
AN774

Asynchronous Communications with the PICmicro® USART
INTRODUCTION

Many PICmicro® microcontroller devices have a built-

in USART and it is one of the most commonly used

serial interface peripherals. It is also known as the

Serial Communications Interface, or SCI. The most

common use of the USART is to communicate to a PC

serial port using the RS-232 protocol. It has a variety of

other uses however, as we will discuss in this Applica-

tion Note.

USART stands for Universal Synchronous Asynchro-

nous Receiver Transmitter and its main function is to

transmit or receive serial data. Its operation can be

divided into two broad categories: synchronous and

asynchronous. Synchronous operation uses a clock

and data line while asynchronous operation has no

separate clock accompanying the data. There are sub-

stantial differences between these two modes of oper-

ation and this Application Note is concerned only with

asynchronous operation.

In addition to asynchronous operation, this Application

Note describes:

• Controlling the baud rate or speed of communica-

tion

• Detecting and handling errors

• Using interrupts to improve speed and efficiency

A discussion of the RS-232, RS-422 and RS-485 pro-

tocols and use of the USART with these communica-

tion protocols is also included.

The purpose of this Application Note is to explain the

various ways that the USART can be used in the Asyn-

chronous mode and the issues involved in implement-

ing code that uses the USART.

Numerous code examples are provided in Appendix A,

B and C to complement the text of this Application

Note. These examples are provided for PIC16, PIC17

and PIC18 devices separately.

OVERVIEW

The USART can transmit and receive data serially. It

can transfer a frame of data with eight or nine data bits

per transmission and detect errors when data is over-

written or incorrectly framed. It can generate interrupts

when a reception occurs (or a transmission completes)

and it contains data buffers that simplify the timing

requirements of the software controlling the USART.

Some parts have an addressable USART that uses the

ninth data bit to distinguish between address and data

receptions. This allows simple filtering of incoming data

and is often used in the RS-485 protocol.

PICMICRO MICROCONTROLLER FAMILIES

The USART is incorporated into many PIC16, PIC17

and PIC18 parts. The USARTs in all these parts are

basically the same, but there are some important differ-

ences to consider:

• The USART is addressable in all current PIC18

parts and is not addressable in all PIC17 parts.

The USART is addressable in some PIC16 parts

and is not addressable in other PIC16 parts.

• The USART in PIC17 parts does not have a high

speed baud rate option, while the USART in all

PIC16 and PIC18 parts does have a high speed

baud rate option.

• Most devices with a USART have only one. The

PIC17C7XX and some PIC18FXX20 parts have

two USARTs. Future PIC18 parts may have two

USARTs.

• The various families have different interrupt con-

trol registers and the PIC18 parts allow the inter-

rupts to be prioritized.

• Some new PIC18 parts have an enhanced

USART with added features not covered in this

application note.

SPECIAL FUNCTION REGISTERS

Several special function registers control the USART.

These registers allow the various modes of operation to

be selected, the baud rate (i.e., bit rate) to be set up,

data to be transferred, the transmit and receive status

to be monitored, etc. The registers that affect the

USART are shown in the following tables.

Note: This Application Note is not meant to be a

detailed technical description of the

USART. That information is contained in

the Data Sheets for the parts containing a

USART and in the Reference Manuals

(see references at the end of this docu-

ment).

Author: Mike Garbutt

Microchip Technology Inc.
 2003 Microchip Technology Inc. DS00774A-page 1

AN774
TABLE 1: REGISTERS THAT CONTROL

TRANSMISSION AND

RECEPTION

The TXSTA and RCSTA registers are used to control

transmission and reception but there are some overlap-

ping functions and both registers are always used.

Parts with two USARTs have TXSTA1, RCSTA1,

TXSTA2 and RCSTA2 registers instead of a single pair

of TXSTA and RCSTA registers.

TABLE 2: REGISTERS USED TO WRITE

AND READ DATA

The TXREG and RCREG registers are used to write

data to be transmitted and to read the received data.

Parts with two USARTs have TXREG1, RCREG1,

TXREG2 and RCREG2 registers instead of a single

pair of TXREG and RCREG registers.

TABLE 3: REGISTER FOR SETTING

BAUD RATE

The SPBRG register allows the baud rate to be set.

Parts with two USARTs have SPBRG1 and SPBRG2

registers instead of a single SPBRG register.

In addition, there are interrupt registers that control the

interrupts but are also used to determine whether data

has been received or can be transmitted. Interrupts are

often used when the PICmicro MCU processor is busy

executing code and data needs to be transmitted or

received in the background. Since the interrupts differ

between the different processor architectures, please

see the section on Interrupts in this Application Note for

more details.

Interrupt registers for different PICmicro devices are

shown in Tables 4, 5 and 6.

TABLE 4: INTERRUPT REGISTERS FOR

PIC16 DEVICES

TABLE 5: INTERRUPT REGISTERS FOR

PIC17 DEVICES

TABLE 6: INTERRUPT REGISTERS FOR

PIC18 DEVICES

EMULATOR ISSUES

Most emulators and debuggers for PICmicro devices

support the USART peripheral. However, it is important

for the user to carefully study the limitations of the spe-

cific emulator or debugger being used.

Problems may arise when halting or single-stepping.

Interrupts may not function as expected if they occur

while halted or single-stepping. In addition, if the emu-

lator or debugger reads RCREG to update a watch win-

dow or other view, this may cause RCIF to be cleared

and received data to be missed by the code.

ASYNCHRONOUS OPERATION

The USART uses two I/O pins to transmit and receive

serial data. Because there is no separate clock signal

for asynchronous operation, one pin (TX) is used for

transmission and the other pin (RX) is used for recep-

tion. Both transmission and reception can occur at the

same time and this is known as ‘full duplex’ operation.

Transmission and reception can be independently

enabled, but when the serial port is enabled the

USART will control both pins, and one cannot be used

for general purpose I/O when the other is being used

for transmission or reception.

Register Name Description

TXSTA Transmit Status and Control

RCSTA Receive Status and Control

Register Name Description

TXREG Transmit Data Register

RCREG Receive Data Register

Register Name Description

SPBRG Baud Rate Generator

Register

Name
Description

INTCON Interrupt Control Register

PIR1 Peripheral Interrupt Flag Register

PIE1 Peripheral Interrupt Enable Register

Register

Name
Description

CPUSTA CPU Status Register

INTSTA Interrupt Status Register

PIE1, PIE2 Peripheral Interrupt Enable Register

PIR1, PIR2 Peripheral Interrupt Flag Register

Register

Name
Description

INTCON Interrupt Control Register

RCON RESET Control Register

PIE1, PIE3 Peripheral Interrupt Enable Registers

PIR1, PIR3 Peripheral Interrupt Flag Registers

IPR1, IPR3 Peripheral Interrupt Priority Registers
DS00774A-page 2  2003 Microchip Technology Inc.

AN774
SIGNALS

Since there is no separate clock in asynchronous oper-

ation, the receiver needs a method of synchronizing

with the transmitter. This is achieved by having a fixed

baud rate and by using START and STOP bits. A typical

Asynchronous mode signal is shown in Figure 1.

FIGURE 1: ASYNCHRONOUS MODE SIGNAL

The USART outputs and inputs logic level signals on

the TX and RX pins of the PICmicro MCU. The signal

is high when no transmission (or reception) is in

progress and goes low when the transmission starts.

The receiving device uses this low-going transition to

determine the timing for the bits that follow.

The signal stays low for the duration of the START bit,

and is followed by the data bits, Least Significant bit

first. The USART can transmit and receive either eight

or nine data bits. The STOP bit follows the last data bit

and is always high. The transmission therefore ends

with the pin high. After the STOP bit has completed, the

START bit of the next transmission can occur as shown

by the dotted lines.

There are several things to note about the waveform in

Figure 1, which represents the signal on the TX or RX

pins of the microcontroller. The START bit is a ‘zero’

and the STOP bit is a ‘one.’ The data is sent Least Sig-

nificant bit first, so the bit pattern looks backwards in

comparison to the way it appears when written as a

binary number. The data is not inverted, even though

RS-232 uses negative voltages to represent a logic

one. Generally, when using the USART for RS-232

communications, the signals must be inverted and

level-shifted through a transceiver chip of some sort.

There are some features and uses of the USART that

affect the signal. The Nine-bit mode is useful when par-

ity or an extra STOP bit is needed. It can also be used

for the Addressable mode described later in this Appli-

cation Note. To implement parity, the ninth bit is set to

make the total number of data bits either even or odd,

depending on whether even or odd parity is being used.

If two STOP bits are needed, the ninth data bit is set to

one so that the signal stays high for two-bit periods

after the first eight data bits.

TRANSMISSION

A simplified block diagram of the USART asynchro-

nous transmission logic is shown in Figure 2.

FIGURE 2: ASYNCHRONOUS TRANSMISSION

The USART can be configured to transmit eight or nine

data bits by the TX9 bit in the TXSTA register. If nine

bits are to be transmitted, the ninth data bit must be

placed in the TX9D bit of the TXSTA register before

writing the other eight bits to the TXREG register. Once

data has been written to TXREG, the eight or nine bits

are moved into the Transmit Shift Register. From there

they are clocked out onto the TX pin preceded by a

START bit and followed by a STOP bit.

S
T
A
R
T
 b
it

1
D
0

D
1

D
2

D
3

D
4

D
5

D
6

D
7

S
T
O
P
 b
it

0 1 10 0 0 0

TRMT=1
when empty Transmit Shift Register

TX9D TXREG

8 bits1-bit

TX9=1

TX Pin

when empty
TXIF=1
 2003 Microchip Technology Inc. DS00774A-page 3

AN774
The use of a separate Transmit Shift Register allows

new data to be written to the TXREG register while the

previous data is still being transmitted. This allows the

maximum throughput to be achieved.

The TXIF bit in the PIR1 register indicates when data

can be written to TXREG and will cause an interrupt if

the interrupt is enabled. This means that if there is no

more data to transmit, the interrupt should be disabled;

otherwise, the interrupt routine will keep getting called.

Once the data in the Transmit Shift Register has been

clocked out on the TX pin, the TRMT bit in the TXSTA

register will be set. This occurs at the beginning of the

STOP bit. In cases where the USART is to be turned off

between transmissions, it is important to use the TRMT

bit to determine when the transmission has completed

and it may also be necessary to ensure that the STOP

bit is given time to complete.

There is a delay of one instruction cycle after writing to

TXREG, before TXIF gets cleared. The user needs to

be aware of this characteristic because if TXIF is tested

immediately after writing to TXREG, unexpected results

can occur. Consider the following code:

EXAMPLE 1: TXIF One Cycle Clearing Delay Problem

If the USART is idle when this code starts, the charac-

ters ‘AC’ will be transmitted. Writing 'A' to TXREG will

result in this data being passed through to the transmit

shift register and TXIF will remain set, indicating that

TXREG is still empty. Writing 'B' to TXREG will result in

TXIF being cleared after one instruction cycle, indicat-

ing that TXREG is full. However, since the code tests

the TXIF flag immediately following the write to TXREG,

it will still see the flag set high and will execute the code

that writes 'C' to TXREG, overwriting the 'B' already in

TXREG. So this code transmits 'AC' instead of the

'ABC' expected.

