers are set to zero.

S1D13705 Programming Notes and Examples
X27A-G-002-03 Issue Date: 02/01/22

Epson Research and Development Page 35

Vancouver Design Center

6 LCD Power Sequencing and Power Save Modes

6.1 LCD Power Sequencing

6.2 Registers

Correct power sequencing isrequired to prevent long term damage to LCD panels and to
avoid unsightly “lines” during power-up and power-down. Power Sequencing allows the
L CD power supply to discharge prior to shutting down the LCD logic signals.

Proper LCD power sequencing dictates there must be atime delay between the LCD power
being disabled and the LCD signals being shut down. During power-up the LCD signals
must be active prior to or when power is applied to the LCD. Thetime intervals vary
depending on the power supply design.

The S1D 13705 performs automatic power sequencing in response to both software power
save (REG[03h]) or in response to a hardware power save. One frame after a power save
modeis set, the S1D 13705 disables LCD power, and the LCD logic signals continue for
one hundred and twenty seven frames allowing the LCD power supply to completely
discharge. For most applicationsthe internal power sequencing is the appropriate choice.

There may be situations where the internal time delay is insufficient to discharge the LCD
power supply before the LCD signals are shut down, or the delay istoo long and the
designer wishesto shorten it. This section details the sequences to manually power-up and
power-down the LCD interface.

REG[03h] Mode Register 2

LCDPWR Hardware Software Software
Override Power Save Power Save Power Save
Enable bit 1 bit 0

TheLCD Power (LCDPWR) Overridebit forces L CD power inactive one frame after being
toggled. Aslong asthisbitis“1” LCD power will be disabled.

The Hardware Power Save Enable bit must be set in order to activate hardware power save
through GPIOO0.

The Software Power Save bits set and reset the software power save mode. These bits are
set to “11” for normal operation and set to “00” for power save mode.

LCD logic signalsto the display panel are active for 128 frames after setting either
hardware or software power save modes. Power sequencing override is performed by
setting the LCDPWR Override bit some time before setting a power save mode for power
off sequences. During power on sequences the power save mode is reset some time before
the LCDPWR Override is reset resulting in the LCD logic signals being active before
power is applied to the panel.

Programming Notes and Examples S1D13705

Issue Date: 02/01/22

X27A-G-002-03

Page 36

Epson Research and Development
Vancouver Design Center

6.3 LCD Enable/Disable

The descriptions below cover manually powering the LCD panel up and down. Use the
sequences described in this section if the power supply connected to the panel requires
morethan 127 framesto discharge on power-down, or if the panel requiresstarting theLCD
logic well in advance of enabling LCD power. Currently there are no known circumstances
where the LCD logic must be active well in advance of LCD power.

Note
If 127 frame period isto long, blank the display, then reprogram the Horizontal and Ver-
tical sizes to produce a shorter frame period before using these methods.

Power On/Enable Sequence

Thefollowing is asequence for manually powering-up an LCD panel if LCD power had to
be applied later than LCD logic.

1. Set REG[03h] bit 3 (LCDPWR Override) to “1". Thisensuresthat LCD power will be
held disabled.

2. Enable LCD logic. Thisis done by either setting the GPIOO pin low to disable hard-
ware power save mode and/or by setting REG[03h] bits 1-0to “11” to disable soft-
ware power save.

3. Count “x” Vertical Non-Display Periods (OPTIONAL).
“X” corresponds the length of time LCD logic must be enabled before LCD power-up,
converted to the equivalent vertical non-display periods. For example, at 72 HZ count-
ing 36 non-display periods resultsin a one half second delay.

4. Set REG[03h] bit 3to “0” to enable LCD Power.
Power Off/Disable Sequence

Thefollowing is a sequence for manually powering-down an LCD panel. These steps
would be used if the power supply discharge requirements are larger than the default 127
frames.

1. Set REG[03h] bit 3 (LCDPWR Override) to “1” which will disable LCD Power.

2. Count“x” Vertical Non-Display Periods.
“X" corresponds to the power supply discharge time converted to the equivalent verti-
cal non-display periods. (see the previous example)

3. Disablethe LCD logic by setting the software power savein REG[03h] or setting
hardware power save via GPIOO0. Keep in mind that after setting the power save mode
there will be 127 frames before the LCD logic signals are disabled.

S1D13705
X27A-G-002-03

Programming Notes and Examples
Issue Date: 02/01/22

Epson Research and Development Page 37

Vancouver Design Center

7 Hardware Rotation

7.1 Introduction To Hardware Rotation

Many of todays applications use the LCD panel in a portrait orientation (typically LCD
panels are landscape oriented). In this case it becomes necessary to “rotate” the displayed
image. Thisrotation can be done by software at the expense of performance or, aswith the
S1D13705, it can be done by hardware with no performance penalty.

This discussion of display rotation is intended to augment the excellent description of the
hardware functionality found in the Hardware Functional Specification.

The S1D13705 supports two portrait modes: Default Portrait Mode and Alternate Portrait
Mode.

7.2 Default Portrait Mode

Default portrait mode was designed to reduce power consumption for portrait mode use.
The reduced power consumption comes with certain trade offs.

The most obvious difference between the two modesisthat Default Portrait Mode requires
the portrait width be a power of two, e.g. a 240-line panel, used in portrait mode, requires
setting avirtual width of 256 pixels. Also default portrait modeis only capable of scrolling
the display in two line increments.

The benefitsto using default portrait mode liesin the ability to use aslower input clock and
in reduced power consumption.

The following figure depicts the ways to envision memory layouts for the S1D13705in
default portrait mode. This example uses a 320x240 panel.

Programming Notes and Examples S1D13705

Issue Date: 02/01/22

X27A-G-002-03

Page 38 Epson Research and Development

Vancouver Design Center

physical
memory
start \< 256 >
address A 51~ _E—; |r"” ———————— —; a
| | |
| A
S portrait | @ o Q
™ i -
window | display s 3 o |
= o <
| start 5 2 N
| address S
O
| < v v
C D
v - — - P 320 _
240 b -
image seen by programmer image refreshed by S1D13705
= image in display buffer

Figure 7-1: Relationship Between the Default Mode Screen Image and the Image Refreshed by S1D13705

From the programmers perspective the memory is laid out as shown on the left. The
programmer accesses memory exactly as for a panel of with the dimensions of 240x320
setup to have a 256 pixel horizontal stride. The programmer sees memory addresses
increasing from A->B and from B->C.

From a hardware perspective the S1D 13705 always refreshes the LCD panel in the order
B->D and down to do A->C.

S1D13705 Programming Notes and Examples
X27A-G-002-03 Issue Date: 02/01/22

Epson Research and Development Page 39

Vancouver Design Center

7.3 Alternate Portrait Mode

Alternate portrait mode does not impose the power of two line width. To rotated the image
on 240 line panel requires a portrait stride of 240 pixels. Alternate portrait modeis capable
of scrolling by oneline at atimein response to changes to the Start Address Registers.
However, to achieve the same frame rate requires a 2 x faster input clock, therefore using
more power.

The following figure depicts the ways to envision memory layouts for the S1D13705 in
alternate portrait mode. This example aso uses a 320x240 panel. Notice that in aternate
portrait mode the stride may be as little as 240 pixels.

physical

memory
start

address

A A B
2 portrait @ o
< i +—
window display g 3 o
start £ 2 P>
address a's
< (@)
C D
v P 480 R
320) -
image seen by programmer image refreshed by S1D13705
= image in display buffer

Figure 7-2: Relationship Between the Alternate Mode Screen Image and the Image Refreshed by S1D13705

From the programmers perspective the memory islaid out as shown on the left. The
programmer accesses memory exactly asfor apanel of with the dimensions of 240x320.
The programmer sees memory addresses increasing from A->B and from B->C.

From a hardware perspective the S1D13705 always refreshes the LCD panel in the order
B->D and down to do A->C

The greatest factor in selecting alternate portrait mode over default portrait mode would be
for the ability to obtain an area of contiguous off screen memory. For example: A 640x480
panel in default portrait mode at two bit-per-pixel requires 81920 bytes (80 Kb). Thereis
unused memory but it is not contiguous. The same situation using aternate portrait mode
requires 76800 bytes|eaving 5120 bytes of contiguous memory availableto the application.
In fact the change in memory usage may make the difference between being ableto run
certain panelsin portrait mode or not being able to do so.

Programming Notes and Examples S1D13705
Issue Date: 02/01/22

X27A-G-002-03

Page 40

Epson Research and Development
Vancouver Design Center

7.4 Registers

This section describes the registers used to set portrait mode operation.

REG[0Ch] Screen 1 Start Word Address LSB
bit 7 bit 6 bit 5 bit 4 bit 3 bit 2 bit 1 bit 0

REG[0Dh] Screen 1 Start Word Address MSB
bit 15 bit 14 bit 13 bit 12 bit 11 bit 10 bit 9 bit 8

REG[OEh] Screen 1 Start Word Address MSB
n/a n/a n/a n/a n/a n/a n/a bit 16

The Screen 1 Start Address registers must be set correctly for portrait mode. In portrait
mode the Start Address registers form a byte offset, as opposed to aword offset, into
display memory.

Theinitial required offset is the portrait mode stride (in bytes) less one.

REG[1Ch] Line Byte Count Register

bit 7

bit 6 bit 5 bit 4 bit 3 bit 2 bit 1 bit 0

Theline byte count register informs the S1D13705 of the stride, in bytes, between two
consecutive lines of display in portrait mode. The Line Byte Count register only affects
portrait mode operation and are ignored when the S1D13705 isin landscape display mode.

REG[1Bh] Portrait Mode Register

Portrait Mode
Enable

Portrait Mode
Memory
Clock Select

Portrait Mode
Pixel Clock
Select Bit 1

Portrait Mode
Pixel Clock
Select Bit 0

Portrait Mode

Select na

n/a n/a

The portrait mode register contains several items for portrait mode support.

Thefirst isthe Portrait Mode Enable bit. When thisbitis“0” the S1D13705 isin landscape
mode and the remainder of the settings in this register as well asthe Line Byte Count in
REG[1Ch] areignored. Set this bit to “1” to enable portrait mode.

S1D13705
X27A-G-002-03

Programming Notes and Examples
Issue Date: 02/01/22

Epson Research and Development Page 41

Vancouver Design Center

The portrait mode select bit selects between the “Default Mode” and the “ Alternate Mode” .
Setting thisbit to “0" selects the default portrait mode while setting this bit to “1” enables
the alternate portrait mode.

Portrait Mode Memory Clock Select isanother power saving measure which can be enabled
if the final MCLK vaueislessthan or equal to 25 MHz. Memory Clock Select resultsin
the S1D13705 temporarily increasing the memory clock circuitry on CPU access and
resuming the slower speed when the accessis complete. Thisresultsin better performance
while using the least power.

In portrait display mode the CLKI (input clock) is routed to the portrait section of the
S1D13705 as CLK. From the CLK signa the MCLK value can be determined from table
8-8 of the Hardware Functional Specification, document number X27A-A-001-xx. If
MCLK isdetermined to belessthan or equal to 25 MHz then Portrait Mode Memory Clock
Select may be enabled.