Note: When TXREG has been written, TXREG

and the TX9D bit could immediately be

transferred into the Transmit Shift Register,

if it is empty, so TX9D must be written

before writing TXREG.

Note: The TXIF bit does not indicate that the

transmission has completed. It will be set

when data is moved from TXREG into the

Transmit Shift Register.

movlw 'A' ;load 'A'

movwf TXREG ;into TXREG

btfss PIR1,TXIF ;test if TXREG empty

goto $-1 ;wait until TXREG empty

movlw 'B' ;load 'B'

movwf TXREG ;into TXREG

btfss PIR1,TXIF ;test if TXREG empty - will skip

goto $-1 ;wait until TXREG empty

movlw 'C' ;load 'C'

movwf TXREG ;into TXREG

btfss PIR1,TXIF ;test if TXREG empty

goto $-1 ;wait until TXREG empty

Note: The user needs to ensure that the TXIF

flag is never tested immediately following a

write to TXREG. If necessary, ‘NOP’ instruc-
tions can be inserted but simply rearrang-

ing the code is usually sufficient.
DS00774A-page 4  2003 Microchip Technology Inc.

AN774
RECEPTION

A simplified block diagram of the USART asynchro-

nous reception logic is shown in Figure 3.

FIGURE 3: ASYNCHRONOUS RECEPTION

The USART can be configured to receive eight or nine

bits by the RX9 bit in the RCSTA register. After the

detection of a START bit, eight or nine bits of serial data

are shifted from the RX pin into the Receive Shift Reg-

ister, one bit at a time. After the last bit has been shifted

in, the STOP bit is checked and the data is moved into

the FIFO (First In First Out) buffer. RCREG is the output

of a two element FIFO buffer. If another byte is received

before the first byte has been read from RCREG, it will

be kept in the FIFO ‘behind’ RCREG until the first byte

has been read. If nine-bit reception is enabled, the

ninth bit is passed into the RX9D bit in the RCSTA reg-

ister in the same way as the other eight bits of data are

passed into the RCREG register.

Two bytes can be held in the FIFO while a third is being

received. The user must ensure that data is read from

RCREG before the third byte has been completely

shifted in, otherwise the third byte will be discarded and

an overrun error will be indicated.

The use of a separate receive shift register and a FIFO

buffer allows time for the software running on the PIC-

micro MCU to read out the received data before an

overrun error occurs. It is possible to have received two

bytes and be busy receiving a third byte before the data

in the RCREG register is read. This reduces the timing

burden on the code that reads the data.

The RCIF bit in the PIR1 register indicates when data

is available in the RCREG and will cause an interrupt if

the interrupt is enabled. If two bytes have been

received, the RCIF bit will remain set until all the data

has been read from RCREG. When using interrupts,

this means that the interrupt routine can read one byte

at a time and interrupts will keep occurring until all the

data has been read.

ADDRESSABLE MODE

Some devices have an addressable USART that can

automatically filter certain transmissions. The received

bytes are separated into two categories for addresses

and data, indicated by the ninth data bit as shown in

Figure 4. Only address bytes are processed by the

USART, all other data is ignored. This feature is usually

used when there are multiple devices on a bus and

transmissions are addressed to a particular device.

The receiving devices ignore all data bytes with the

ninth bit low and only receive address bytes with the

ninth bit set. When the address byte is received and

matches its own address, the receiving device can

change into the normal Reception mode to receive the

data that follows the address byte. Nine-bit transmis-

sion and reception is always used with the addressable

USART feature.

RCIF=1
when full

Receive Shift Register

RX9D RCREG

8 bits1 bit

RX9=1
Buffer

FIFO

RX Pin

Note: When RCREG has been read, RCREG

and the RX9D bit can immediately be over-

written with the next byte in the FIFO, so

RX9D must be read before reading

RCREG.
 2003 Microchip Technology Inc. DS00774A-page 5

AN774
FIGURE 4: ADDRESSABLE MODE

BAUD RATE

Baud rate refers to the speed at which the serial data is

transferred, in bits per second. In Asynchronous mode,

the baud rate generator sets the baud rate using the

value in the SPBRG register. The BRGH bit in TXSTA

selects between high and low speed options for greater

flexibility in setting the baud rate, as shown in Table 7.

These formulas show how the baud rate is set by the

value in the SPBRG register and BRGH bit. It is more

important for the user to be able to calculate the value

to place in the SPBRG register to achieve a desired

baud rate. The formulas shown in Table 8 can be used

to perform this calculation.

The SPBRG register can have a value of zero to 255

and must always be an integer value. When these for-

mulas yield a value for SPBRG that is not an integer,

there will be a difference between the desired baud rate

and the rate that can actually be achieved. By calculat-

ing the actual baud rate using the nearest integer value

of SPBRG, the error can be determined. Whether this

error is acceptable usually depends on the application.

As an example of a baud rate calculation, consider the

case of a microcontroller operating at 4 MHz that is

required to communicate at 9600 baud with a serial

port on a PC.

Example calculation:

4 MHz oscillator, 9600 baud

For BRGH = 1

SPBRG = 4000000/(16 x 9600) - 1 = 25.04

For BRGH = 0

SPBRG = 4000000/(64 x 9600) - 1 = 5.51

Best choice is BRGH = 1, SPBRG = 25

When BRGH is set to zero, the ideal value of SPBRG

is calculated as 5.51. Since this differs from the closest

integer value of six by approximately nine percent, this

will cause a corresponding error in the baud rate.

When BRGH is set to one, the ideal value of SPBRG is

calculated as 25.04. This is very close to the integer

value of 25, which must be used. Setting SPBRG to 25

will give a baud rate of 9615 that is within two tenths of

a percent of the desired baud rate

An accurate and stable oscillator is required to get an

accurate and stable baud rate. A crystal or ceramic res-

onator works well, but an external RC oscillator is sel-

dom accurate enough for reliable asynchronous

communications. It is not advisable to use an external

RC oscillator when doing RS-232 communications to a

PC, for example. The internal RC oscillator in some

parts is accurate enough to be used.

RCIF=1
when full

Receive Shift Register

RX9D RCREG

8 bits1-bit
RX9=1

Buffer

FIFO

RX Pin

Load only if set

Test

ADDEN=1

TABLE 7: FORMULAS FOR BAUD RATE

Baud Rate Speed Option

FOSC/(16(SPBRG+1)) BRGH=1 - High speed

FOSC/(64(SPBRG+1)) BRGH=0 - Low speed

TABLE 8: FORMULAS FOR SPBRG

SPBRG Value Speed Option

(FOSC/(16 x Baud rate)) -1 BRGH=1 - High speed

(FOSC/(64 x Baud rate)) - 1 BRGH=0 - Low speed
DS00774A-page 6  2003 Microchip Technology Inc.

AN774
There is an exception to the requirement for an accu-

rate oscillator when some alternate method is used to

calibrate the baud rate for each transmission. For

example, if known data is received at a known baud

rate, it is possible to write software that will time the

incoming signal and calculate a suitable SPBRG value

to use. This technique is sometimes referred to as

‘autobaud’ and will not be covered in this Application

Note. Please refer to AN851 “A FLASH Bootloader for

PIC16 and PIC18 Devices” for an example of auto-

baud.

RS-232, RS-422, and RS-485 Interfaces

The three most common asynchronous communica-

tions interfaces used with the USART are:

• RS-232

• RS-422

• RS-485.

Many personal computers have one or more COM

ports that use the RS-232 interface, and it is common

to use this interface to communicate with a PICmicro

device using the USART.

The basic features of these interfaces are:

• RS-232 uses a single ended signal to indicate the

data.

• RS-422 and RS-485 use differential signals.

• RS-232 and RS-422 are used between two

devices.

• RS-485 is used for multiple devices on a bus.

RS-232 CHARACTERISTICS

RS-232 uses a single ended signal (referenced to

ground) to indicate the data. Typically, there is a ground

reference (GND) and two signals, a transmit (TXD) out-

put and a receive (RXD) input. There are also other sig-

nals that may be used, including hardware

handshaking signals.

Generally, a positive voltage (greater than +5 VDC) rep-

resents ‘zero’ and a negative voltage (less than -5 VDC)

represents ‘one.’ The simplest bi-directional RS-232

system has two wires as shown in Figure 5. Transceiv-

ers are usually used to convert between the logic levels

of a microcontroller and the RS-232 voltage levels.

FIGURE 5: TYPICAL RS-232

CONNECTION

RS-232 IMPLEMENTATION

The program code required to perform RS-232 commu-

nications can be simple, since the USART typically

transmits and receives data in the form of bytes. The

code needs to detect whether data has been received

or can be transmitted and can then read or write a reg-

ister to get or send the data. No signals need to be

enabled or disabled. RS-232 software can be more

complicated if the data format changes; for example, if

a parity bit or multiple STOP bits are used, or if hard-

ware flow control is required. These issues are

described later in this Application Note.

A special symbol defined in the RS-232 interface is the

break signal. The break is a zero output that is main-

tained for some period longer than a single transmis-

sion. It is usually used to indicate or request a special

event such as indicating a problem, causing an inter-

ruption, hanging up a modem, etc. The USART has no

inherent way to generate or detect a break, but it can

be done.

To transmit a break, the baud rate generator can be set

to a lower baud rate for a single transmission of a zero

byte. The length of a break is not defined and it is typi-

cally in the order of 100 ms to 500 ms, although any-

thing longer than a single transmission time is valid.

Because of the temporary baud rate change, the

USART will not be able to receive data correctly while

transmitting the break. Before changing baud rates to

send a break, the TRMT bit should be checked to

ensure that the last transmission was completed.

When receiving a break, the first indication that a break

condition exists is that a framing error has been

detected. This is because when the STOP bit is

expected to be a one, the break will keep the signal at

zero. Receiving data of zero with a framing error is usu-

ally sufficient to conclude that a break has occurred.

RS-422 CHARACTERISTICS

RS-422 uses differential signals, so there are two volt-

age signals to indicate the data by their relative volt-

ages. Typically, the RS-422 signals include:

• A ground reference (GND)

• A pair of signals (A and B) for the data being

transmitted

• Another pair (A and B) for the data being received

Generally, when A is high and B is low, this represents

‘zero’ and when A is low and B is high, this represents

‘one.’ A typical bi-directional RS-422 system has four

wires as shown in Figure 6. Transceivers are usually

used to convert between the data signals of a micro-

controller and the RS-422 differential voltage levels.