Programming Notes and Examples S1D13705

Issue Date: 02/01/22

X27A-G-002-03

Page 42

Epson Research and Development
Vancouver Design Center

7.5 Limitations

Theonly limitation to using portrait mode on the S1D13705 isthat split screen operationis
not supported.

A comparison of the two portrait modesis as follows:

Table 7-1: Default and Alternate Portrait Mode Comparison

Iltem

Default Portrait Mode

Alternate Portrait Mode

Memory Requirements

The width of the rotated image must be
a power of 2. In most cases, a virtual
image is required where the right-hand
side of the virtual image is unused and
memory is wasted. For example, a
320x480x4bpp image would normally
require only 76,800 bytes - possible
within the 80K byte address space, but
the virtual image is 512x480x4bpp
which needs 122,880 bytes - not
possible.

Does not require a virtual image.

Clock Requirements

CLK need only be as fast as the
required PCLK.

MCLK, and hence CLK, need to be 2x
PCLK. For example, if the panel requires a
3MHz PCLK, then CLK must be 6MHz.
Note that 25MHz is the maximum CLK, so
PCLK cannot be higher than 12.5MHz in
this mode.

Power Consumption

Lowest power consumption.

Higher than Default Mode.

Panning Vertical panning in 2 line increments. | Vertical panning in 1 line increments.
Nominal performance. Note that Higher performance than Default Mode.
performance can be increased by Note that performance can be increased by

Performance

increasing CLK and setting MCLK =
CLK (REG[1Bh] bit 2 = 1).

increasing CLK and setting MCLK = CLK
(REG[1Bh] bit 2 = 1).

S1D13705
X27A-G-002-03

Programming Notes and Examples
Issue Date: 02/01/22

Epson Research and Development Page 43

Vancouver Design Center

7.6 Examples

Example 6: Enable default portrait mode for a 320x240 panel at 4 bpp.

Before switchingto portrait mode from landscape mode, display memory should be cleared
to make the user perceived transition smoother. Imagesin display memory are not rotated
automatically by hardware and a garbled image would be visible for a short period of time
if video memory is not cleared.

If alternate portrait is used then the CLK signal isdivided in half to get the PCLK signal. If
the Input Clock Divide hit, in register[02] is set we can simply reset the divider. The result
of thisisaPCLK of exactly the same frequency aswe used for landscape mode and we can
use the current horizontal and vertical non-display periods. If the Input Clock Divide bit is
not set then we must recal culate the frame rate based on the a PCLK value. In this example
we will bypass recalculation of the horizontal and vertical non-display times (frame rate)
by selecting the default portrait mode scheme.

1. Calculate and set the Screen 1 Start Word Address register.
OffsetBytes = (Width x BitsPerPixel / 8) - 1 = (256 x 4/ 8) -1 = 127 = 007Fh

(“Width” isthe width of the portrait mode display - in this case the next power of two
greater than 240 pixels or 256.)

Set Screenl Display Start Word Address LSB (REG [0Ch]) to 7Fh and Screenl Dis-
play Start Word Address MSB (REG[0Dh]) to Q0h.

2. Calculate the Line Byte Count
The Line Byte Count also must be based on the power of two width.
LineByteCount = Width x BitsPerPixel / 8 = 256 x 4/ 8 = 128 = 80h.
Set the Line Byte Count (REG[1C]) to 80h.

3. Enable portrait mode.

This example uses the default portrait mode scheme. If we do not change the Portrait
Mode Pixel Clock Select bits then we will not have to recal culate the non-display tim-
ingsto correct the frame rate.

Write 80h to the Portrait Mode Register (REG[1Bh]).

Thedisplay is now configured for portrait mode use. Offset zero into display memory will
correspondsto the upper left corner of the display. The only item to keep in mind isthat the
count from thefirst pixel of one lineto the first pixel of the next line (referred to as the
“stride”) is 128 bytes.

Programming Notes and Examples S1D13705

Issue Date: 02/01/22

X27A-G-002-03

Page 44 Epson Research and Development
Vancouver Design Center

Example 7: Enable alternate portrait mode for a 320x240 panel at 4 bpp.

Note
Aswe haveto perform aframe rate calculation for this mode we need to know the fol-
lowing panel characteristics: 320x240 8-bit color to be run at 80 Hz with a 16 MHz in-
put clock.

Asin the previous example, before switching to portrait mode, display memory should be
cleared. Imagesin display memory are not rotated automatically by hardware and the
garbled image would be visible for a short period of timeif video memory is not cleared.

1. Caculate and set the Screen 1 Start Word Address register.
OffsetBytes = (Width x BitsPerPixel /8) - 1= (240x 4/8) - 1=119=0077h

Set Screenl Display Start Word Address LSB (REG [0Ch]) to 77h and Screenl Dis-
play Start Word Address MSB (REG[0Dh]) to 00h.

2. Calculate the Line Byte Count.
LineByteCount = Width x BitsPerPixel / 8 =240 x 4/ 8 =120 = 78h.
Set the Line Byte Count (REG[1C]) to 78h.

3. Enable portrait mode.

This example uses the aternate portrait mode scheme. We will not change the MCLK
Autoswitch or Pixel Clock Select settings.

Write COh to the Portrait Mode register (REG[1Bh])

4. Recaculate the frame rate dependents.

Thisexample assumesthe alternate portrait mode scheme. In this scheme, without touching
the Pixel Clock Select bitsthe PCLK value will be equal to CLK/2.

These examples don't use the Pixel Clock Select bits. The ability to dividethe PCLK value
down further than the default values was added to the S1D13705 to support hardware
portrait mode on very small panels.

ThePixel Clock value haschanged so we must cal cul ate horizontal and vertical non-display
timesto reach the desired frame rate. Rather than perform the frame rate calculations here
| will refer the reader to the frame rate calculations in Frame Rate Calculation on page 9
and simply “arrive’ at the following:

Horizontal Non-Display Period = 88h

Vertical Non-Display Period = 03h

Plugging the values into the frame rate calculations yields:

S1D13705 Programming Notes and Examples
X27A-G-002-03 Issue Date: 02/01/22

Epson Research and Development Page 45

Vancouver Design Center

FrameRate = PCLK
(HDP+ HNDP) x (VDP + VNDP)
16, 000, 000
FrameRate = 2 = 80.69

(320 + 83) x (240 + 3)

For this example the Horizontal Non-Display register [REG[08h]) needs to be set to 07h
and the Vertical Non-Display register (REG[OAh]) needs to be set to 03h.

The 16,000,000/2 in the formula above represents the input clock being divided by two
when this alternate portrait mode is selected. With the values given for this example we
must ensure the Input Clock Divide bit (REG[02h] b4) isreset (with the given valuesit was
likely set as aresult of the frame rate calculations for landscape display mode).

No other registers need to be altered.

Thedisplay is now configured for portrait mode use. Offset zero of display memory corre-
spondsto the upper left corner of the display. Display memory isaccessed exactly asit was
for landscape mode.

Asthisisthe alternate portrait mode the power of two stride issue encountered with the
default portrait modeisno longer anissue. Thestrideisthe sameasthe portrait mode width.
In this case 120 bytes.

Programming Notes and Examples S1D13705

Issue Date: 02/01/22

X27A-G-002-03

Page 46 Epson Research and Development
Vancouver Design Center

Example 8: Pan the above portrait mode image to the right by 4 pixels then scroll it
up by 6 pixels.

To pan by four pixels the start address needs to be advanced.

1. Calculate the number of bytesto change start address by.
Bytes = Pixels x BitsPerPixel / 8=4x 4/ 8 = 2 bytes
2. Increment the start address registers by the just calculated value.
In this case the value write to the start address register will be 81h (7Fh + 2 = 81h)

To scroll by 4 lineswe haveto change the start address by the offset of four lines of display.

1. Calculate the number of bytes to change start address by.
BytesPerLine = LineByteCount = 128
Bytes = Lines x BytesPerLine =4 x 128 = 512 = 200h

2. Increment the start address registers by the just calculated value

In this case 281h (81h + 200h) will be written to the Screen 1 Start Address register
Set.

Set Screenl Display Start Word Address LSB (REG[OCh]) to 81h and Screenl Dis-
play Start Word Address MSB (REG[0Dh]) to 02h.

S1D13705 Programming Notes and Examples
X27A-G-002-03 Issue Date: 02/01/22

Epson Research and Development Page 47
Vancouver Design Center

8 ldentifying the S1D13705

Thereareseveral similar productsinthe 135X and 137X LCD controller families. Products
which can share significant portions of a generic code base. It may be important for a
program to identify between products at run time.

Identification of the S1D13705 can be performed any time after the system has been
powered up by reading REG[00h], the Revision Coderegister. The six most significant bits
form the product identification code and the two least significant bits form the product
revision.

From reset (power on) the steps to identifying the S1D13705 are as follows:

1. Read REG[00h]. Mask off the lower two bits, the revision code, to obtain the product
code.

2. Theproduct code for the S1D13705 is 024h.

Programming Notes and Examples S1D13705
Issue Date: 02/01/22 X27A-G-002-03

Page 48 Epson Research and Development
Vancouver Design Center

9 Hardware Abstraction Layer (HAL)

9.1 Introduction

The HAL isa processor independent programming library provided by Epson. The HAL
was developed to aid the implementation of internal test programs, and provides an easy,
consistent method of programming the S1D13705 on different processor platforms. The
HAL aso alowsfor easier porting of programs between S1D1370X products. Integral to
the HAL isan information structure (HAL_STRUCT) that contains configuration data on
clocks, display modes, and default register values. This structure combined with the utility
13705CFG.EXE allows quick customization of a program for a new target display or
environment.

Using the HAL keeps sample code simpler, although some programmers may find the HAL
functions to be limited in their scope, and may wish to program the S1D 13705 without
using the HAL.

9.2 Contents of the HAL _STRUCT

The HAL_STRUCT below is contained in the file “hal .h” and is required to use the HAL library.

typedef struct tagHal Struct
{
char szl dString[16];
WORD wDet ect Endi an;

WORD wSi ze;

BYTE Regs [MAX REG + 1];

DWORD dwd kI ; [* Input Cock Frequency (in kHz) */

DWORD dwDi spMem /* Starting address of display buffer menory */
WORD wkr aneRat e; /* Desired panel frame rate */

} HAL_STRUCT;

Within the Regs array ia a structure which defines all the registers described in the
S1D13705 Hardwar e Functional Specification, document number X27A-A-001-xx. Using
the 13705CFG.EXE utility you can adjust the content of the registers contained in
HAL_STRUCT to alow for different LCD panel timing values and other default settings
used by the HAL. In the ssimplest case, the program only calls afew basic HAL functions
and the contents of the HAL_STRUCT are used to setup the S1D13705 for operation.

S1D13705 Programming Notes and Examples
X27A-G-002-03 Issue Date: 02/01/22

Epson Research and Development Page 49

Vancouver Design Center

9.3 Using the HAL library

To utilizethe HAL library, the programmer must include two “.h” filesin their code.
“Hal.h” containsthe HAL library function prototypes and structure definitions, and
“appcfg.h” contains the instance of the HAL_STRUCT that is defined in “Hal.h” and
configured by 13705CFG.EXE. For a more thorough example of using the HAL see
Section 10.1, “ Sample code using the S1D13705 HAL API” on page 66.

Note
Many of the HAL library functions have pointers as parameters. The programmer
should be aware that little validation of these pointersis performed, so it isup to the
programmer to ensure that they adhere to the interface and use valid pointers.
Programmers are recommended to use the highest warning levels of their compiler in
order to verify the parameter types.

9.4 API for 13705HAL

This section isadescription of the HAL library Application Programmers Interface (API).
Updates and revisionsto the HAL may include new functions not included in this documen-
tation.

Table 9-1: HAL Functions

Function Description

Initialization:

Registers the S1D13705 parameters with the HAL, calls selnitHal if necessary.
seRegisterDevice MUST be the first HAL function called by an application.

Programs the S1D13705 for use with the default settings, calls seSetDisplayMode to do the

seRegisterDevice

seSetlnit work, clears display memory. Note: either seSetlinit or seSetDisplayMode must be called
AFTER calling seRegisterDevice
General HAL Support:
seGetld Interpret the revision code register to determine chip id
seGetHalVersion Return version information on the HAL library
seGetLastUsableByte Determine the offset of the last unreserved usable byte in the display buffer

seGetBytesPerScanline

Determine the number of bytes or memory consumed per scan line in current mode

seGetScreenSize

Determine the height and width of the display surface in pixels

seDelay

Use the frame rate timing to delay for required seconds (requires registers to be initialized)

seSetHighPerformance

Used in color modes less than 8-bpp to toggle the high performance bit on or off

Advanced HAL Functions:

seSplitinit Initialize split screen variables and setup start addresses
seSplitScreen Set the size of either the top or bottom screen
seVirtlnit Initialize virtual screen mode setting x and y sizes
seVirtMove pan/scroll the virtual screen surface(s)
Hardware Rotate:
seSetHWRotate Set the hardware rotation to either Portrait or Landscape
seSetPortraitMethod Call before setting hardware portrait mode to set either Default or Alternate Portrait Mode

Programming Notes and Examples
Issue Date: 02/01/22

S1D13705
X27A-G-002-03

Page 50 Epson Research and Development
Vancouver Design Center

Table 9-1: HAL Functions (Continued)

Function Description
Register / Memory Access:
seSetReg Write a Byte value to the specified S1D13705 register
seGetReg Read a Byte value from the specified S1D13705 register
seWriteDisplayBytes Write one or more bytes to the display buffer at the specified offset
seWriteDisplayWords Write one or more words to the display buffer at the specified offset
seWriteDisplayDwords Write one or more dwords to the display buffer at the specified offset
seReadDisplayByte Read a byte from the display buffer from the specified offset
seReadDisplayWord Read a word from the display buffer from the specified offset
seReadDisplayDword Read a dword from the display buffer from the specified offset
Color Manipulation:
seSetLut Write to the Look-Up Table (LUT) entries starting at index 0
seGetLut Read from the LUT starting at index 0
seSetLutEntry Write one LUT entry (red, green, blue) at the specified index
seGetLutEntry Read one LUT entry (red, green, blue) from the specified index
seSetBitsPerPixel Set the color depth
seGetBitsPerPixel Determine the current color depth
Drawing:
seSetPixel Draw a pixel at (x,y) in the specified color
seGetPixel Read pixel's color at (x,y)
seDrawLine Draw a line from (x1,y1) to (x2,y2) in specified color
seDrawRect Draw a rectangle from (x1,y1) to (x2,y2) in specified color
Power Save:
seSetPowerSaveMode Control S1D13705 SW power save mode (enable/disable)
S1D13705 Programming Notes and Examples

X27A-G-002-03 Issue Date: 02/01/22

Epson Research and Development Page 51
Vancouver Design Center

9.4.1 Initialization

The following section describes the HAL functions dealing with S1D13705 initialization.
Typically aprogrammer has only to concern themselves with calls to seRegisterDevice()
and seSetlnit().

int seRegisterDevice(const LPHAL_STRUC IpHalinfo)

Description: Thisfunction registers the S1D13705 device parameters with the HAL library. The
device parametersinclude address range, register values, desired frame rate, etc.,
and are storedinthe HAL _STRUCT structure pointed to by |pHalInfo. Additional ly
thisroutine alocates system memory as address spacefor accessing registersand the
display buffer.

Parameters. IpHallnfo - pointer to HAL_STRUCT information structure

Return Value: ERR_OK - operation completed with no problems
ERR_UNKNOWN_DEVICE - the HAL was unable to find an S1D13705.

Note
seRegisterDevice() MUST be called before any other HAL functions.
No S1D13705 registers are changed by calling seRegisterDevice().

seSetlnit()

Description: Configuresthe S1D13705 for operation. Thisfunction setsall the S1D13705 control
registersto their default values.

Initialization of the S1ID 13705 isatwo step process to accommodate those programs
(e.g. 13705PLAY .EXE) which do not initialize the S1D13705 on start-up.

Parameters. None
Return Value: ERR_OK - operation completed with no problems

Note
After thiscall the Look-Up Table will be set to adefault state appropriate to the display

type.

Unlike S1D1350x HAL versions, this function does not call seSetDisplayMode as this
function does not exist in the 13705 HAL.

Programming Notes and Examples S1D13705
Issue Date: 02/01/22 X27A-G-002-03

Page 52

Epson Research and Development
Vancouver Design Center

9.4.2 General HAL Support

Functions in this group do not fit into any specific category of support. They provide a
miscellaneous range of support for working with the S1D13705

int seGetld(int * pld)

Description: Reads the S1D13705 revision code register to determine the chip product and
revisions. Theinterpreted value isreturned in pID.

Parameters: pld - pointer to an integer which will receive the controller ID.

S1D13705 values returned in pID are:
- 1D_S1D13705_REVO
- ID_UNKNOWN

Other HAL libraries will return their respective controller 1Ds upon detection of
their controller.

Return Values ERR_OK - operation completed with no problems
ERR_UNKNOWN_DEVICE - the HAL was unable to identify the display
controller. Returned when pID returns ID_UNKNOWN.

void seGetHalVersion(const char ** pVersion, const char ** pStatus,
const char **pStatusRevision)

Description: Retrievesthe HAL library version. The return pointers are all to ASCII strings. A
typical return would be: *pVersion=="1.01" (HAL version 1.01),* pStatus == “B”
(The 'B' isthe beta designator), * pStatusRevision == “5". The programmer need
only create pointers of const char type to pass as parameters (see Exampl e below).

Parameters. pVersion - Pointer to string to return the versionin.
- must point to an allocated string of size VER_SIZE
pStatus - Pointer to a string to return the release status in.

- must point to an allocated string of size STATUS SIZE
pStatusRevision - Pointer to return the current revision of status.
- must point to an allocated string of size STAT_REV_SIZE

Return Value: None

Example: const char *pVersion, *pStatus, * pStatusRevision;
seGetHalVersion(&pVersion, & pStatus, & pStatusRevision);

S1D13705
X27A-G-002-03

Programming Notes and Examples
Issue Date: 02/01/22

Epson Research and Development Page 53
Vancouver Design Center

int seSetBitsPerPixel(int BitsPerPixel)

Description: Thisroutine sets the display color depth.
After performing validity checks to ensure the requested video mode can be set the
appropriate registers are changed and the Look-Up Tableis set its default values
appropriate to the color depth.
Thiscall is similar to a mode set call on a standard V GA.

Parameter: BitsPerPixel - desired color depth in bits per pixel.
- Valid arguments are: 1, 2, 4, and 8.

Return Value: ERR_OK - operation completed with no problems
ERR_FAILED- possible causes for this error include:

1) the desired frame rate may not be attainable with the specified input clock

2) the combination of width, height and color depth may require more memory than
isavailable on the S1D13705.

int seGetBitsPerPixel(int * pBitsPerPixel)

Description: Thisfunction readsthe S1D13705 registers to determine the current color depth and
returns the result in pBitsPerPixel.

Parameters. pBitsPerPixel - pointer to an integer to receive current color depth.
- return values will be: 1, 2, 4, or 8.

Return Value: ERR_OK - operation completed with no problems

int seGetBytesPerScanline(int * pBytes)

Description: Determinesthe number of bytes per scan line of current display mode. It is assumed
that the registers have already been correctly initialized before seGetBytesPer-
Scanling() is called (i.e. after initializing the HAL, setting the Display mode and
adjusting the bits per pixel or other values).

The number of bytes per scanline will include non-displayed bytesif the screen
width is greater the display width, or in Default Portrait Mode.

Parameters. pBytes - pointer to an integer to receive the number of bytes per scan line

Return Value: ERR_OK - operation completed with no problems

Programming Notes and Examples S1D13705
Issue Date: 02/01/22 X27A-G-002-03

Page 54 Epson Research and Development
Vancouver Design Center

int seGetScreenSize(int * Width, int * Height)

Description: Retrievesthewidth and height in pixels of the display surface. The width and height
are derived by reading the horizontal and vertical size registers and calculating the
dimensions. Virtua dimensions are not taken into account for this cal culation.

Whenthedisplay isin portrait modethe dimensionswill be swapped. (i.e. a640x480
display in portrait mode will return awidth of 480 and height of 640).

Parameters: Width - pointer to an integer to receive the display width
Height - pointer to an integer to receive the display height

Return value: ERR_OK - the operation completed successfully

int seDelay(int MilliSeconds)

Description: Thisfunction will delay for the length of time specified in “MilliSeconds” before
returning to the caller.

Thisfunctionwas originally intended for non-PC platforms. Information about how
to access the timers was not always available however we do know frame rate and
can use that for timing calculations.
The S1D13705 registers must be initialized for this function to work correctly. On
the PC platform thisis simply a call to the C timing functions and is therefore
independent of the register settings.

Parameters: MilliSeconds- time to delay in seconds

Return Value: ERR_OK - operation completed with no problems

ERR_FAILED- returned on non-PC platforms when the S1D13705 registers have
not bee initialized

int seGetLastUsableByte(long * plLastByte)

Description: Thisfunctions returns a pointer, as along integer, to the last byte of usable display
memory.

The returned value never changes for the S1D13705.

Parameters: plLastByte - pointer to along integer to receive the offset to the last byte of
display memory

Return Value ERR_OK - operation completed with no problems

S1D13705 Programming Notes and Examples
X27A-G-002-03 Issue Date: 02/01/22

Epson Research and Development Page 55

Vancouver Design Center

int seSetHighPerformance(BOOL OnOff)

Description: Thisfunction call enables or disable the high performance bit of the S1D13705.
When high performance is enabled then MClk equals PCIk for all video display
resolutions. In the high performance state CPU to video memory performanceis
improved at the cost of higher power consumption.