Transmit

Receive

Receive

Transmit
 2003 Microchip Technology Inc. DS00774A-page 7

AN774
FIGURE 6: TYPICAL RS-422 FOUR-WIRE

CONNECTION

RS-422 IMPLEMENTATION

Code for RS-422 applications is no different from RS-

232 software because RS-422 and RS-232 are both for

point-to-point transfers. The voltage levels after the

transceiver buffers may be different, but the data sig-

nals at the microcontroller are the same. RS-422 con-

verters can be used between RS-232 devices for

transmission over longer distances.

RS-485 CHARACTERISTICS

Like RS-422, RS-485 also uses differential signals, so

there are two voltage signals to indicate the data by

their relative voltages. RS-485 outputs can be tri-stated

to allow multiple devices to transmit on the same pair of

signals, but otherwise they are electrically the same as

RS-422 signals. A master/slave arrangement is most

common for RS-485 systems and this can be imple-

mented with one (see Figure 8) or two (see Figure 7)

pair(s) of wires. All devices can communicate over the

single pair of wires, or the master device can transmit

on a separate pair of wires which simplifies the man-

agement of the traffic on the bus.

FIGURE 7: TYPICAL RS-485 FOUR-WIRE CONNECTION

FIGURE 8: TYPICAL RS-485 TWO-WIRE CONNECTION

Transmit

Receive

Receive

Transmit

TX

RX

OE RXTX OE RXTX OE RXTX

Slave 1 Slave 2 Slave 3

Master

TX

RX

OE RXTX OE RXTX OE RXTX

Slave 1 Slave 2 Slave 3

Master

OE
DS00774A-page 8  2003 Microchip Technology Inc.

AN774
RS-485 IMPLEMENTATION

RS-485 software can be significantly more complex

than for RS-232 and RS-422, particularly when two

wire bus systems are used. A protocol is required to

ensure that no more than one device transmits at any

one time.

RS-485 busses are often implemented with a single

master and numerous slaves. The master is the only

device that initiates communication on the bus and this

avoids bus contention problems. Typically, the master

broadcasts an address and data, then receives data

back from the particular slave being addressed. Each

slave must have a unique address and must know what

data format to expect and to return. In addition, each

device must control the output enable signal on its

transceiver to enable the output only while it is transmit-

ting. Since all the devices usually use the same physi-

cal connection, it is essential to avoid driving the signal

on the bus except when transmitting. The user must

ensure that the receivers have a valid state when no

device is driving the bus. Typically, this can be done

with resistors but it is best to check with the manufac-

turer of the particular driver being used.

The USART in many PICmicro devices has a 9-bit

Address Detect mode that is enabled with the ADDEN

bit in the RCSTA register. When this bit is set, the

USART ignores all received data unless the ninth bit is

set. This feature can be used to implement RS-485

system where the ninth bit indicates that the master is

transmitting a slave address. This allows the slave

devices to automatically ignore all transmissions until

an address is broadcast. The slaves can then compare

the received data to their own addresses, and if they

match, the ADDEN bit can be cleared so that they

receive the data that follows. This reduces the software

overhead of the slaves and makes slave software eas-

ier to implement and more efficient.

INITIALIZING

There are three parts to initializing the USART:

1. Set-up transmit and receive modes of operation

2. Set baud rate

3. Enable interrupts if required

To set-up the transmit and receive modes of operation,

initialization values must be written to TXSTA and

RCSTA. These registers are used to control transmis-

sion and reception but there are some overlapping

functions and both registers are always used. In parts

with two USARTs, these registers are named TXSTA1,

RCSTA1, TXSTA2 and RCSTA2.

To set the baud rate, initialization values must be writ-

ten to the SPBRG (or SPBRG1, SPBRG2). In parts with

a high-speed baud rate option (PIC16 and PIC18

parts), the BRGH bit must be initialized in TXSTA (or

TXSTA1, TXSTA2).

Setting up the interrupts differs between the different

PICmicro MCU architectures. Please refer to the

INTERRUPT section in this Application Note for more

details.

Here are some simple examples of code that sets up

the USART without interrupts and assumes the TRIS or

DDR bits for the TX and RX pins are in the default high

state.

EXAMPLE 2: Initializing the USART on

a PIC16 device

EXAMPLE 3: Initializing the USART on

a PIC17 or PIC18 Device

For devices with two USARTs, the registers have a suf-

fix of 1 or 2 (e.g., SPBRG1 or TXSTA2).

The code examples in the Appendices have separate

initialization routines and they show various ways of

setting up the USART.

USING THE NINTH DATA BIT

The USART can handle data lengths of 8 bits or 9 bits.

The most common RS-232 applications use 8 bits, but

there several reasons why 9 bits might be used:

• The data is 9 bits in length

• The data is 8 bits and two STOP bits are required

• The data is 8 bits and parity is required

• The data is 8 bits and 9th bit address detect is

required

The TX9 bit in TXSTA and the RX9 bit in RCSTA must

be set to enable transmission and reception of the ninth

bit. The order of reading and writing the data is very

important when doing nine-bit operations, as explained

in the ASYNCHRONOUS OPERATION section of this

Application Note. As a simple rule, always read or write

the ninth bit before the other eight bits of data. Under

certain circumstances, if you can be certain that the

data will be read before the next reception completes,

it is possible to read the RX9D bit after reading RCREG

but this is not good practice. Also, TX9D can be written

BANKSEL SPBRG ;select bank 1

movlw D’25’

movwf SPBRG ;initialize SPBRG

movlw H’24’

movwf TXSTA ;initialize TXSTA

BANKSEL RCSTA ;select bank 0

movlw H’90’

movwf RCSTA ;initialize RCSTA

movlw D’25’

movwf SPBRG ;initialize SPBRG

movlw H’24’

movwf TXSTA ;initialize TXSTA

movlw H’90’

movwf RCSTA ;initialize RCSTA
 2003 Microchip Technology Inc. DS00774A-page 9

AN774
before TXREG if this is done while transmission is dis-

abled by the TXEN bit, but again, this is not good prac-

tice.

NINE-BIT DATA

If the data is nine bits in length (instead of eight), the

USART can be used to transmit and receive the data

using the Nine-bit mode. To transmit nine bits, the ninth

bit should be written to the TX9D bit in the TXSTA reg-

ister before writing the lower eight bits of data to

TXREG. After receiving nine-bit data, the ninth bit

should be read from the RX9D bit in the RCSTA regis-

ter before reading the lower eight bits of data from

RCREG.

TWO STOP BITS

The ninth data bit can be used as an extra STOP bit if

the data format requires eight data bits and two STOP

bits, as shown in Figure 9.

FIGURE 9: TWO STOP BITS

To transmit data with two STOP bits, the Nine-bit mode

must be used with the ninth bit (TX9D) set to one before

writing the data to TXREG. The ninth bit can be set in

the initialization, since it will never need to change.

When data is transmitted, the ninth bit will be used as

the first STOP bit and the normal STOP bit generated

by the USART will be used as the second STOP bit.

To receive data with two STOP bits, the Nine-bit mode

can be used and the ninth bit (RX9D) should be

checked after every reception before reading RCREG.

If the ninth bit is not set, it indicates an error in the

STOP bit. This is essentially the same as a framing

error, which will occur if the second STOP bit is not set,

and the same error routine can be used for both these

errors.

It is possible to use the Eight-bit mode to receive data

with two STOP bits. In that case, there will be no error

checking on the second STOP bit. This is not advisable

because, if the second STOP bit is zero, the USART

will interpret this as a START bit for a new reception.

PARITY

The ninth data bit can be used as a parity bit if the data

format requires eight data bits and a parity bit, as

shown in Figure 10.

FIGURE 10: EVEN PARITY BIT

A parity bit is used to provide error checking for a single

bit error. When a single parity bit is used, parity can be

even or odd. Even parity means that the number of

ones in the data and parity sum to an even number and

vice-versa. For example, if the data is 0x25 (binary

0010 0101) then the number of ones in the data is
three, and the even parity bit would be one to bring the

total number of ones to four, which is an even number.

If odd parity were being used, the parity bit would be

zero so that the total number of ones is an odd number.

Calculating parity is a simple matter of adding up all the

ones in the binary data. There are many ways to do this

and a simple loop with rotate, bit test, and increment

instructions is often used. The parity example code in

the Appendices shows a more efficient algorithm that

uses Exclusive OR instructions to sum multiple bits at

once as shown in Figure 11.

S
T
A
R
T
 b
it

1

D
0

D
1

D
2

D
3

D
4

D
5

D
6

D
7

S
T
O
P
 b
it

0 1 10 0 0 0

9
th
 b
it

(1
s
t
S
to
p
)

(2
n
d
 S
to
p
)

S
T
A
R
T
 b
it

1

D
0

D
1

D
2

D
3

D
4

D
5

D
6

D
7

S
T
O
P
 b
it

0 1 10 0 0 0 1

P
a
ri
ty
 b
it
DS00774A-page 10  2003 Microchip Technology Inc.

AN774
FIGURE 11: CALCULATING EVEN PARITY

Because the data is added modulo two, only the lower

bit of each sum is needed. The example software

rotates the bits and exclusive ORs so that every second

bit is added to its neighbor, yielding four results. This

reduces the eight bits to four sums of two bits. The soft-

ware then rotates the bits twice and exclusive ORs to

reduce the four sums of two bits to two sums of four

bits. Finally the software exclusive ORs the upper and

lower four bits to reduce the two sums of four bits to one

sum of eight bits.

To transmit data with a parity bit, the Nine-bit mode

must be used, with the ninth bit (TX9D) set or cleared

appropriately for parity before writing the data to

TXREG. To receive data with a parity bit, the Nine-bit

mode must be used and the ninth bit (RX9D) should be

checked for the correct parity state after every recep-

tion. The ninth bit must be read before reading RCREG

to ensure that the ninth bit data is not lost if another

reception occurs.

Sometimes the data format will be seven data bits and

one parity bit. In this case, the USART can be used in

the Eight-bit mode and the eighth bit of data is used for

parity instead of the ninth bit.

ADDRESS DETECT

The ninth data bit can be used as an address indicator

bit if the data format requires eight data bits with ninth

bit addressing. This is often used in RS-485 communi-

cations.

To transmit an address using ninth bit addressing, the

Nine-bit mode must be used with the ninth bit (TX9D)

set before writing the address to TXREG. To transmit

data, the ninth bit must be cleared before writing the

data to TXREG.

To receive an address using ninth bit addressing, the

Nine-bit mode must be used with the address detect

enable bit (ADDEN) set. This causes the USART to

ignore all receptions with the ninth bit cleared. When a

reception occurs, it will be for a transmission that had

the ninth bit set, so it is not necessary to check the ninth

bit.

Typically, the received address will be read from

RCREG and checked. If it matches an address for

which data should be received, ADDEN must be

cleared so that the data that follows can be received. If

a fixed number of bytes is expected, these can be

received before enabling address detect again. Other-

wise, it may be necessary to check the ninth bit before

reading RCREG for each reception to detect when the

next address is sent. This new address should be

checked and the ADDEN bit should be set again if the

address does not match.

ERROR HANDLING

There are several errors that can occur during serial

communications and the USART detects two types of

errors automatically. These are framing errors and

overrun errors indicated by the FERR and OERR bits in

the RCSTA register. Software can be used to detect

Original Data D7 D6 D5 D4 D3 D2 D1 D0

⊕ ⊕ ⊕ ⊕

D7 D5 D3 D1X X X X

= = = =

X

X

X

X

X

D7+D6 D5+D4 D3+D2X X X D1+D0

Rotate and XOR

Intermediate Result

Rotate Twice
and XOR

Intermediate Result

Swap Nibbles
and XOR

Final Result

⊕ ⊕

X X D7+D6 X X X D3+D2

= =

X X D7+D6+

D5+D4

D3+D2+

D1+D0

X X X

X X X X X X D7+D6+

D5+D4

=

X X X X X X D7+D6+D5+

D4+D3+D2+

D1+D0

Note: X indicates ‘don’t care’ bits. The value may be known, but it will not be used.

⊕

 2003 Microchip Technology Inc. DS00774A-page 11

AN774
other errors if parity or checksums are used. By using

the ninth data bit as a parity bit, any single bit error in

the data can be detected. A checksum on several bytes

of data can provide an extra level of certainty about the

validity of the data.

FRAMING ERROR

A framing error occurs when the STOP bit is detected

as a zero, because the STOP bit should always be a

one. The framing error is always associated with the

byte in RCREG and is passed through the FIFO in the

same way as the data with which it is associated. Read-

ing RCREG allows the next data byte to be loaded into

RCREG with its own framing error flag. For this reason,

it is essential to read the error flag before the data is

read from RCREG, in the same way that the ninth data

bit is read before the data in RCREG.

There is no need to clear the framing error flag, since

the FERR bit will be updated as soon as new data is

received into RCREG.

Once a framing error has been detected it can be

cleared, in effect, by reading the RCREG.

How the error is handled will depend entirely on the

application. In the example code in the Appendices, the

data with the framing error is simply discarded. In a

practical application this may not be sufficient and it

may be necessary to request the data to be retransmit-

ted, for example.

OVERRUN ERROR

An overrun error occurs when the FIFO is full with two

bytes that have already been received, and a third byte

has been clocked into the Receive Shift Register. This

third byte needs to be moved into the FIFO and, since

there is no space available, it is discarded by the

USART and an overrun error is indicated.

Overrun errors can be avoided by reading the incoming

data from RCREG fast enough. Interrupts can often be

used to ensure that data is read in time.

Once an overrun error occurs, no new data will be

received until the receive logic has been RESET by

clearing the receive enable bit, CREN, and enabling it

again. A common symptom of an overrun error is that

the USART stops receiving unexpectedly, often after

the first two bytes. It may be impossible to tell how

much data has been lost because after an overrun

error has occurred, no new data will be received by the

USART.

Once an overrun error has been detected, it can be

cleared by clearing and setting the CREN bit. In some

cases the two bytes in the FIFO will need to be read out

first, since they represent valid data. How the error will

be handled will depend on the application. In the exam-

ple code in the Appendices, the data in the FIFO after

the overrun is simply discarded. In a practical applica-

tion, this may not be sufficient and it may be necessary

to use the data in the FIFO and request any lost data to

be retransmitted, for example.

OTHER ERRORS

Framing and overrun errors are detected automatically

by the USART, but there are other errors that the user

can detect with software. For example, if two STOP bits

or a parity bit is being used, the extra STOP bit or parity

bit can be tested in software. See the section USING

THE NINTH DATA BIT for more details.

The user can implement a protocol that includes a

packet of data followed by a checksum and the check-

sum can be tested at the end of the packet. The code

examples for RS-485 use a checksum.

FLOW CONTROL

The USART will receive data as fast as the baud rate

allows. In some circumstances, the software that must

read the data from the RCREG register may not be able

to do so as fast as the data is being received. In this

case, there is a need for the PICmicro MCU to tell the

transmitting device to suspend transmission of data

temporarily. Similarly, the PICmicro MCU may need to

be told to suspend transmission temporarily. This is

done by means of flow control and two methods are

commonly used:

1. XON/XOFF

2. Hardware

XON/XOFF flow control can be implemented com-

pletely in software with no external hardware, but full

duplex communications is required. When incoming

data needs to be suspended, an XOFF byte (0x13) is

transmitted back to the other device that is transmitting

the data. To start the other device transmitting again, an

XON byte (0x11) is transmitted. XON and XOFF are

standard ASCII control characters. This means that

when sending raw data instead of ASCII text, care must

be taken to ensure that XON and XOFF characters are

not accidentally sent with the data.

Hardware flow control uses extra signals to control the

flow of data and they are defined as part of the RS-232

communications standard. To implement hardware

flow control on a PICmicro MCU, extra I/O pins must be

used. Generally, the receiving device controls an out-

put pin to indicate that the transmitting device should

suspend or resume transmissions. The transmitting

device tests an input pin before a transmission to deter-

mine whether data can be sent. Please see Appendix

D for details specific to RS-232 flow control signals.

Note: The FERR error bit will remain set until

new data has been received and loaded

into the RCREG register.
DS00774A-page 12  2003 Microchip Technology Inc.

AN774
INTERRUPTS

The purpose of an interrupt is to interrupt normal pro-

gram execution and allow the software to perform

some other task before returning to normal program

execution. When an interrupt occurs, the code stops

executing at the current location and jumps to the inter-

rupt vector (i.e., starting address). The address of the

next instruction in the main (interrupted) code is placed

on the stack so that the code can return there after the

interrupt code is finished executing. Please refer to the

relevant device Data Sheet for general information on

interrupts.

Interrupts are useful to minimize the time that the soft-

ware spends polling to check for received data or test-

ing whether a new transmission can be started. This

can make implementing other tasks easier since they

do not have to stop to test the USART. Typically, inter-

rupts are used to receive data because in most cases

it is not possible to know when data will be received.

The software can respond faster to incoming data since

it does not wait for the polling interval before detecting

that there is new data. Because of the faster response,

data spends less time in RCREG waiting to be read and

overflow errors are less likely to occur. As code gets

larger, it becomes more difficult to ensure that a mini-

mum polling interval is maintained under all conditions

and interrupts become more advantageous.

The interrupts for transmit and receive operate inde-

pendently.

RECEIVE INTERRUPT OPERATION

The RCIF bit is set when new data is available in

RCREG and gets cleared when all data is emptied from

the FIFO (the two-byte FIFO includes RCREG). Read-

ing RCREG in the interrupt routine clears the flag auto-

matically if there is no other data in the FIFO. If there is

more data in the FIFO when RCREG is read, then RCIF

will remain set, and another interrupt will occur immedi-

ately after returning from the first interrupt.

When data is received by the USART, the code needs

to detect this event and read the data. An interrupt rou-

tine can be used to store the incoming data in a RAM

buffer to allow the main code more time before it needs

to process the incoming data. With interrupts, the main

code is no longer required to process each byte as it is

received, and it can wait for a complete frame or block

of data. This can simplify and improve the efficiency of

the code.

In most applications, the receive interrupt can be

enabled during initialization and remain enabled. A

receive interrupt will then occur whenever a byte is

received. If the USART is required to ignore incoming

data, reception should be disabled. It is not sufficient to

disable the receive interrupt because an overrun error

(see the ERROR HANDLING section) may occur and

halt further reception. It can sometimes be useful to dis-

able receive interrupts for short periods, for example,

while the main code is modifying a pointer that is used

in the interrupt routine. If the code disables receive

interrupts and any other interrupts can occur, the inter-

rupt routine must test for both the interrupt flag and the

enable bit, because the interrupt flag can be set regard-

less of whether the interrupt is enabled.

TRANSMIT INTERRUPT OPERATION

The TXIF bit is cleared when data is written to TXREG

and gets set when this data moves into the Transmit

Shift Register to get transmitted. This means that the

interrupt occurs when new data can be written to

TXREG.

Whenever TXREG is empty, the TXIF bit will be set and

an interrupt will occur if the interrupt is enabled. This

provides a useful way to transmit data as fast as possi-

ble, but it is necessary to have the data available when

the interrupt occurs. It is common to use a buffer that is

read by the interrupt routine, one byte being written to

TXREG each time the interrupt occurs. When the last

byte of data (from the buffer) has been written to

TXREG, the TXIE bit must be cleared to stop further

interrupts from occurring. The interrupt can be enabled

again later when new data needs to be transmitted and

this will immediately cause an interrupt. If the code dis-

ables transmit interrupts and any other interrupts can

occur, the interrupt routine must test for both the inter-

rupt flag and the enable bit, because the interrupt flag

can be set regardless of whether the interrupt is

enabled.

ARCHITECTURE DIFFERENCES

Each processor architecture has differences in the way

interrupts are structured and the main differences are

summarized below:

• PIC16 interrupts all have one interrupt vector.

• PIC17 interrupts have four vectors for different

interrupts. The USART interrupts share a vector

with other peripherals.

• PIC18 interrupts can have low and high priorities

with two separate vectors for the two priorities.

They can be made to operate without priorities

and use one vector like the PIC16 parts.

• Different registers and bits are used to control the

interrupts in the different device families.

Because of these differences, the interrupts for the

three processor architectures will be covered in com-

pletely separate independent sections to avoid confu-

sion.

PIC16 INTERRUPTS

PIC16 interrupts all use one interrupt vector at address

0x0004. There is no automatic context saving, so the

interrupt code must save all registers that are being

used in both the interrupt and the main code.
 2003 Microchip Technology Inc. DS00774A-page 13

AN774
Three registers control the USART interrupts in PIC16

parts, as shown in Table 9.

TABLE 9: PIC16 INTERRUPT CONTROL

REGISTERS

The INTCON register contains the GIE and PEIE bits.

These are the global interrupt enable and peripheral

interrupt enable bits and both must be set in order for

the receive or transmit interrupts to occur.

The PIE1 register contains the transmit and receive

interrupt enable bits, TXIE and RCIE. They allow the

transmit and receive interrupts to be independently

enabled or disabled.

The PIR1 register contains the transmit and receive

interrupt flag bits, TXIF and RCIF. If one of these bits

gets set while the appropriate interrupt enable bits are

set, an interrupt will occur.

SETTING UP THE PIC16 INTERRUPTS

Setting up the interrupts is a simple matter of writing to

the appropriate registers to enable the interrupts. The

following code example enables both the transmit and

receive interrupts.

EXAMPLE 4: Setting up PIC16 USART Interrupts

The GIE and PEIE bits in the INTCON register are set

to enable interrupts globally and to enable peripheral

interrupts. The TXIE and RCIE bits in the PIE1 register

are set to enable the transmit and receive interrupts.

There is no need to clear the interrupt flags since these

are controlled by the USART hardware.