When high performanceisdisabled then MClk rangesfrom PCIk/1 at 8 bit-per-pixel
to PCIk/8 at 1 bit-per-pixel. Without high performance CPU to video memory
speeds are slower and the S1D13705 uses less power.

Parameters: OnOff - aboolean value (defined in HAL .H) to indicate whether to
enable of disable high performance.

Return Value: ERR_OK - operation completed with no problems

9.4.3 Advanced HAL Functions

Advanced HAL functions include the functions to support split, virtual and rotated
displays. While the concept for using these features is advanced the HAL makes actualy
using them easy.

int seSetPortraitMethod(int Style)

Description: Thisselectsthe portrait mode method to be used when seSetHWRotate() iscalled to
put the S1D13705 into portrait mode.

Parameters. Style - call with style set to DEFAULT (-1) to select Default Portrait Mode
- call with style set to any other valueto select Alternate Portrait Mode.

Return Value: ERR_OK - operation completed with no problems
ERR_FAILED - the operation failed.

int seSetHWRotate(int Rotate)

Description: Thisfunction sets the rotation scheme according to the value of 'Rotate’. When
portrait mode is selected as the display rotation the scheme selected is the 'non-X2'
scheme.

Parameters. Rotate - the direction to rotate the display
- Valid arguments for Rotate are: LANDSCAPE and PORTRAIT.

Return Value: ERR_OK - operation completed with no problems
ERR_FAILED - the operation failed to complete.
Themost likely reason for failing to set arotate modeisan inability to set the desired
frame rate when setting portrait mode. Other factors which can cause afailure
include having a 0 Hz frame rate or specifying avalue other than LANDSCAPE or
PORTRAIT for the rotation scheme.

Programming Notes and Examples S1D13705

Issue Date: 02/01/22

X27A-G-002-03

Page 56 Epson Research and Development
Vancouver Design Center
int seSplitlnit(WORD Scrn1Addr, WORD Scrn2Addr)

Description: Thisfunction preparesthe system for split screen operation. In order for split screen
to function the starting address in the display buffer for the upper portion(screen 1)
and the lower portion (screen 2) must be specified. Screen 1 is aways displayed
above screen 2 on the display regardless of the location of their start addresses.

Parameters: ScrnlAddr - offset, in bytes, to the start of screen 1
Scrn2Addr - offset, in bytes, to the start of screen 2

Return Value: ERR_OK - operation completed with no problems

Note

It isassumed that the system has been initialized prior to calling seSplitInit().

int seSplitScreen(int Screen, int VisibleScanlines)

Description: Changes the relevant registers to adjust the split screen according to the number of
visible lines requested. "WhichScreen' determines which screen, 1 or 2, to base the
changes on.

The smallest surface screen 1 can display isoneline. Thisis due to the way the
S1D13705 operates. Setting Screen 1 Vertical Size to zero resultsin one line of
screen 1 being displayed. The remainder of the display will be screen 2 image.

Parameters: Screen - must be set to 1 or 2 (or use the constants SCREEN1 or SCREEN?2)
VisibleScanlines- number of lines to display for the selected screen

Return Values ERR_OK - operation completed with no problems
ERR_HAL_BAD_ARG- argument VisibleScanlinesis negative or is greater than
vertical panel size or WhichScreen is not SCREEN1 or SCREEN 2.

Note

Changing the number of linesfor one screen will aso change the number of linesfor the
other screen.
seSplitInit() must be called before calling seSplitScreen().

S1D13705 Programming Notes and Examples

X27A-G-002-03

Issue Date: 02/01/22

Epson Research and Development Page 57
Vancouver Design Center

int seVirtlnit(DWORD VirtX, DWORD * VirtY)

Description: Thisfunction prepares the system for virtual screen operation. The programmer
passesthe desired virtual width in pixels. Whentheroutinereturns VirtY will contain
the maximum number of line that can be displayed at the requested virtual width.

Parameter: VirtX - horizontal size of virtual display in pixels.
(Must be greater or equal to physical size of display)
Virty - pointer to an integer to receive the maximum number of displayable

lines of 'VirtX" width.

Return Value: ERR_OK - operation completed with no problems
ERR_HAL BAD_ARG - returned in three situations:
1) the virtual width (VirtX) is greater than the largest possible width
(VirtX varies with color depth and ranges from 4096 pixels wider
than the panel at 1 bit-per-pixel down to 512 pixels wider than the
panel at 8 bit-per-pixel)
2) the virtual width islessthan the physical width or
3) the maximum number of lines becomes less than the physical
number of lines

Note
The system must have been initialized prior to calling seVirtlnit()

int seVirtMove(int Screen, int x, int y)

Description: Thisroutine pans and scrolls the display. In the case where split screen operationis
being used, the Screen argument specifieswhich screen to move. Thex and y param-
eters specify, in pixels, the starting location in the virtual image for the top left
corner of the applicable display.

Parameter: Screen - must be set to 1 or 2, or use the constants SCREEN1 or SCREEN2,
to identify which screen to base calculations on
X - new starting X position in pixels
y - new starting Y position in pixels

Return Value: ERR_OK - operation completed with no problems
ERR_HAL_BAD_ARG- there are several reasons for this return value:
1) WhichScreen isnot SCREEN1 or SCREEN2.
2) they argument is greater than the last available line less the screen height.

Note
seVirtInit() must be been called before calling seVirtMove().

Programming Notes and Examples S1D13705
Issue Date: 02/01/22 X27A-G-002-03

Page 58 Epson Research and Development
Vancouver Design Center

9.4.4 Register /| Memory Access

The Register/Memory Access functions provide access to the S1D13705 registers and
display buffer through the HAL .

int seGetReg(int Index, BYTE * pValue)
Description: Reads the value in the register specified by index.

Parameters: Index - register index to read
pVaue - pointer to aBY TE to receive the register value.

Return Value ERR_OK - operation completed with no problems

int seSetReg(int Index, BYTE Value)
Description: Writes value specified in Value to the register specified by Index.

Parameters: Index - register index to set
Value - value to write to the register

Return Value ERR_OK - operation completed with no problems

int seReadDisplayByte(DWORD Offset, BYTE *pByte)

Description: Reads abyte from the display buffer at the specified offset and returnsthe value in

pByte.
Parameters: Offset - offset, in bytes from start of the display buffer, to read from
pByte - pointer to aBYTE to return the value in

Return Value: ERR_OK - operation completed with no problems
ERR_HAL BAD_ARG - if the value for Addr is greater 80 kb

int seReadDisplayWord(DWORD Offset, WORD *pWord)

Description: Readsaword from the display buffer at the specified offset and returnsthe valuein

pWord.
Parameters: Offset - offset, in bytes from start of the display buffer, to read from
pWord - pointer to aWORD to return the valuein

Return Value: ERR_OK - operation completed with no problems.
ERR_HAL_BAD_ARG - if the value for Addr is greater than 80 kb.

S1D13705 Programming Notes and Examples
X27A-G-002-03 Issue Date: 02/01/22

Epson Research and Development Page 59

Vancouver Design Center

int seReadDisplayDword(DWORD Offset, DWORD *pDword)

Description: Readsadword from the display buffer at the specified offset and returns the value

in pDword.
Parameters: Offset - offset from start of the display buffer to read from
pDword - pointer to aDWORD to return the value in

Return Value: ERR_OK - operation completed with no problems.
ERR_HAL_BAD_ARG - if the value for Addr is greater than 80 kb.

int seWriteDisplayBytes(DWORD Offset, BYTE Value, DWORD Count)

Description: Thisroutine writes one or more bytes to the display buffer at the offset specified by
Offset. If acount greater than one is specified all bytes will have the same value.

Parameters. Offset - offset from start of the display buffer to start writing at
Vaue - BYTE vaueto write
Count - number of bytesto write

Return Value: ERR_OK - operation completed with no problems
ERR_HAL BAD_ ARG - if the value for Addr or the value of Addr plus Count is
greater than 80 kb.

Note
There are slight functionality differences between the S1D1370x and the S1D1350x
HAL.

int seWriteDisplayWords(DWORD Offset, WORD Value, DWORD Count)

Description: Writesone or more WORDS to the display buffer at the offset specified by Addr. If
acount greater than oneis specified all WORDS will have the same value.

Parameters. Offset - offset from start of the display buffer
Vaue - WORD value to write
Count - number of words to write

Return Value: ERR_OK - operation completed with no problems
ERR _HAL BAD_ ARG - if thevaluefor Addr or if Addr plus Count is greater than
80 kb.

Note
There are dlight functionality differences between the S1D1370x and the S1D1350x
HAL.

Programming Notes and Examples S1D13705

Issue Date: 02/01/22

X27A-G-002-03

Page 60

Epson Research and Development
Vancouver Design Center

9.45 Power Save

int seWriteDisplayDwords(DWORD Offset, DWORD Value, DWORD Count)

Description: Writes one or more DWORDS to the display buffer at the offset specified by Addr.
If acount greater than oneis specified all DWORDSs will have the same value.

Parameters: Offset - offset from start of the display buffer
Value - DWORD value to write
Count - number of dwordsto write

Return Values ERR_OK - operation completed with no problems
ERR_HAL_BAD_ARG - if thevaluefor Addr or if Addr plus Count is greater than
80 kb.

Note
There are dlight functionality differences between the S1D1370x and the S1D1350x
HAL.

This section covers the HAL functions dealing with the Power Save features of the
S1D13705.

int seSetPowerSaveMode(int PwrSaveMode)
Description: Thisfunction sets on the S1D13705' s software sel ectable power save modes.
Parameters: PwrSaveMode - integer value specifying the desired power save mode.
Acceptable values for PwrSaveMode are:
0 - (software power save mode) in this mode registers and memory are
read/writable. LCD output isforced low.

3 - (normal operation) all outputs function normally.

Return Value ERR_OK - operation completed with no problems

S1D13705
X27A-G-002-03

Programming Notes and Examples
Issue Date: 02/01/22

Epson Research and Development Page 61

Vancouver Design Center

9.4.6 Drawing
The Drawing routines cover HAL functions that deal with displaying pixels, linesand
shapes.
int seSetPixel(long x, longy, DWORD Color)
Description: Draws apixel at coordinates (x,y) in the requested color. This routine can be used
for any color depth.
Parameters. x - horizontal coordinate of the pixel (starting from 0)
y - vertical coordinate of the pixel (starting from 0)
Color -at 1,2, 4, and 8 bpp Color isan index into the LUT.
At 15 and 16 bpp Color defines the color directly
(i.e. rrrrrggggggbbbbb for 16 bpp)
Return Value: ERR_OK - operation completed with no problems.
int seGetPixel(long x, long y, DWORD *pColor)
Description: Readsthe pixel color at coordinates (x,y). This routine can be used for any color
depth.
Parameters. X - horizontal coordinate of the pixel (starting from 0)
y - vertical coordinate of the pixel (starting from Q)
pColor -at 1, 2, 4, and 8 bpp pColor pointsto an index into the LUT.
At 15 and 16 bpp pColor pointsto the color directly
(i.e. rrrrrggggggbbbbb for 16 bpp)
Return Value: ERR_OK - operation completed with no problems.
int seDrawLine(int x1, int y1, int x2, int y2, DWORD Color)
Description: Thisroutine draws aline on the display from the endpoints defined by x1,y1 to the
endpoint x2,y2 in the requested 'Color".
Currently seDrawLine() only draws horizontal and vertical lines.
Parameters. (x1, yl) - first endpoint of the linein pixels
(x2,y2) - second endpoint of the line in pixels (see note below)
Color - color to draw with. 'Color' isan index into the LUT.
Return Value: ERR_OK - operation completed with no problems
Note
Functionality differsfrom the 135x HAL.
Programming Notes and Examples S1D13705

Issue Date: 02/01/22

X27A-G-002-03

Page 62

Epson Research and Development
Vancouver Design Center

int seDrawRect(long x1, long y1, long x2, long y2, DWORD Color,
BOOL SolidFill)

Description: Thisroutine draws and optionally fills a rectangular area of display buffer. The
upper right corner isdefined by x1,y1 and the lower right corner isdefined by x2,y2.
The color, defined by Color, applies both to the border and to the optional fill.