USING THE PIC16 INTERRUPTS

When an interrupt occurs, the code at the interrupt vec-

tor starts executing and the GIE bit is automatically

cleared to prevent the interrupt code from being inter-

rupted. The interrupt routine could use the same regis-

ters as the code that was interrupted. For example,

only a very simple interrupt routine will not use the

working register or affect the STATUS bits. It can be

catastrophic for the interrupted code to have these reg-

isters changed unexpectedly. For this reason, it is

important to save the data from any registers that may

be changed by the interrupt routine and restore the

contents of the registers before returning to the inter-

rupted code. Another register that is often affected by

interrupts is the PCLATH register if the software uses

more than one page of program memory. The following

example shows how the interrupt routine can start by

saving context.

EXAMPLE 5: Starting and Saving PIC16 Context

This code shows how the working register, STATUS

register, and PCLATH register can be saved at the start

of an interrupt service routine. The code is placed at the

interrupt vector by an ORG directive.

The working register is saved first into a register called

WREG_TEMP. Since the bank is not known at this point,
WREG_TEMP must be in shared memory or all the pos-
sible locations of WREG_TEMP in all the banks must be

reserved. In other words the software must not use any

of the locations that WREG_TEMP could represent in
each of the banks.

Once the working register has been saved, STATUS is

moved into the working register. This can affect the Z

bit in the STATUS register but note that the original con-

tents of STATUS has been saved unchanged in the

working register. The bank bits are then cleared to

select bank zero and the working register, with the orig-

Register

Name
Description

INTCON Interrupt Control Register

PIE1 Peripheral Interrupt Enable Register

PIR1 Peripheral Interrupt Flag Register

movlw 0xc0 ;enable global and peripheral ints

movwf INTCON

movlw 0x30 ;enable TX and RX interrupts

banksel PIE1

movwf PIE1

ORG 0x0004 ;place code at interrupt vector

movwf WREG_TEMP ;save WREG

movf STATUS,W ;store STATUS in WREG

clrf STATUS ;change to file register bank0

movwf STATUS_TEMP;save STATUS value

movf PCLATH,W ;store PCLATH in WREG

movwf PCLATH_TEMP;save PCLATH value

clrf PCLATH ;change to program memory page0
DS00774A-page 14  2003 Microchip Technology Inc.

AN774
inal contents of STATUS, is moved into the

STATUS_TEMP register defined in bank zero. Finally
the PCLATH register is saved into the PCLATH_TEMP
register defined in bank zero.

After the context has been saved, the cause of the

interrupt must be determined. In some cases it is not

sufficient to test just the interrupt flags, since these

flags will get set regardless of whether the interrupt is

enabled or not. For example if the TXIE bit is cleared to

disable a transmit interrupt, and a timer interrupt

occurs, the interrupt routine will get executed and the

TXIF flag may be tested. This could cause the transmit

interrupt code to get executed if the TXIE bit is not

tested. The following example shows how the interrupt

flags and enable bits can be tested for both transmit

and receive.

EXAMPLE 6: Testing PIC16 Interrupt Flags

This code uses a simple trick to save an instruction

while testing the enable bits and flag bits because

these bits are in the same position at the same address

in two different banks. The flag is tested first and then

the bank is changed only if the flag is set. So the enable

bit in the other bank is only tested if the flag is set, oth-

erwise the flag is tested twice and skips both the bank

change and the branch to the receive or transmit rou-

tine. This method saves two instructions, one for the

transmit flag test and one for the receive flag test.

Once the flags have been tested, the routines to read

and write data can be executed if the flags are set. This

part of the interrupt routine is very much application

specific. It depends on whether:

• Software buffers are being used

• Eight or nine bits are being received

• Parity or address detect is being used

In addition, the routines should include error checking

and the error handling will also depend on the applica-

tion. Please see the code in Appendix A for examples

of different interrupt routines.

After executing the rest of the interrupt routine it is nec-

essary to restore the critical registers to their original

state. The following example shows how the context

can be restored.

EXAMPLE 7: Restoring PIC16 Context

First PCLATH is restored and then STATUS. At this

point it is critical not to allow any of the STATUS bits to

be changed. STATUS contains the correct bank for the

data stored in WREG_TEMP but using a movf instruction
to restore the working register would affect the Z bit in

STATUS. To avoid this problem, the swapf instruction

is used instead, because it does not affect any STATUS

flags. Two swapf instructions are required to swap the

nibbles of WREG_TEMP and then swap them back to
their original positions while putting the data into the

working register.

Finally, a retfie instruction is used to return from the

interrupt routine. The retfie behaves like a return

instruction but also sets the GIE bit to enable interrupts

again.

clrf STATUS ;select bank 0

btfsc PIR1,RCIF ;test RCIF receive interrupt

bsf STATUS,RP0 ;change to bank1 if RCIF set

btfsc PIE1,RCIE ;test RCIE only if RCIF set

call GetRXData ;if RCIF and RCIE set, do receive

clrf STATUS ;select bank 0

btfsc PIR1,TXIF ;test for TXIF transmit interrupt

bsf STATUS,RP0 ;change to bank1 if TXIF set

btfsc PIE1,TXIE ;test TXIE only if TXIF set

call PutTXData ;if TXIF and TXIE set, do transmit

clrf STATUS ;select bank 0

movf PCLATH_TEMP,W ;store saved PCLATH value in WREG

movwf PCLATH ;restore PCLATH

movf STATUS_TEMP,W ;store saved STATUS value in WREG

movwf STATUS ;restore STATUS

swapf WREG_TEMP,F ;prepare WREG to be restored

swapf WREG_TEMP,W ;restore WREG keeping STATUS bits

retfie ;return from interrupt
 2003 Microchip Technology Inc. DS00774A-page 15

AN774
PIC17 INTERRUPTS

PIC17 interrupts use four interrupt vectors. The periph-

eral vector that is used for the USART interrupts is at

address 0x0020. There is no automatic context saving

so the interrupt code must save all registers that are

being used in both the interrupt and the main code.

Four or six registers control the USART interrupts in

PIC17 parts, as shown in Table 10.

TABLE 10: PIC17 INTERRUPT CONTROL

REGISTERS

The CPUSTA register contains the global interrupt dis-

able bit, GLINTD. This bit must be cleared in order for

the receive or transmit interrupts to occur.

The INTSTA register contains the peripheral interrupt

enable bit, PEIE. This bit must be set in order for the

receive or transmit interrupts to occur.

The PIE and PIR registers apply to PIC17C4X devices.

The PIC17C7XX devices have two USARTs and they

have PIE1, PIE2, PIR1 and PIR2 registers instead.

PIE1 and PIR1 will be used in the example code that

follows.

The PIE register contains the transmit and receive

interrupt enable bits, TXIE and RCIE. They allow the

transmit and receive interrupts to be independently

enabled or disabled. The corresponding bits in the

PIE1 and PIE2 registers are TX1IE, TX2IE, RC1IE and

RC2IE.

The PIR register contains the transmit and receive

interrupt flag bits, TXIF and RCIF. If one of these bits

gets set while the appropriate interrupt enable bits are

set, an interrupt will occur. The corresponding bits in

the PIR1 and PIR2 registers are TX1IF, TX2IF, RC1IF

and RC2IF.

SETTING UP THE PIC17 INTERRUPTS

Setting up the interrupts is a simple matter of writing to

the appropriate registers to enable the interrupts. The

following code example enables both the transmit and

receive interrupts.

EXAMPLE 8: Setting up PIC17 USART Interrupts

The GLINTD bit in the CPUSTA register is cleared to

enable interrupts globally and the PEIE bit in the

INTSTA is set to enable peripheral interrupts. The

TXIE1 and RCIE1 bits in the PIE1 register are set to

enable the transmit and receive interrupts for USART1.

There is no need to clear the interrupt flags since these

are controlled by the USART hardware.

USING THE PIC17 INTERRUPTS

When an interrupt occurs, the code at the interrupt vec-

tor starts executing and the GLINTD bit is automatically

set to prevent the interrupt code from being interrupted.

The interrupt routine could use the same registers as

the code that was interrupted. For example, only a very

simple interrupt routine will not use the working register

or affect the ALUSTA bits. It can be catastrophic for the

interrupted code to have these registers changed unex-

pectedly. For this reason, it is important to save the

data from any registers that may be changed by the

interrupt routine and restore the contents of the regis-

ters before returning to the interrupted code. Other reg-

isters that are often affected by interrupts are the BSR

and PCLATH registers for banking and paging. The fol-

lowing example shows how the interrupt routine can

start by saving context.

Register

Name
Description

CPUSTA CPU Status Register

INTSTA Interrupt Status Register

PIE or PIE1,

PIE2

Peripheral Interrupt Enable Register

PIR or PIR1,

PIR2

Peripheral Interrupt Flag Register

Note: If a transmit or receive interrupt occurs in

the same instruction cycle as the corre-

sponding interrupt enable is cleared, the

PIC17 processor may vector to the RESET

address. To avoid this possibility, always

set the GLINTD bit before disabling an indi-

vidual transmit or receive interrupt.

movlw 0x2d ;enable global interrupts

movwf CPUSTA

movlw 0x08 ;enable peripheral interrupts

movwf INTSTA

banksel PIE1

movlw 0x03 ;enable TX and RX interrupts

movwf PIE1
DS00774A-page 16  2003 Microchip Technology Inc.

AN774
EXAMPLE 9: Starting by Saving PIC17 Context

This code shows how the working register, ALUSTA,

BSR, and PCLATH registers can be saved at the start

of an interrupt service routine. The code is placed at the

interrupt vector by an ORG directive.

The WREG, ALUSTA, BSR and PCLATH registers are

saved with the movfp instruction that does not affect

any status flags. The registers used to store the context

must be placed in unbanked RAM so that they can be

saved without concern for the current bank selected.

After the context has been saved, the cause of the

interrupt must be determined. In some cases it is not

sufficient to test just the interrupt flags, since these

flags will get set regardless of whether the interrupt is

enabled or not. For example if the TXIE bit is cleared to

disable a transmit interrupt, and a timer1 interrupt

occurs, the interrupt routine will get executed and the

TXIF flag may be tested. This could cause the transmit

interrupt code to get executed if the TXIE bit is not

tested. The following example shows how the interrupt

flags and enable bits can be tested.

EXAMPLE 10: Testing PIC17 Interrupt Flags

The interrupt flag is tested first and if it is set then the

code tests the interrupt enable bit. If the interrupt

enable bit is also set, then the routine to transmit or

receive is called. This is done for both transmit and

receive in this example.

Once the flags have been tested, the routines to read

and write data can be executed if the flags are set. This

part of the interrupt routine is very much application

specific. It depends on whether:

• Software buffers are being used

• Eight or nine bits are being received

• Parity or extra STOP bits are being used

In addition, the routines should include error checking

and the error handling will also depend on the applica-

tion. Please see the code in Appendix B for examples

of different interrupt routines.

After executing the rest of the interrupt routine it is nec-

essary to restore the critical registers to their original

state. The following example shows how the context

can be restored.

EXAMPLE 11: Restoring PIC17 Context

The PCLATH, BSR, ALUSTA and WREG registers are

restored with movfp instructions. The order in which

the registers are restored is not important because

movfp does not affect any status flags and the regis-

ters are in unbanked RAM.