Parameters: x1,y1 - top left corner of the rectangle (in pixels)
X2,y2 - bottom right corner of the rectangle (in pixels)
Color - The color to draw the rectangle outline and fill with
- Color isan index into the Look-Up Table.
SolidFill - Flag whether to fill the rectangle or simply draw the border.

- Set to O for no fill, set to non-0 to fill the inside of the rectangle

Return Value: ERR_OK - operation completed with no problems.

9.4.7 LUT Manipulation

These functions deal with altering the color valuesin the Look-Up Table.
int seSetLut(BYTE *pLut, int Count)

Description: Thisroutinewritesone or more LUT entries. The writes always start with Look-Up
Tableindex 0 and continue for ‘Count’ entries.

A Look-Up Table entry consists of three bytes, one each for Red, Green, and Blue.
The color information is stored in the four most significant bits of each byte.

Parameters: pLut - pointer to an array of BY TE ut[16][3]
lut[x][0] == RED component
lut[x][1] == GREEN component
lut[x][2] == BLUE component
Count - the number of LUT entriesto write.

Return Value: ERR_OK - operation completed with no problems

int seGetLut(BYTE *pLUT, int Count)

Description: Thisroutine reads one or more LUT entries and puts the result in the byte array
pointed to by pLUT.

A Look-Up Table entry consists of three bytes, one each for Red, Green, and Blue.
The color information is stored in the four most significant bits of each byte.

Parameters: pLUT - pointer to an array of BY TE lut[16][3]
- pLUT must point to enough memory to hold ‘Count' x 3 bytes of data.
Count - the number of LUT elements to read.

Return Value: ERR_OK - operation completed with no problems

S1D13705
X27A-G-002-03

Programming Notes and Examples
Issue Date: 02/01/22

Epson Research and Development Page 63

Vancouver Design Center

int seSetLutEntry(int Index, BYTE *pEntry)

Description: Thisroutine writesone LUT entry. Unlike seSetlL ut, the LUT entry indicated by
‘Index' can be any value from 0 to 255.

A Look-Up Table entry consists of three bytes, one each for Red, Green, and Blue. The color infor-
mation is stored in the four most significant bits of each byte.

Parameters: Index - index to LUT entry (0 to 255)
pLUT - pointer to an array of three bytes.

Return Value: ERR_OK - operation completed with no problems

int seGetLutEntry(int index, BYTE *pEntry)
Description: Thisroutine reads one LUT entry from any index.

A Look-Up Table entry consists of three bytes, one each for Red, Green, and Blue.
The color information is stored in the four most significant bits of each byte.

Parameters. Index - index to LUT entry (0 to 255)
pEntry - pointer to an array of three bytes

Return Value: ERR_OK - operation completed with no problems

Programming Notes and Examples S1D13705

Issue Date: 02/01/22

X27A-G-002-03

Page 64

Epson Research and Development
Vancouver Design Center

9.5 Porting LIBSE to a new target platform

Building Epson Research and Devel opment applications like asimple HelloApp for anew
target platform requires 3 things, the HelloApp code, the 13705HAL library, and a some
standard C functions (portable ones are encapsulated in our mini C library LIBSE).

HelloApp Source code

HelloApp e« CLibrary Functions (LIBSE for embedded platforms)

13705HAL Library
Components needed to build 13705 HAL application

For example, when building HELLOAPP.EXE for the Intel 16-bit platform, you need the
HELLOAPP sourcefiles, the 13705HAL library and itsincludefiles, and some Standard C
library functions (which in this case would be supplied by the compiler as part of its run-
time library). AsthisisaDOS .EXE application, you do not need to supply start-up code
that sets up the chip selects or interrupts, etc... What if you wanted to build the application
for an SH-3 target, one not running DOS?

Before you can build that application to load onto the target, you need to build a C library
for the target that contains enough of the Standard C functions (like sprintf and strcpy) to
let you build the application. Epson Research and Development suppliesthe LIBSE for this
purpose, but your compiler may come with one included. Y ou also need to build the
13705HAL library for the target. Thislibrary isthe graphics chip dependent portion of the
code. Finally, you need to build the final application, linked together with the libraries
described earlier. The following examples assume that you have a copy of the complete
source code for the S1D 13705 utilities, including the nmake makefiles, aswell asacopy of
the GNU Compiler v2.7-96g3a for Hitachi SH3. These are available on the World Wide
Web at http://www.erd.epson.com.

S1D13705
X27A-G-002-03

Programming Notes and Examples
Issue Date: 02/01/22

Epson Research and Development Page 65

Vancouver Design Center

9.5.1 Building the LIBSE library for SH3 target example

In the LIBSE files, there are three main types of files:
» Cfilesthat contain the library functions.
 assembler filesthat contain the target specific code.

» makefiles that describe the build process to construct the library.

The Cfilesare generic to all platforms, although there are some customizations for targets
intheform of #ifdef LCEVBSH3 code (theifdef used for the example SH3 target L ow Cost
Eval Board SH3). The majority of this code remains constant whichever target you build
for.

The assembler files contain some platform setup code (stacks, chip selects) and jumpsinto
the main entry point of the C code that is contained in the C file entry.c. For our example,
the assembler fileis STARTSH3.S and it performs only some stack setup and ajump into
the code at _mainEntry (entry.c).

In the embedded targets, printf (in file rprintf.c), putchar (putchar.c) and getch (kb.c)
resolve to serial character input/output. For SH3, much of the detail of handling serial 10
is hidden in the monitor of the evaluation board, but in genera the primitives are fairly
straight forward, providing the ability to get characters to/from the serial port.

For our target example, the nmake makefile is makesh3.mk. This makefile calls the Gnu
compiler at aspecific location (TOOLDIR), enumeratesthe list of filesthat go into the
target and builds a .alibrary file as the output of the build process.

With nmake.exein your path run:;

nmake -fmakesh3.mk

9.5.2 Building the HAL library for the target example

Building the HAL for the target example isless complex because the codeis writtenin C
and requires little platform specific adjustment. The nmake makefile for our exampleis
makesh3.mk.This makefile contains the rules for building sh3 objects, the fileslist for the
library and the library creation rules. The Gnu compiler tools are pointed to by TOOLDIR.

With nmake in your path run:

nmake -fmakesh3.mk

Programming Notes and Examples S1D13705

Issue Date: 02/01/22

X27A-G-002-03

Page 66 Epson Research and Development

Vancouver Design Center

10 Sample Code

Included in the sample code section are two examples of programing the S1D13705. The
first sample usesthe HAL to draw ared square, wait for user input then rotates to portrait
mode and draws a blue square. The second sample code performs the same procedures but
directly accesses the registers of the S1D13705. These code samples are for example
purposes only.

10.1 Sample code using the S1D13705 HAL API

/*

* *

*/
#i

SAMPLELl. C - Sanpl e code denonstrating a programusing the S1D13705 HAL

Created 1998, Vancouver Design Centre
Copyright (c) 1998, 1999 Epson Research and Devel oprent, Inc.
Al'l Rights Reserved.

The HAL APl code is configured for the foll ow ng:

320x240 Single Color 4-bit STN
8 bpp - 70 Hz Frane Rate (6 Mz CLKi)
Hi gh Performance enabl ed

ncl ude <coni o. h>

#i ncl ude <stdi o. h>
#i ncl ude <stdlib. h>
#i ncl ude <string. h>
#i ncl ude "hal . h" /* Structures, constants and prototypes. */
#i ncl ude "appcfg. h" /* HAL configuration information. */
/ K o o o e e o e e o e o o e o e e o e e e e e e e e o e */
voi d mai n(voi d)
{
i nt Chi pl d;
/ *
** |nitialize the HAL.
** The call to seRegisterDevice() actually prepares the HAL library
** for use. The S1D13705 is not accessed, except to read the revision
** code register.
*/
if (ERR_OK != seRegi sterDevice(&Hal | nfo))
{
printf("\nERROR Could not register S1D13705 device.");
exit(1);
}
S1D13705 Programming Notes and Examples

X27A-G-002-03 Issue Date: 02/01/22

Epson Research and Development Page 67
Vancouver Design Center

/*

** CGet the product code to verify this is an S1D13705.
*/

seCet | d(&Chi pl d) ;

if (1D_S1D13705_Revl != Chipld)

{
printf("\nERROR. Did not detect an S1D13705.");
exit(1);

}

/*

** |nitialize the S1D13705.
** This step prograns the registers with values taken from
** the Hallnfo struct in appcfg.h.

*/

if (ERR.OK = seSetlnit())

{
printf("\nERROR. Could not initialize device.");
exit(1);

}

/*

** The default initialization cleared the display.

** Draw a 100x100 red (color 1) rectangle in the upper
** | eft corner (0,0) of the display.

*/

seDrawRect (0, 0, 100, 100, 1, TRUE);

/*

** Pause here.

*/

getch();

/*

** Clear the display. Do this by witing 81920 bytes
*/

seWiteD splayBytes(0, 0, EIGHTY_K);

/*

** Setup portrait node.

*/

seSet HARot at e(PORTRAI T) ;

/*

** Draw a solid blue 100x100 rectangle in center of the display.
** This starting co-ordinates, assum ng a 320x240 display is
** (320-100)/2 , (240-100)/2 = 110, 70.

*/

seDrawRect (110, 70, 210, 170, 2, TRUE);

/*

** Done!

*/

exit(0);

Programming Notes and Examples S1D13705
Issue Date: 02/01/22 X27A-G-002-03

Page 68 Epson Research and Development
Vancouver Design Center

10.2 Sample code without using the S1D13705 HAL API

This second sample demonstrates exactly the same sequence asthe first however the HAL

is not used, all manipulation is done by directly accessing the registers.

** SAMPLE2. C - Sanpl e code denponstrating a direct access of the S1D13705.
** Created 1998, Vancouver Design Centre

** Copyright (c) 1998, 1999 Epson Research and Devel opnent, |nc.

** Al Rights Reserved.

** The sanpl e code using direct S1D13705 access
** will configure for the foll ow ng:

** 320x240 Single Color 4-bit STN
** 8 bpp color depth - 70 Hz Frane Rate (6 M1z CLKi)

** Not es:

** 1) This code is witten to be conpiled for use under 32-bit

*x W ndows. In order to function the vxd file S1D13X0OX. VXD nust

*x be in the \ W NDOWS\ SYSTEM di rectory.

** 2) Register setup is done with discreet wites rather than being table

*x driven. This allows for clear comenting. It is nore efficient to

*x | oop through the array witing each elenent to a control register

** 3) The array of register values as produced by 13705CFG EXE is incl uded

*x here. | wite the registers directly rather than refer to the register
*x array in the sanple code

* %
Bt
*/

#i ncl ude <coni o. h>
#i ncl ude <wi ndows. h>
#i ncl ude <wi nioctl.h>
#i nclude "ioctl.h"

** Look-Up Table - 16 of 256 el enents.

** For this sanple only the first sixteen LUT elements are set.
*/

unsi gned char LUT[16*3] =

{
0x00, 0x00, 0x00,/* BLACK */
0x00, 0x00, OxAO0,/* BLUE */
0x00, OxA0, 0x00,/* GREEN */
0x00, OxA0, OxA0,/* CYAN */
0xA0, 0x00, 0x00,/* RED */
0xA0, 0x00, OxAO0,/* PURPLE */
S1D13705 Programming Notes and Examples

X27A-G-002-03 Issue Date: 02/01/22

Epson Research and Development Page 69
Vancouver Design Center
O0xA0, OxAO0, O0x00,/* YELLOW */
0xA0, OxAO0, OxA0,/* WH TE */
0x00, 0x00, 0x00,/* BLACK */
0x00, 0x00, OxFO,/* LT BLUE */
0x00, OxFO, 0x00,/* LT GREEN */
0x00, OxFO, OxFO,/* LT CYAN */
OxF0, 0x00, 0x00,/* LT RED */
0xF0, 0x00, OxFO,/* LT PURPLE */
0xF0, OxFO, 0x00,/* LT YELLOW */
0xF0, OxFO, OxFO/* LT WHITE */
1
/ *
** Regi ster data.
** These val ues were generated using 13705CFG EXE
** The sanpl e code uses these values but does not refer to this array.
** |n a typical application these values would be witten to the registers
** using a |oop.
*/
unsi gned char Reg[0x20] =
{
0x00, 0x23, O0xC0, O0x03, 0x27, OxEF, 0x00, 0x00,
0x00, 0x00, 0x03, 0x00, 0x00, O0x00, O0x00, 0x00,
0x00, 0x00, OxFF, 0x03, 0x00, O0x00, 0x00, 0xO00,
0x00, 0x00, 0x00, 0x00, 0x00
1
#defi ne MEM SI ZE 0x14000/* 80 kb display buffer. */
t ypedef unsigned short WORD;/* Some useful types */
t ypedef unsigned | ong DWORD;
typedef unsigned char BYTE;
t ypedef BYTE * PBYTE
#defi ne LOBYTE(W) ((BYTE) (w))
#def i ne H BYTE(w) ((BYTE) (((WORD) (w) >> 8) & OxFF))
#define SET_REGEidx, val) (*(pRegs + idx)) = (val)
/ K o e e e e e e e e o o o e e */
voi d mai n(voi d)
{
PBYTE p13705;
PBYTE pRegs;
PBYTE pMem
PBYTE pLUT;
int x, y, tnp;
int BitsPerPixel = 8;
int Wdth = 320;
i nt Hei ght = 240;
int OFfsetBytes;
int rc;
/ *
** Get a linear address we can use in our code to access the S1D13705.
** This is only needed to access the S1D13705 on the | SA eval board.
Programming Notes and Examples S1D13705

Issue Date: 02/01/22

X27A-G-002-03

Page 70 Epson Research and Development
Vancouver Design Center

*/
DWORD dwLi near Addr ess;
rc = Intel GetLi nAddr essWB2(0xFO0000, &dwli near Addr ess);
if (rc 1=0)
{
printf("Error getting linear address");
return;
}
p13705 = (PBYTE)dwLi near Addr ess;
pRegs = p13705 + Ox1FFEO;

/*
** Check the revision code. Exit if we don't find an S1D13705.
*/
if (0x24 !'= *pRegs)
{
printf("Didn't find an S1D13705");
return;
}
/*
** Initialize the chip - after initialization the display will be

** setup for |andscape use.

** Nornally a | oop would be used to wite the register array near
** the top of this file to the registers.

** For purposes of docunenting the sanple code, each register wite
** js performed individually.

*/

/*

** Register 01h: Mdde Register 0 - Color, 8-bit format 2

*/

SET_REGQ 0x01, 0x20);

/*

** Register 02h: Mde Register 1 - 8BPP

*/

SET_REGQ 0x02, 0xC0);

/*

** Regi ster 03h: Mdde Register 2 - Normal power nbde

*/

SET_REGQ0x03, 0x03);

/*

** Register 04h: Horizontal Panel Size - 320 pixels - (320/8)-1 = 39 = 27h
*/

SET_REQ 0x04, 0x27);

/*

** Register 05h: Vertical Panel Size LSB - 240 pixels

** Register 06h: Vertical Panel Size MSB - (240 - 1) = 239 = EFh
*/

SET_REQ 0x05, OXEF);

SET_REQ 0x06, 0x00);

/*

S1D13705 Programming Notes and Examples
X27A-G-002-03 Issue Date: 02/01/22

Epson Research and Development Page 71
Vancouver Design Center
** Register 07h - FPLINE Start Position - not used by STN
*/
SET_REGQ0x07, 0x00);
/*
** Register 08h - Horizontal Non-Display Period = (Reg[08] + 4) * 8
* % =(O+4) * 8 = 32 pels
* - HNDP and VNDP are cal cul ated to achieve the
*x desired frame rate according to:
* %
*x PCLK
*x Frame Rate = -------------------~--------
* (HDP + HNDP) * (VDP + VNDP)
*/
SET_REGQ0x08, 0x00);
/*
** Register 09h - FPFRAME Start Position - not used by STN
*/
SET_REGQ 0x09, 0x00);
/*
** Register 0OAh - Vertical Non-Display Register = 3 |lines
*x - Calculated in conjunction with register 08h (HNDP) to
* achieve the desired frane rate.
*/
SET_REGQ 0x0A, 0x03);
/*
** Register OBh - MOD Rate - not used by this panel
*/
SET_REGQ 0x0B, 0x00);
/*
** Register OCh - Screen 1 Start Wrd Address LSB
** Register ODh - Screen 1 Start Wrd Address NMSB
*x - Start address should be set to O
*/
SET_REGQ 0x0C, 0x00);
SET_REGQ 0x0D, 0x00);
/*
** Register OEh - Screen 2 Start Wrd Address LSB
** Register OFh - Screen 2 Start Wrd Address NMSB
*x - Set this start address to 0 too
*/
SET_REGQ 0x0E, 0x00);
SET_REGQ 0x0F, 0x00);
SET_REGQ 0x10, 0x00); /* Screenl/ Screen2 Start Address High bits. */
/*
** Register 11h - Menory Address O f set
** - Used for setting nmenory to a width greater than the
** display size. Usually set to O during initialization
** and programred to desired value later.
*/
Programming Notes and Examples S1D13705

Issue Date: 02/01/22

X27A-G-002-03

Page 72 Epson Research and Development
Vancouver Design Center
SET_REQ 0x11, 0x00);
/*
** Register 12h - Screen 1 Vertical Size LSB
** Register 13h - Screen 1 Vertical Size MSB
** - Set to maximum (i.e. Ox3FF). This register is used
** for split screen operation. Nornmally it is set to
* maxi num val ue.
*/
SET_REGQ(0x12, OxFF);
SET_REGQ(0x13, 0x03);
/*
** Look-Up Table registers
** The LUT is progranmed at the end of the initialization sequence.
*/
/*
** Register 18h - GPIO Configuration - set to O
** - '"0" configures the GPIO pins for input (power on default)
*/
SET_REGQ(0x18, 0x00);
/*
** Register 19h - GPIO Status - set to 0
** - This step has no real purpose. It sets the GPIO
** pins | ow should GPI O be set as outputs.
*/
SET_REGQ(0x19, 0x00);
/*
** Register 1Ah - Scratch Pad - set to O
** - Use this register to store whatever state data your
** system nmay require.
*/
SET_REGQ(0x1A, 0x00);
/*
** Register 1Bh - Portrait Mode - set to O - disable portrait node
*/
SET_REQ 0x1B, 0x00);
/*
** Register 1Ch - Line Byte Count - set to O - used only by portrait npde.
*/
SET_REG0x0C, 0x00);
/*
** Look-Up Tabl e
** |n this exanple we only set the first sixteen LUT entries.
** |n typical use all 256 entries would be setup.
*/
/*
** Register 15h - Look-Up Tabl e Address
** - Set to 0 to start RGB sequencing at the first LUT entry.
*/
SET_REGQ(0x15, 0x00);
S1D13705 Programming Notes and Examples

X27A-G-002-03 Issue Date: 02/01/22

Epson Research and Development Page 73
Vancouver Design Center

/*
** Register 17h - Look-Up Tabl e Data
** - Wite 16 RGB triplets to the LUT
*/
pLUT = LUT;
for (tnp = 0; tnp < 16; tnp++)
{
SET_REGQ(0x17, *pLUT);// Set Red
pLUT++;
SET_REQ0x17, *pLUT);// Set G een
PLUT++;
SET_REQ0x17, *pLUT);// Set Bl ue
PLUT++;
}
/*
** Clear all of video nenmory by witing 81920 bytes of O.
*/

pMem = p13705;
for (tnp = 0; tnmp < MEM SIZE;, tnp++)

{
*pMem = O;
pMemt+;

1

/*

** Draw a 100x100 red rectangle in the upper left corner (0,0)
** of the display.

*/
for (y = 0; y < 100; y++)
{
/ *
** Set the nenory pointer at the start of each line.
*x Poi nter = MEM OFFSET + (Y * Line_Wdth * BPP / 8) + (X * BPP / 8)
*/
pMem = pl13705 + (y * 320 * BitsPerPixel / 8) + O;
for (x = 0; x < 100; x++)
{
pMem = Ox4;/ Draw a pixel with LUT color 4 */
pMemt+;
}
}
/ *
** WAit for the user to press a key before continuing.
*/
printf("Press any key to continue");
getch();
/ *
** Set and use PORTRAIT node.
*/
/ *
Programming Notes and Examples S1D13705