Finally, a retfie instruction is used to return from the

interrupt routine. The retfie behaves like a return

instruction but also clears the GLINTD bit to re-enable

interrupts.

PIC18 INTERRUPTS

PIC18 interrupts use one or two interrupt vectors,

depending on whether priorities are being used. All

interrupts vector to address 0x0008 if priorities are not

used. High priority interrupts use address 0x0008 and

low priority interrupts use address 0x0018. There is

automatic context saving of WREG, STATUS, and

BSR, so the interrupt code does not need to save these

ORG 0x0020 ;place code at interrupt vector

movfp WREG,WREG_TEMP ;save WREG

movfp ALUSTA,ALUSTA_TEMP ;save ALUSTA

movfp BSR,BSR_TEMP ;save BSR

movfp PCLATH,PCLATH_TEMP ;save PCLATH

banksel PIR1

btfss PIR1,RC1IF ;test RCIF receive interrupt

goto Cont1 ;if not set then ignore next test

btfsc PIE1,RC1IE ;test RCIE only if RCIF set

call GetRXData ;if RCIF and RCIE set, do receive

Cont1:

btfss PIR1,TX1IF ;test for TXIF transmit interrupt

goto Cont2 ;if not set then ignore next test

btfsc PIE1,TX1IE ;test TXIE only if TXIF set

call PutTXData ;if TXIF and TXIE set, do transmit

Cont2:

movfp PCLATH_TEMP,PCLATH ;restore PCLATH

movfp BSR_TEMP,BSR ;restore BSR

movfp ALUSTA_TEMP,ALUSTA ;restore ALUSTA

movfp WREG_TEMP,WREG ;restore WREG

retfie ;return from interrupt
 2003 Microchip Technology Inc. DS00774A-page 17

AN774
registers. The automatic context saving can only be

used for interrupt routines that will not be interrupted by

other interrupts (i.e., not low priority USART routines).

Some PIC18 devices have errata items pertaining to

interrupts. It is essential that the user always check the

errata document for the part being used.

Five or eight registers control the USART interrupts in

PIC18 parts, as shown in Table 11.

TABLE 11: PIC18 INTERRUPT CONTROL

REGISTERS

The RCON register contains the IPEN bit that deter-

mines whether interrupt priority levels are being used.

The INTCON register contains the GIE/GIEH and

PEIE/GIEL bits. These bits each have different func-

tions depending on whether interrupt priorities are

enabled with the IPEN bit.

If priorities are disabled (IPEN=0) then the global inter-

rupt enable, GIE, and peripheral interrupt enable,

PEIE, functions are used for the GIE/GIEH and PEIE/

GIEL bits. The interrupts then function much the same

as for PIC16 parts. Both the GIE and PEIE bits must be

set in order for the receive or transmit interrupts to

occur.

If priorities are enabled (IPEN=1) then the global high

priority interrupt enable, GIEH, and global low priority

interrupt enable, GIEL, functions are used for the GIE/

GIEH and PEIE/GIEL bits. The receive and transmit

interrupts can each be assigned a high or low priority,

and in order for an interrupt to occur, the relevant global

interrupt enable bit, GIEH or GIEL, must be set.

The PIE1 register contains the transmit and receive

interrupt enable bits, TXIE and RCIE. They allow the

transmit and receive interrupts to be independently

enabled or disabled. On parts with two USARTs, the

PIE3 register contains the bits for the second USART.

The corresponding bit names in the PIE1 and PIE3 reg-

isters are TX1IE TX2IE, RC1IE and RC2IE.

The PIR1 register contains the transmit and receive

interrupt flag bits, TXIF and RCIF. If one of these bits

gets set while the appropriate interrupt enable bits are

set, an interrupt will occur. On parts with two USARTs,

the PIR3 register contains the bits for the second

USART. The corresponding bit names in the PIR1 and

PIR3 registers are TX1IF TX2IF, RC1IF and RC2IF.

The IPR1 register contains the transmit and receive

interrupt priority bits, TXIP and RCIP. They allow the

transmit and receive interrupts to be given independent

high or low priorities if the IPEN bit is set. On parts with

two USARTs, the IPR3 register contains the bits for the

second USART. The corresponding bit names in the

IPR1 and IPR3 registers are TX1IP TX2IP, RC1IP and

RC2IP.

SETTING UP THE PIC18 INTERRUPTS

Setting up the interrupts is a simple matter of writing to

the appropriate registers to enable the interrupts. The

following code examples enable both the transmit and

receive interrupts. The first example uses interrupt pri-

orities, and the second example does not.

EXAMPLE 12: Setting Up PIC18 USART Interrupts with Priority Levels

The IPEN bit in the RCON register is set to use interrupt

priority levels. The GIE/GIEH bit in the INTCON regis-

ter is set to enable high priority interrupts and the TXIP

and RCIP bits in the IPR1 register are set to select high

priority for the transmit and receive interrupts. The

TXIE and RCIE bits in the PIE1 register are set to

enable the transmit and receive interrupts. There is no

need to clear the interrupt flags, since these are con-

trolled by the USART hardware.

Register

Name
Description

RCON RESET Control Register

INTCON Interrupt Control Register

PIE1, PIE3 Peripheral Interrupt Enable Register

PIR1, PIR3 Peripheral Interrupt Flag Register

IPR1, IPR3 Peripheral Interrupt Priority Register

Note: Clearing the GIEH bit disables all inter-

rupts, both low and high priority.

movlw 0x9c ;enable prioritized interrupts

movwf RCON

movlw 0x80 ;enable high priority interrupts

movwf INTCON

movlw 0x30 ;high priority TX and RX interrupts

movwf IPR1

movlw 0x30 ;enable TX and RX interrupts

movwf PIE1
DS00774A-page 18  2003 Microchip Technology Inc.

AN774
EXAMPLE 13: Setting up PIC18 USART Interrupts without Priority Levels

The IPEN bit in the RCON register is cleared to use

Compatibility mode (i.e., no priority levels). The GIE/

GIEH and PEIE/GIEL bits in the INTCON register are

set to enable interrupts globally and to enable periph-

eral interrupts. The TXIE and RCIE bits in the PIE1 reg-

ister are set to enable the transmit and receive

interrupts. There is no need to clear the interrupt flags

since these are controlled by the USART hardware.

USING THE PIC18 INTERRUPTS

When an interrupt occurs, the code at the interrupt vec-

tor starts executing and either the GIE/GIEH or PEIE/

GIEL is automatically cleared. GIE/GIEH will be

cleared for high priority or unprioritized interrupts and

PEIE/GIEL will be cleared for low priority interrupts.

This prevents the interrupt code from being interrupted

by another interrupt of the same priority.

The interrupt routine could use the same registers as

the code that was interrupted. For example, only a very

simple interrupt routine will not use the working register

or affect the STATUS bits. It can be catastrophic for the

interrupted code to have these registers changed unex-

pectedly. Fortunately, the PIC18 device will save

WREG, STATUS, and BSR automatically when any

interrupt occurs. It is only necessary to save these reg-

isters in a low priority interrupt routine because the

saved values could be overwritten if a high priority

interrupt occurs. The following examples show how an

interrupt routine can start by saving context if neces-

sary.

EXAMPLE 14: Starting a PIC18 High Priority or Unprioritized Interrupt Routine

This code shows how the code can be placed at the

interrupt vector by an ORG directive. Saving context is
not needed when high priority interrupts are used or

when no priorities are used because WREG, STATUS

and BSR are saved automatically.

If a low priority interrupt is being used, the code needs

to branch over the low priority routine that starts at

address 0x0018. A bra instruction can be used if the

routine is within 1024 instructions.

EXAMPLE 15: Starting and Saving Context in a PIC18 Low Priority Interrupt Routine

This code shows how the working register, STATUS

register, and bank select register can be saved at the

start of a low priority interrupt service routine. The code

is placed at the interrupt vector by an ORG directive and
movff instructions are used since they do not require

bank selection and do not affect the STATUS flags.

After the context has been saved, the cause of the

interrupt must be determined. In some cases it is not

sufficient to test just the interrupt flags, since these

flags will get set regardless of whether the interrupt is

enabled. For example, if the TXIE bit is cleared to dis-

able a transmit interrupt, and a timer interrupt occurs,

the interrupt routine will get executed and the TXIF flag

may be tested. This could cause the transmit interrupt

code to get executed if the TXIE bit is not tested. The

following example shows how the interrupt flags and

enable bits can be tested.

movlw 0x1c ;disable prioritized interrupts

movwf RCON

movlw 0xc0 ;enable global and peripheral ints

movwf INTCON

movlw 0x30 ;enable TX and RX interrupts

movwf PIE1

ORG 0x0008 ;place code at interrupt vector

bra HighIntCode ;go to high priority interrupt routine

ORG 0x0018 ;place code at low priority int. vector

movff WREG,WREG_TEMP ;save WREG

movff STATUS,STATUS_TEMP ;save STATUS

movff BSR,BSR_TEMP ;save BSR
 2003 Microchip Technology Inc. DS00774A-page 19

AN774
EXAMPLE 16: Testing PIC18 Interrupt Flags

The interrupt flag is tested first and if it is set then the

code tests the interrupt enable bit. If the interrupt

enable bit is also set, then the routine to transmit or

receive is called. This is done for both transmit or

receive in this example.

Once the flags have been tested, the routines to read

and write data can be executed if the flags are set. This

part of the interrupt routine is very much application

specific. It depends on whether:

• Software buffers are being used

• Eight or nine bits are being received

• Parity or address detect is being used

In addition, the routines should include error checking

and the error handling will also depend on the applica-

tion. Please see the code in Appendix C for examples

of different interrupt routines.

After executing the rest of the interrupt routine, it is nec-

essary to restore the critical registers to their original

state. The following examples show how the context

can be restored.

EXAMPLE 17: Restoring Context in a PIC18 High Priority or Unprioritized Interrupt Routine

This code shows how the retfie instruction can be

used to return from the interrupt routine with the option

to restore context. The retfie FAST instruction

behaves like a return instruction but also restores

WREG, STATUS and BSR and sets the GIE/GIEH bit to

re-enable interrupts.

EXAMPLE 18: Restoring Context in a PIC18 Low Priority Interrupt Routine

This code shows how WREG, STATUS and BSR can

be restored at the end of a low priority interrupt service

routine. The code uses movff instructions since they

do not require bank selection and do not affect the STA-

TUS flags. Finally, a retfie instruction is used to

return from the interrupt routine. The retfie behaves

like a return instruction, but also sets the PEIE/GIEL

bit to re-enable interrupts.

CODE EXAMPLES

Code examples are provided for PIC16, PIC17 and

PIC18 devices in Appendix A, B, and C respectively.

Examples are provided for using the USART with inter-

rupts and polling for data, with data buffers and simply

using one byte at a time.

It is practically impossible to show examples of every

way in which the USART can be used. For example, it

is possible (and can be very practical) to use interrupts

to read received data, but not to use interrupts to trans-

mit data.

btfss PIR1,RC1IF ;test RCIF receive interrupt

bra Cont1 ;if not set then ignore next test

btfsc PIE1,RC1IE ;test RCIE only if RCIF set

rcall GetRXData ;if RCIF and RCIE set, do receive

Cont1:

btfss PIR1,TX1IF ;test for TXIF transmit interrupt

bra Cont2 ;if not set then ignore next test

btfsc PIE1,TX1IE ;test TXIE only if TXIF set

rcall PutTXData ;if TXIF and TXIE set, do transmit

Cont2:

retfie FAST ;return from int. and restore context

movff BSR_TEMP,BSR ;restore BSR

movff STATUS_TEMP,STATUS ;restore STATUS

movff WREG_TEMP,WREG ;restore WREG

retfie ;return from interrupt

Note: The GIE/GIEH or PEIE/GIEL bit is set

based on whether a high, low or unpriori-

tized interrupt is in progress and this is not

related to the FAST option of the retfie
instruction.
DS00774A-page 20  2003 Microchip Technology Inc.

AN774
The following fifteen examples are provided:

CONCLUSION

The USARTs included on Microchip's PICmicro

devices provide a flexible method of handling many

asynchronous communications applications, including

the very popular standards:

• RS-232

• RS-422

• RS-485

Ease of use is assured by providing:

• Buffering of incoming and outgoing data

• Automatic handling of START and STOP bits

• Error detection

• Interrupts

Eight and nine-bit data modes and ninth bit addressing

provide additional flexibility. With this Application Note,

the user has a guide to implementing code that uses

the many features of the USART for asynchronous

communications.

REFERENCES

PICmicro™ Mid-Range MCU Family Reference Manual

PICmicro® MCU 18C Family Reference Manual

Device-specific Data Sheets

AN851 A FLASH Bootloader for PIC16 and PIC18

Devices

TABLE 12: CODE EXAMPLES USING USART

File Name Description

P16/P17/P18_TIRI RS-232 8-bit, receive interrupt, transmit interrupt, circular buffers

P16/P17/P18_TPRP RS-232 8-bit, receive polling, transmit polling, simple buffers

P16/P17/P18_TWRP RS-232 8-bit, receive polling, transmit waiting, no buffers

P16/P17/P18_2STP RS-232 8-bit, 2 STOP bits, receive polling, transmit waiting, no buffers

P16/P17/P18_PRTY RS-232 8-bit, parity, receive polling, transmit waiting, no buffers
 2003 Microchip Technology Inc. DS00774A-page 21

AN774
APPENDIX A: PIC16F877 CODE EXAMPLES

The source code files for Appendix A are available as a WinZip archive file in the Application Notes section of the

Microchip Technology website:

http://www.microchip.com

There are five code examples for the PIC16F877. They can be applied to any PIC16 part that has a USART, with minor

changes. Each file has a brief functional description in the header at the top of the file. They all receive data and transmit

the data back, but do so in different ways to demonstrate typical applications of the USART.

Here is a summary of the features of each code example:

P16_TIRI.ASM - Use interrupts for transmit and receive, Circular buffers, Eight bit data

P16_TPRP.ASM - Poll for transmit and receive, Simple buffers, Eight bit data

P16_TWRP.ASM - Poll to receive, Wait to transmit, No buffers, Eight bit data

P16_2STP.ASM - Poll to receive, Wait to transmit, No buffers, Eight bit data, Two STOP bits

P16_PRTY.ASM - Poll to receive, Wait to transmit, No buffers, Eight bit data, Even parity bit
DS00774A-page 22  2003 Microchip Technology Inc.

http://www.microchip.com

AN774
APPENDIX B: PIC17C756A CODE EXAMPLES

The source code files for Appendix B are available as a WinZip archive file in the Application Notes section of the

Microchip Technology website:

http://www.microchip.com

There are five code examples for the PIC17C756A. They can be applied to any PIC17 part, with minor changes. Each

file has a brief functional description in the header at the top of the file. They all receive data and transmit the data back,

but do so in different ways to demostrate typical applications of the USART.

Here is a summary of the features of each code example:

P17_TIRI.ASM - Use interrupts for transmit and receive, Circular buffers, Eight bit data

P17_TPRP.ASM - Poll for transmit and receive, Simple buffers, Eight bit data

P17_TWRP.ASM - Poll to receive, Wait to transmit, No buffers, Eight bit data

P17_2STP.ASM - Poll to receive, Wait to transmit, No buffers, Eight bit data, Two STOP bits

P17_PRTY.ASM - Poll to receive, Wait to transmit, No buffers, Eight bit data, Even parity bit
 2003 Microchip Technology Inc. DS00774A-page 23

http://www.microchip.com

AN774
APPENDIX C: PIC18F452 CODE EXAMPLES

The source code files for Appendix C are available as a WinZip archive file in the Application Notes section of the

Microchip Technology website:

http://www.microchip.com

There are five code examples for the PIC18F452. They can be applied to any PIC18 part, with minor changes. Each file

has a brief functional description in the header at the top of the file. They all receive data and transmit the data back,

but do so in different ways to demonstrate typical applications of the USART.

Here is a summary of the features of each code example:

P18_TIRI.ASM - Use interrupts for transmit and receive, Circular buffers, Eight bit data

P18_TPRP.ASM - Poll for transmit and receive, Simple buffers, Eight bit data

P18_TWRP.ASM - Poll to receive, Wait to transmit, No buffers, Eight bit data

P18_2STP.ASM - Poll to receive, Wait to transmit, No buffers, Eight bit data, Two STOP bits

P18_PRTY.ASM - Poll to receive, Wait to transmit, No buffers, Eight bit data, Even parity bit
DS00774A-page 24  2003 Microchip Technology Inc.

http://www.microchip.com

AN774
APPENDIX D: RS-232 HARDWARE HANDSHAKING SIGNALS

Understanding hardware flow control can be confusing,

because of the terminology used and the slightly differ-

ent way that handshaking is now implemented, com-

pared to the original specification.

RS-232 hardware handshaking was specified in terms

of communication between Data Terminal Equipment

(DTE) and Data Communications Equipment (DCE).

The DTE (e.g., computer terminal) was always faster

than the DCE (e.g., modem) and could receive data

without interruption. The hardware handshaking proto-

col required that the DTE would request to send data to

the DCE (with the request to send RTS signal) and that

the DCE would then indicate to the DTE that it was

cleared to send data (with the clear to send CTS sig-

nal). Both RTS and CTS were, therefore, used to con-

trol data flow from the DTE to the DCE.

The Data Terminal Ready (DTR) signal was defined so

that the DTE could indicate to the DCE that it was

attached and ready to communicate. The Data Set

Ready (DSR) signal was defined to enable the DCE to

indicate to the DTE that it was attached and ready to

communicate. These are higher level signals not gen-

erally used for byte by byte control of data flow,

although they can be used for this purpose.

Most RS-232 connections use 9-pin DSUB connectors.

A DTE uses a male connector and a DCE uses a

female connector. The signal names are always in

terms of the DTE, so the RTS pin on the female con-

nector of the DCE is an input and is the RTS signal from

the DTE.

Over time, the clear distinction between the DTE and

DCE has been lost. In many instances, two DTE

devices are connected together. In other cases, the

DCE device is able to send data at a rate that is too

high for the DTE to receive continuously. In practice,

the DTR output of the DTE has come to be used to con-

trol the flow of data to the DTE and now indicates that

the DCE (or other DTE) may send data. It no longer

indicates a request to send data to the DCE.

It is common for a DTE to be connected to another DTE

(e.g., two computers), and in this case, they will both

have male connectors and the cable between them will

have two female connectors. This is known as a null

modem cable. The cable is usually wired in such a way

that each DTE looks like a DCE to the other DTE. To

achieve this, the RTS output of one DTE is connected

to the CTS input of the other DTE and vice versa. Each

DTE device will use its RTS output to allow the other

DTE device to transmit data and will check its CTS

input to determine whether it is allowed to transmit

data.

FIGURE D-1: DTE TO DCE CONNECTION

FIGURE D-2: DTE TO DTE CONNECTION

DSR input

RXD input
RTS output

CTS input

DTR output

1
6

7

8

9

2

3

4

5

TXD output

GND

DSR

RXD
RTS

CTS

DTR

1
6

7

8

9

2

3

4

5

TXD

GND

Data Terminal Equipment
DSUB9 male connector

1
6

7

8

9

2

3

4

5

DTE to DCE RS-232 cable
DSUB9 female to DSUB9 male connector

DSR output

RXD output
RTS input

CTS output

DTR input

1
6

7

8

9

2

3

4

5

TXD input

GND

Data Communication Equipment
DSUB9 female connector

GND

DTR

CTS

RTS
RXD

TXD

DSR

DSR input

RXD input
RTS output

CTS input

DTR output

1
6

7

8

9

2

3

4

5

TXD output

GND

DSR
RXD
RTS

CTS
DTR

1
6

7

8

9

2

3

4

5

TXD

GND

Data Terminal Equipment
DSUB9 male connector

1
6

7

8

9

2

3

4

5

DTE to DTE RS-232 null modem cable
DSUB9 female to DSUB9 female connector

DSR input

RXD input

RTS output

CTS input
DTR output

1

6

7

8

9

2

3

4

5

TXD output

GND

Data Terminal Equipment
DSUB9 male connector
 2003 Microchip Technology Inc. DS00774A-page 25

AN774
NOTES:
DS00774A-page 26  2003 Microchip Technology Inc.

Note the following details of the code protection feature on Microchip devices:

• Microchip products meet the specification contained in their particular Microchip Data Sheet.

• Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the

intended manner and under normal conditions.

• There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our

knowledge, require using the Microchip products in a manner outside the operating specifications contained in Microchip's Data

Sheets. Most likely, the person doing so is engaged in theft of intellectual property.

• Microchip is willing to work with the customer who is concerned about the integrity of their code.

• Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not

mean that we are guaranteeing the product as “unbreakable.”

Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our

products.
Information contained in this publication regarding device

applications and the like is intended through suggestion only

and may be superseded by updates. It is your responsibility to

ensure that your application meets with your specifications. No

representation or warranty is given and no liability is assumed by

Microchip Technology Incorporated with respect to the accuracy

or use of such information, or infringement of patents or other

intellectual property rights arising from such use or otherwise.

Use of Microchip’s products as critical components in life

support systems is not authorized except with express written

approval by Microchip. No licenses are conveyed, implicitly or

otherwise, under any intellectual property rights.
 2003 Microchip Technology Inc.
Trademarks

The Microchip name and logo, the Microchip logo, KEELOQ,

MPLAB, PIC, PICmicro, PICSTART, PRO MATE and

PowerSmart are registered trademarks of Microchip Technology

Incorporated in the U.S.A. and other countries.

FilterLab, microID, MXDEV, MXLAB, PICMASTER, SEEVAL

and The Embedded Control Solutions Company are registered

trademarks of Microchip Technology Incorporated in the U.S.A.