Issue Date: 02/01/22 X27A-G-002-03

Page 74 Epson Research and Development
Vancouver Design Center
** Clear the display, and all of video nenory, by witing 81920 bytes
** of 0. This is done because an image in display menory is not rotated
** when the switch to portrait display node occurs.
*/
pMem = p13705;
for (tmp = 0; tnmp < MEM_SI ZE; tnp++)
{
*pMem = O;
pMemt+;
i
/*
** W will use the default portrait node schene so we have to adjust
** the ROTATED width to be a power of 2.
** (NOTE: current height will beconme the rotated w dth)
*/
tmp = 1;
while (Height > (1 << tmp))
t np++;
Hei ght = (1 << tnp);
O fsetBytes = Height * BitsPerPixel / 8;
/*
** Set:
** 1) Line Byte Count to size of the ROTATED width (i.e. current height)
** 2) Start Address to the offset of the width of the ROTATED di spl ay.
*x (in portrait node the start address registers point to bytes)
*/
SET_REQ 0x1C, (BYTE) O fsetBytes);
O fsetBytes--;
SET _REGQ0x0C, LOBYTE(COf fsetBytes));
SET_REGQ0x0D, HI BYTE(Of fsetBytes));
/*
** Set Portrait node.
** Use the non-X2 (default) schene so we don't have to re-calc the frame
** rate. MCLK will be <= 25 MHz so we can | eave auto-switch enabl ed.
*/
SET_REQ 0x1B, 0x80);
/*
** Draw a solid blue 100x100 rectangl e centered on the display.
** Starting co-ordinates, assum ng a 320x240 display are:
* (320-100)/2 , (240-100)/2 = 110,70.
*/
for (y = 70; y < 180; y++)
{
/*
** Set the nenory pointer at the start of each line.
* Pointer = MEM OFFSET + (Y * Line_Wdth * BPP/ 8) + (X * BPP / 8)
** NOTICE: as this is default portrait node, the width is a power
** of two. In this case, we use a value of 256 pixels for
*x our cal cul ations instead of the panel dinension of 240.
S1D13705 Programming Notes and Examples

X27A-G-002-03 Issue Date: 02/01/22

Epson Research and Development Page 75
Vancouver Design Center

*/
x = 110;
pMem = pl13705 + (y * 256 * BitsPerPixel / 8) + (x * BitsPerPixel / 8);
for (x = 110; x < 210; x++)
{
pMem = 0x01; / Draw a pixel in LUT color 1 */
pMVemt+;

** | ntel GetLi nAddr essVWB2(DWORD physaddr, DAWORD *1 i naddr)

** return val ue:

*x 0 : No error

** -1: Error

*/

i nt Intel GetLi nAddr essWB2(DWORD physaddr, DWORD *|i naddr)
{

HANDLE hDri ver;

DWORD cbRet ur ned;

i nt rc, retval;

unsi gned Arr[2];

/1 First see if we are running under W nNT
DWORD dwMer si on = Get Versi on();

i f (dwVersion < 0x80000000)

{
hDriver = CreateFile("\\\\.\\S1D13x0x", GENERI C_READ | GENERI C WRI TE,
0, NULL, OPEN _EXI STI NG FI LE_ATTRI BUTE_NORMAL,
NULL) ;
}
el se /1 Wn95/98
{
/! Dynamically |load and prepare to call S1D13x0x.
/1 The FILE FLAG DELETE ON CLCSE flag is used so that C oseHandl e can
/1 be used to dynamically unload the VxD.
/1 The CREATE NEWflag is not necessary
hDriver = CreateFile("\\\\.\\S1D13x0x. VXD', 0,0, 0,
CREATE_NEW FI LE_FLAG DELETE_ON_CLOCSE, 0);
}
if (hDriver == I NVALI D_HANDLE_ VALUE)
return -1;
/*
** From now on, the code is common for Wn95 & W nNT
*/

i f (physaddr == 0)

Programming Notes and Examples S1D13705
Issue Date: 02/01/22 X27A-G-002-03

Page 76 Epson Research and Development
Vancouver Design Center

return -1;
Arr[0] = physaddr;
Arr[1] = 4 * 1024 * 1024;
rc = DeviceloControl (hDriver, |OCTL_SED MAP_PHYSI CAL_MEMORY,
&Arr[0], 2 * sizeof (ULONG, &retVal, sizeof (ULONG,
&cbRet urned, NULL);
if (rc)
*[inaddr = retVal;

/*
** Cl ose the handle.
** This will dynam cally UNLOAD the Virtual Device for Wn95.

*/
O oseHandl e(hDri ver);
if (rc)
return O;
return -1;
}
S1D13705 Programming Notes and Examples

X27A-G-002-03 Issue Date: 02/01/22

Epson Research and Development Page 77
Vancouver Design Center

10.3 Header Files

The header files included here are the required for the HAL sample to compile correctly.

** HAL.H - Header file for use with programs witten to use the S1D13705 HAL
** Created 1998, Vancouver Design Centre

** Copyright (c) 1998, 1999 Epson Research and Devel opnent, |nc.

** Al Rights Reserved.

*/ ___
#i fndef HAL H_

#define HAL H_

#i ncl ude "hal _regs. h"

t ypedef unsigned char BYTE;
t ypedef unsi gned short WORD,
t ypedef unsigned | ong DWORD;
t ypedef unsigned int Ul NT;
t ypedef i nt BOOL;
#i fdef | NTEL

typedef BYTE far *LPBYTE;
typedef WORD far *LPWORD;
typedef U NT far *LPU NT
typedef DWORD far *LPDWORD,

#el se

typedef BYTE *LPBYTE;

t ypedef WORD * LPWORD,

typedef Ul NT *LPUI NT

t ypedef DWORD * LPDWORD
#endi f

#i f ndef LOBYTE

#defi ne LOBYTE(W) ((BYTE) (wW))

#endi f

#i f ndef H BYTE

#defi ne H BYTE(w) ((BYTE) (((UI NT)(w) >> 8) & OxFF))
#endi f

#i f ndef LOWORD

#defi ne LONORD(1) ((WORD) (DWORD) (1))

#endi f

#i f ndef H WORD

#defi ne H WORD(I) ((VORD) ((((DWORD) (1)) >> 16) & OxFFFF))
#endi f

#i f ndef MAKEWORD

#defi ne MAKEWORD(I o, hi) ((WORD)(((WORD)(l10)) | (((WORD)(hi)) << 8)))
#endi f

#i f ndef MAKELONG

Programming Notes and Examples S1D13705
Issue Date: 02/01/22 X27A-G-002-03

Page 78 Epson Research and Development
Vancouver Design Center

#defi ne MAKELONG(I o, hi) ((long) (((WORD)(10)) | (((DWORD)((WORD)(hi))) << 16)))
#endi f

#i f ndef TRUE

#def i ne TRUE 1

#endi f

#i f ndef FALSE

#define FALSE O

#endi f

#define OFF O

#define ON 1

#defi ne SCREENL 1

#defi ne SCREEN22

/-k

** Constants for HWrotate support
*/

#defi ne DEFAULTO

#defi ne LANDSCAPE 1
#defi ne PORTRAI T2

#i f ndef NULL

#i fdef __cpl uspl us

#def i ne NULL 0

#el se

#def i ne NULL ((void *)0)
#endi f

#endi f

/*

** S| ZE VERSION is the size of the version string (eg. "1.00")

** S| ZE STATUS is the size of the status string (eg. "b" for beta)
** SIZE REVISION is the size of the status revision string (eg. "00")
*/

#def i ne SI ZE_VERSI ON5

#defi ne SI ZE_STATUS 2

#def i ne SI ZE_REVI SI ON3

#i fdef ENABLE DPF /* Debug printf() */

#def i ne DPF(exp) printf(#exp "\n")

#def i ne DPFl(exp) printf(#exp " = %\ n", exp)

#def i ne DPF2(expl, exp2) printf(#expl "=% " #exp2 "=%\n", expl, exp2)
#def i ne DPFL(exp) printf(#exp " = %W\ n", exp)

#el se

#def i ne DPF(exp) ((void)O0)
#def i ne DPF1(exp) ((void)O0)
#def i ne DPFL(exp) ((void)O0)
#endi f

enum

{

ERR K = 0, /* No error, call was successful
*/

S1D13705 Programming Notes and Examples
X27A-G-002-03 Issue Date: 02/01/22

Epson Research and Development
Vancouver Design Center

Page 79

ERR_FAI LED, /* General purpose failure.

*/

ERR_UNKNOAN_DEVI CE, [* */

ERR | NVALI D_PARAVETER, /* Function was called with invalid paranmeter. */
ERR_HAL_BAD ARG,

ERR_TOOVANY_DEVS

s

/***

* Definitions for seGetld()
***/
#defi ne PRODUCT | D 0x24
enum
{

| D_UNKNOWN,

| D_S1D13705_Revl
1
#defi ne MAX_MEM ADDR81920 - 1
#defi ne ElI GHTY_K81920
#defi ne MAX_DEVI CE 10
#defi ne SE_RSVD 0

/***

* Definitions for Internal cal cul ations.
***/
#define M N_NON DI SP_X 32
#defi ne MAX_NON DI SP_X 256
#define M N _NON DI SP_Y 2
#defi ne MAX NON DI SP_Y 64
enum
{
RED,
GREEN,
BLUE

s

/***/

typedef struct tagHal Struct
{
char szldString[16];
WORD wDet ect Endi an;
WORD WSi ze;
BYTE Reg[MAX_ REG + 1];
DWORD dwCl Kkl ; /* Input O ock Frequency (in kHz) */
DWORD dwDi spMeny /* */
WORD wFranmeRate;/* */
} HAL_STRUCT;
t ypedef HAL_STRUCT * PHAL_STRUCT;
#ifdef INTEL_16BIT
typedef HAL_STRUCT far * LPHAL_STRUCT;
#el se
t ypedef HAL_STRUCT * LPHAL_STRUCT;

Programming Notes and Examples
Issue Date: 02/01/22

S1D13705
X27A-G-002-03

Page 80 Epson Research and Development

Vancouver Design Center

#endi f

int

FUNCTI ON PROTO- TYPES */
:::*/
—————————————————————————— Initialization -----------mmmmmm
seRegi st er Devi ce(const LPHAL_STRUCT | pHal I nfo);
seSetlnit(void);
selnitHal (void);

--------------------------- M scellaneous ---------------- ¥
seGetld(int *pld);

i d seGet Hal Versi on(const char **pVersion, const char **pStatus,

const char **pStatusRevision);
seSet Bi t sPer Pi xel (int nBitsPerPixel);
seGet Bit sPer Pi xel (int *pBitsPerPixel);
seGet Byt esPer Scanl i ne(int *pBytes);
seGet ScreenSi ze(int *width, int *height);

id seDelay(int nMIIliSeconds);

seGet Last Usabl eByte(| ong *LastByte);

seSet Hi ghPer f ormance(BOOL OnOf f) ;

----------------------------- Advanced -----------mm i
seSet HARot at e(i nt nhbde);

seSplitlnit(WORD ScrnlAddr, WORD Scrn2Addr);

seSplitScreen(int WhichScreen, int VisibleScanlines);

seVirtlnit(int xVirt, long *yVirt);

seVirt Move(int nWichScreen, int x, int y);

---------------------- Regi ster/ Menmory ACCESS --------------mmmmomoo %)
seGet Reg(int index, BYTE *pVal ue);

seSet Reg(int index, BYTE val ue);

seReadDi spl ayByt e(DWORD of fset, BYTE *pByte);

seReadDi spl ayWor d(DWORD of fset, WORD *pWrd);

seReadDi spl ayDwor d(DWORD of fset, DWORD *pDword);

seWiteDi spl ayBytes(DWORD addr, BYTE val, DWORD count);

seWiteDi spl aywrds(DWORD addr, WORD val, DWORD count);

seWiteDi spl ayDwords(DWORD addr, DWORD val, DWORD count);
———————————————————————————————— Power Save ---------------------------*/
seHWsuspend(i nt nDevl D, BOOL val);

seSet Power SaveMbde(int nDevlD, int PowerSavehMde);
--------------------------------- Drawing -----------------------------%/
seDrawLi ne(int x1, int yl1, int x2, int y2, DWORD color);

seDrawRect (int x1, int yl, int x2, int y2, DWRD color, BOOL Solidfill);
———————————————————————————— Color -----mmmm oK
seSet Lut (BYTE *pLut);

seGet Lut (BYTE *pLut);

seSet Lut Entry(int index, BYTE *pEntry);

seGet Lut Entry(int index, BYTE *pEntry);

#endi f /* HAL_H_ */

S1D13705 Programming Notes and Examples
X27A-G-002-03 Issue Date: 02/01/22

Epson Research and Development Page 81
Vancouver Design Center

/*

P ———————————— e — —

** APPCFG H - Application configuration information.

* %

** Created 1998 - Vancouver Design Centre
** Copyright (c) 1998, 1999 Epson Research and Devel opnent, |nc.
** Al Rights Reserved.