Accuron, dsPIC, dsPICDEM.net, ECONOMONITOR,

FanSense, FlexROM, fuzzyLAB, In-Circuit Serial Programming,

ICSP, ICEPIC, microPort, Migratable Memory, MPASM, MPLIB,

MPLINK, MPSIM, PICC, PICkit, PICDEM, PICDEM.net,

PowerCal, PowerInfo, PowerTool, rfPIC, Select Mode,

SmartSensor, SmartShunt, SmartTel and Total Endurance are

trademarks of Microchip Technology Incorporated in the U.S.A.

and other countries.

Serialized Quick Turn Programming (SQTP) is a service mark of

Microchip Technology Incorporated in the U.S.A.

All other trademarks mentioned herein are property of their

respective companies.

© 2003, Microchip Technology Incorporated, Printed in the

U.S.A., All Rights Reserved.

 Printed on recycled paper.
DS00774A - page 27

Microchip received QS-9000 quality system
certification for its worldwide headquarters,
design and wafer fabrication facilities in
Chandler and Tempe, Arizona in July 1999
and Mountain View, California in March 2002.
The Company’s quality system processes and
procedures are QS-9000 compliant for its
PICmicro® 8-bit MCUs, KEELOQ® code hopping
devices, Serial EEPROMs, microperipherals,
non-volatile memory and analog products. In
addition, Microchip’s quality system for the
design and manufacture of development
systems is ISO 9001 certified.

DS00774A-page 28  2003 Microchip Technology Inc.

AMERICAS

Corporate Office
2355 West Chandler Blvd.
Chandler, AZ 85224-6199
Tel: 480-792-7200 Fax: 480-792-7277
Technical Support: 480-792-7627
Web Address: http://www.microchip.com

Rocky Mountain
2355 West Chandler Blvd.
Chandler, AZ 85224-6199
Tel: 480-792-7966 Fax: 480-792-4338

Atlanta
3780 Mansell Road, Suite 130
Alpharetta, GA 30022
Tel: 770-640-0034 Fax: 770-640-0307

Boston
2 Lan Drive, Suite 120
Westford, MA 01886
Tel: 978-692-3848 Fax: 978-692-3821

Chicago
333 Pierce Road, Suite 180
Itasca, IL 60143
Tel: 630-285-0071 Fax: 630-285-0075

Dallas
4570 Westgrove Drive, Suite 160
Addison, TX 75001
Tel: 972-818-7423 Fax: 972-818-2924

Detroit
Tri-Atria Office Building
32255 Northwestern Highway, Suite 190
Farmington Hills, MI 48334
Tel: 248-538-2250 Fax: 248-538-2260

Kokomo
2767 S. Albright Road
Kokomo, Indiana 46902
Tel: 765-864-8360 Fax: 765-864-8387

Los Angeles
18201 Von Karman, Suite 1090
Irvine, CA 92612
Tel: 949-263-1888 Fax: 949-263-1338

San Jose
Microchip Technology Inc.
2107 North First Street, Suite 590
San Jose, CA 95131
Tel: 408-436-7950 Fax: 408-436-7955

Toronto
6285 Northam Drive, Suite 108
Mississauga, Ontario L4V 1X5, Canada
Tel: 905-673-0699 Fax: 905-673-6509

ASIA/PACIFIC

Australia
Microchip Technology Australia Pty Ltd
Suite 22, 41 Rawson Street
Epping 2121, NSW
Australia
Tel: 61-2-9868-6733 Fax: 61-2-9868-6755

China - Beijing
Microchip Technology Consulting (Shanghai)
Co., Ltd., Beijing Liaison Office
Unit 915
Bei Hai Wan Tai Bldg.
No. 6 Chaoyangmen Beidajie
Beijing, 100027, No. China
Tel: 86-10-85282100 Fax: 86-10-85282104

China - Chengdu
Microchip Technology Consulting (Shanghai)
Co., Ltd., Chengdu Liaison Office
Rm. 2401-2402, 24th Floor,
Ming Xing Financial Tower
No. 88 TIDU Street
Chengdu 610016, China
Tel: 86-28-86766200 Fax: 86-28-86766599

China - Fuzhou
Microchip Technology Consulting (Shanghai)
Co., Ltd., Fuzhou Liaison Office
Unit 28F, World Trade Plaza
No. 71 Wusi Road
Fuzhou 350001, China
Tel: 86-591-7503506 Fax: 86-591-7503521

China - Hong Kong SAR
Microchip Technology Hongkong Ltd.
Unit 901-6, Tower 2, Metroplaza
223 Hing Fong Road
Kwai Fong, N.T., Hong Kong
Tel: 852-2401-1200 Fax: 852-2401-3431

China - Shanghai
Microchip Technology Consulting (Shanghai)
Co., Ltd.
Room 701, Bldg. B
Far East International Plaza
No. 317 Xian Xia Road
Shanghai, 200051
Tel: 86-21-6275-5700 Fax: 86-21-6275-5060

China - Shenzhen
Microchip Technology Consulting (Shanghai)
Co., Ltd., Shenzhen Liaison Office
Rm. 1812, 18/F, Building A, United Plaza
No. 5022 Binhe Road, Futian District
Shenzhen 518033, China
Tel: 86-755-82901380 Fax: 86-755-82966626

China - Qingdao
Rm. B503, Fullhope Plaza,
No. 12 Hong Kong Central Rd.
Qingdao 266071, China
Tel: 86-532-5027355 Fax: 86-532-5027205

India
Microchip Technology Inc.
India Liaison Office
Divyasree Chambers
1 Floor, Wing A (A3/A4)
No. 11, O’Shaugnessey Road
Bangalore, 560 025, India
Tel: 91-80-2290061 Fax: 91-80-2290062

Japan
Microchip Technology Japan K.K.
Benex S-1 6F
3-18-20, Shinyokohama
Kohoku-Ku, Yokohama-shi
Kanagawa, 222-0033, Japan
Tel: 81-45-471- 6166 Fax: 81-45-471-6122

Korea
Microchip Technology Korea
168-1, Youngbo Bldg. 3 Floor
Samsung-Dong, Kangnam-Ku
Seoul, Korea 135-882
Tel: 82-2-554-7200 Fax: 82-2-558-5934

Singapore
Microchip Technology Singapore Pte Ltd.
200 Middle Road
#07-02 Prime Centre
Singapore, 188980
Tel: 65-6334-8870 Fax: 65-6334-8850

Taiwan
Microchip Technology (Barbados) Inc.,
Taiwan Branch
11F-3, No. 207
Tung Hua North Road
Taipei, 105, Taiwan
Tel: 886-2-2717-7175 Fax: 886-2-2545-0139

EUROPE
Austria
Microchip Technology Austria GmbH
Durisolstrasse 2
A-4600 Wels
Austria
Tel: 43-7242-2244-399
Fax: 43-7242-2244-393

Denmark
Microchip Technology Nordic ApS
Regus Business Centre
Lautrup hoj 1-3
Ballerup DK-2750 Denmark
Tel: 45 4420 9895 Fax: 45 4420 9910

France
Microchip Technology SARL
Parc d’Activite du Moulin de Massy
43 Rue du Saule Trapu
Batiment A - ler Etage
91300 Massy, France
Tel: 33-1-69-53-63-20 Fax: 33-1-69-30-90-79

Germany
Microchip Technology GmbH
Steinheilstrasse 10
D-85737 Ismaning, Germany
Tel: 49-89-627-144 0 Fax: 49-89-627-144-44

Italy
Microchip Technology SRL
Centro Direzionale Colleoni
Palazzo Taurus 1 V. Le Colleoni 1
20041 Agrate Brianza
Milan, Italy
Tel: 39-039-65791-1 Fax: 39-039-6899883

United Kingdom
Microchip Ltd.
505 Eskdale Road
Winnersh Triangle
Wokingham
Berkshire, England RG41 5TU
Tel: 44 118 921 5869 Fax: 44-118 921-5820

12/05/02

WORLDWIDE SALES AND SERVICE

	Introduction
	OVERVIEW
	PICMICRO Microcontroller Families
	Special Function Registers

	TABLE 1: Registers That Control Transmission and Reception
	TABLE 2: Registers Used to Write and Read Data
	TABLE 3: Register for Setting Baud Rate
	TABLE 4: Interrupt Registers for PIC16 Devices
	TABLE 5: Interrupt Registers for PIC17 Devices
	TABLE 6: Interrupt Registers for PIC18 Devices
	Emulator Issues
	ASYNCHRONOUS OPERATION
	SIGNALS

	FIGURE 1: Asynchronous mode signal
	TRANSMISSION

	FIGURE 2: Asynchronous Transmission
	RECEPTION

	FIGURE 3: Asynchronous Reception
	ADDRESSABLE MODE

	FIGURE 4: Addressable Mode
	BAUD RATE

	TABLE 7: Formulas for Baud Rate
	TABLE 8: Formulas for SPBRG
	RS-232, RS-422, and RS-485 Interfaces
	RS-232 CHARACTERISTICS

	FIGURE 5: Typical RS-232 connection
	RS-232 IMPLEMENTATION
	RS-422 CHARACTERISTICS

	FIGURE 6: Typical RS-422 four-wire connection
	RS-422 IMPLEMENTATION
	RS-485 CHARACTERISTICS

	FIGURE 7: Typical RS-485 four-wire connection
	FIGURE 8: Typical RS-485 two-wire connection
	RS-485 IMPLEMENTATION
	INITIALIZING
	USING THE NINTH DATA BIT
	NINE-BIT DATA

	FIGURE 9: Two Stop Bits
	PARITY

	FIGURE 10: Even Parity Bit
	FIGURE 11: Calculating Even Parity
	ADDRESS DETECT
	ERROR HANDLING
	OTHER ERRORS

	FLOW CONTROL
	INTERRUPTS
	RECEIVE INTERRUPT OPERATION
	TRANSMIT INTERRUPT OPERATION
	ARCHITECTURE DIFFERENCES
	PIC16 INTERRUPTS

	TABLE 9: PIC16 Interrupt Control Registers
	SETTING UP THE PIC16 INTERRUPTS
	USING THE PIC16 INTERRUPTS
	PIC17 INTERRUPTS

	TABLE 10: PIC17 Interrupt Control Registers
	SETTING UP THE PIC17 INTERRUPTS
	USING THE PIC17 INTERRUPTS
	PIC18 INTERRUPTS

	TABLE 11: PIC18 Interrupt Control registers
	SETTING UP THE PIC18 INTERRUPTS
	USING THE PIC18 INTERRUPTS
	CODE EXAMPLES

	TABLE 12: Code Examples using usart
	CONCLUSION
	REFERENCES

	Appendix A: PIC16F877 Code Examples
	Appendix B: PIC17C756A Code Examples
	Appendix C: PIC18F452 Code Examples
	Appendix D: RS-232 Hardware Handshaking Signals
	Trademarks
	Worldwide Sales