** The data in this file was generated using 13705CFG EXE

** The configureation paranmeters chosen were:
** 320x240 Single Color 4-bit STN

*x 4 bpp - 100 Hz Frame Rate (12 MHz CLKi)
*x H gh Performance enabl ed

*/

/**/
/* 13705 HAL HDR (do not renove) */
/* HAL_STRUCT Information generated by 13705CFG EXE */
/* Copyright (c) 1998 Epson Research and Devel oprnent, Inc. */
/* Al rights reserved. */
[* */
/* Include this file ONCE in your primary source file */

/**/

HAL_STRUCT Hal I nfo =

{
"13705 HAL EXE", /* 1D string */
0x1234, /* Detect Endian */
si zeof (HAL_STRUCT), /* Size */

0x00, 0x20, OxCO0, 0Ox03, O0x27, OxEF, 0x00, 0x00,
0x00, 0x00, 0x03, 0x00, O0x00, 0x00, 0x00, 0xO00,
0x00, 0x00, OxFF, 0x03, O0x00, 0x00, 0x00, 0xO00,
0x00, 0x00, O0Ox00, O0x00, O0x00, 0x00, 0x00, 0xO00,

6000, /* akl (kHz) * [
0xF00000, /* Display Address */
70, /* Panel Frame Rate (Hz) */
1
Programming Notes and Examples S1D13705

Issue Date: 02/01/22 X27A-G-002-03

Page 82 Epson Research and Development
Vancouver Design Center

/*

P ——————————— e e e . — —

** Created 1998, Epson Research & Devel opnent
*x Vancouver Design Center.
** Copyright(c) Seiko Epson Corp. 1998. All rights reserved.

P ————————————— e e e e e —

*/
#ifndef _ HAL REGS H
#define = HAL REGS H
/ *

*x 13705 regi ster names

*/

#defi ne REG_REVI SI ON_CODE 0x00
#defi ne REG_MODE_REG STER_O 0x01
#defi ne REG MODE_REG STER 1 0x02
#defi ne REG MODE_REG STER 2 0x03
#defi ne REG HORZ PANEL_SI ZE 0x04
#defi ne REG VERT_PANEL_SI| ZE LSB 0x05
#defi ne REG VERT_PANEL_SI| ZE_MSB 0x06
#defi ne REG_FPLI NE_START_PGCS 0x07
#defi ne REG_HORZ_NONDI SP_PERI OD 0x08
#defi ne REG_FPFRAME_START_PCS 0x09
#defi ne REG_VERT_NONDI SP_PERI OD 0x0A
#defi ne REG MOD RATE 0x0B
#defi ne REG_SCRN1_START_ADDR _LSB 0x0C
#defi ne REG_SCRN1_START_ADDR_MsSB 0x0D
#defi ne REG_SCRN2_START_ADDR_LSB 0x0E
#defi ne REG_SCRN2_START_ADDR_MsSB OxO0F
#defi ne REG_SCRN_START_ADDR OVERFLOW 0x10
#defi ne REG_MEMORY_ADDR COFFSET 0x11
#defi ne REG_SCRN1_VERT_SI| ZE _LSB 0x12
#defi ne REG_SCRN1_VERT_S| ZE_MSB 0x13
#defi ne REG LUT_ADDR 0x15
#defi ne REG LUT_BANK_SELECT 0x16
#defi ne REG LUT_DATA 0x17
#defi ne REG GPI O CONFI G 0x18
#defi ne REG_GPl O_STATUS 0x19
#defi ne REG_SCRATCHPAD Ox1A
#defi ne REG_PORTRAI T_MODE 0x1B
#defi ne REG LI NE_BYTE_COUNT 0x1C
#defi ne REG_NOT_PRESENT 1 0x1D

/*
** WARNI NG !'! MAX_REG nust be the |ast available register!!!
*/

#def i ne MAX_REG 0x1D
#endi f /* __HAL_REGS H__ */
S1D13705 Programming Notes and Examples

X27A-G-002-03 Issue Date: 02/01/22

Epson Research and Development
Vancouver Design Center

Page 83

o e e

** Copyright (c) 1998, 1999 Epson Research and Devel opnent, |nc.

** Al Rights Reserved.
** Modul e Nane:

* * ioctl.h

** Abstract:

* % Include file for S1D13x0x PCl Board Driver.

* * Define the | OCTL codes we will use. The | OCTL code contains a command

*x identifier, plus other information about the device,

the type of access

** with which the file nmust have been opened, and the type of buffering.

*/
#defi ne SED TYPE FI LE _DEVI CE_CONTROLLER
// The I OCTL function codes from 0x800 to OxFFF
#defi ne | OCTL_SED QUERY_NUMBER COF PCl BQOARDS \
CTL_CODE(SED TYPE, 0x900, METHOD BUFFERED,
#define | OCTL_SED MAP_PCI _BOARD \
CTL_CODE(SED TYPE, 0x901, METHOD BUFFERED,
#define | OCTL_SED MAP_PHYSI CAL_NMEMORY \
CTL_CODE(SED TYPE, 0x902, METHOD BUFFERED,
#define | OCTL_SED UNVAP_LI NEAR MEMORY \
CTL_CODE(SED TYPE, 0x903, METHOD BUFFERED,

are for custoner
FI LE_ANY_ACCESS)
FI LE_ANY_ACCESS)
FI LE_ANY_ACCESS)

FI LE_ANY_ACCESS)

use.

Programming Notes and Examples
Issue Date: 02/01/22

S1D13705
X27A-G-002-03

Page 84 Epson Research and Development
Vancouver Design Center

THIS PAGE LEFT BLANK

S1D13705 Programming Notes and Examples
X27A-G-002-03 Issue Date: 02/01/22

	S1D13705 Programming Notes and Examples
	Table of Contents
	List of Tables
	List of Figures
	1 Introduction
	2 Initialization
	2.1 Display Buffer Location
	2.2 Register Values
	Table 2�1: S1D13705 Initialization Sequence�

	2.3 Frame Rate Calculation

	3 Memory Models
	3.1 1 Bit-Per-Pixel (2 Colors/Gray Shades)
	Figure 3�1: Pixel Storage for 1 Bpp (2 Colors/Gray Shades) in One Byte of Display Buffer

	3.2 2 Bit-Per-Pixel (4 Colors/Gray Shades)
	Figure 3�2: Pixel Storage for 2 Bpp (4 Colors/Gray Shades) in One Byte of Display Buffer

	3.3 4 Bit-Per-Pixel (16 Colors/Gray Shades)
	Figure 3�3: Pixel Storage for 4 Bpp (16 Colors/Gray Shades) in One Byte of Display Buffer

	3.4 Eight Bit-Per-Pixel (256 Colors)
	Figure 3�4: Pixel Storage for 8 Bpp (256 Colors) in One Byte of Display Buffer

	4 Look-Up Table (LUT)
	4.1 Look-Up Table Registers
	4.2 Look-Up Table Organization
	4.2.1 Color Modes
	Table 4�1: Recommended LUT Values for 1 Bpp Color Mode
	Table 4�2: Example LUT Values for 2 Bpp Color Mode
	Table 4�3: Suggested LUT Values to Simulate VGA Default 16 Color Palette
	Table 4�4: Suggested LUT Values to Simulate VGA Default 256 Color Palette�

	4.2.2 Gray Shade Modes
	Table 4�5: Recommended LUT Values for 1 Bpp Gray Shade
	Table 4�6: Suggested Values for 2 Bpp Gray Shade
	Table 4�7: Suggested LUT Values for 4 Bpp Gray Shade

	5 Advanced Techniques
	5.1 Virtual Display
	Figure 5�1: Viewport Inside a Virtual Display
	5.1.1 Registers
	5.1.2 Examples

	5.2 Panning and Scrolling
	5.2.1 Registers
	Table 5�1: Number of Pixels Panned Using Start Address

	5.2.2 Examples

	5.3 Split Screen
	Figure 5�2: 320x240 Single Panel For Split Screen
	5.3.1 Registers
	5.3.2 Examples

	6 LCD Power Sequencing and Power Save Modes
	6.1 LCD Power Sequencing
	6.2 Registers
	6.3 LCD Enable/Disable

	7 Hardware Rotation
	7.1 Introduction To Hardware Rotation
	7.2 Default Portrait Mode
	Figure 7�1: Relationship Between the Default Mode Screen Image and the Image Refreshed by S1D13705

	7.3 Alternate Portrait Mode
	Figure 7�2: Relationship Between the Alternate Mode Screen Image and the Image Refreshed by S1D13705

	7.4 Registers
	7.5 Limitations
	Table 7�1: Default and Alternate Portrait Mode Comparison

	7.6 Examples

	8 Identifying the S1D13705
	9 Hardware Abstraction Layer (HAL)
	9.1 Introduction
	9.2 Contents of the HAL_STRUCT
	9.3 Using the HAL library
	9.4 API for 13705HAL
	Table 9�1: HAL Functions�
	9.4.1 Initialization
	9.4.2 General HAL Support
	9.4.3 Advanced HAL Functions
	9.4.4 Register / Memory Access
	9.4.5 Power Save
	9.4.6 Drawing
	9.4.7 LUT Manipulation

	9.5 Porting LIBSE to a new target platform
	9.5.1 Building the LIBSE library for SH3 target example
	9.5.2 Building the HAL library for the target example

	10 Sample Code
	10.1 Sample code using the S1D13705 HAL API
	10.2 Sample code without using the S1D13705 HAL API
	10.3 Header Files

