
M AN853
PIC18XXX8 CAN Driver with Prioritized Transmit Buffer
INTRODUCTION

The Microchip PIC18XXX8 family of microcontrollers
provide an integrated Controller Area Network (CAN)
solution along with other PICmicro® features. Although
originally intended for the automotive industry, CAN is
finding its way into other control applications. In CAN, a
protocol message with highest priority wins the bus
arbitration and maintains the bus control. For minimum
message latency and bus control, messages should be
transmitted on a priority basis.

Because of the wide applicability of the CAN protocol,
developers are faced with the often cumbersome task
of dealing with the intricate details of CAN registers.
This application note presents a software library that
hides the details of CAN registers, and discusses the
design of the CAN driver with prioritized Transmit buffer
implementation. This software library allows
developers to focus their efforts on application logic,
while minimizing their interaction with CAN registers.

If the controller has heavy transmission loads, it is
advisable to use software Transmit buffers to reduce
message latency. Firmware also supports user defined
Transmit buffer size. If the defined size of a Transmit
buffer is more than that available in hardware (3), the
CAN driver will use 14 bytes of general purpose RAM
for each extra buffer.

For details about the PIC18 family of microcontrollers,
refer to the PIC18CXX8 Data Sheet (DS30475), the
PIC18FXX8 Data Sheet (DS41159), and the PICmicro®

18C MCU Family Reference Manual (DS39500).

CAN MODULE OVERVIEW

The PIC18 family of microcontrollers contain a CAN
module that provides the same register and functional
interface for all PIC18 microcontrollers.

The module features are as follows:

• Implementation of CAN 1.2, CAN 2.0A and
CAN 2.0B protocol

• Standard and extended data frames
• 0 - 8 bytes data length

• Programmable bit rate up to 1 Mbit/sec
• Support for remote frame
• Double-buffered receiver with two prioritized

received message storage buffers
• Six full (standard/extended identifier) acceptance

filters: two associated with the high priority
receive buffer, and four associated with the low
priority receive buffer

• Two full acceptance filter masks, one each
associated with the high and low priority receive
buffers

• Three transmit buffers with application specified
prioritization and abort capability

• Programmable wake-up functionality with
integrated low-pass filter

• Programmable Loopback mode and
programmable state clocking supports
self-test operation

• Signaling via interrupt capabilities for all CAN
receiver and transmitter error states

• Programmable clock source

• Programmable link to timer module for
time-stamping and network synchronization

• Low Power SLEEP mode

Author: Gaurang Kavaiya
Microchip Technology Inc.
 2002 Microchip Technology Inc. DS00853A-page 1

AN853
FIGURE 1: CAN BUFFERS AND PROTOCOL ENGINE BLOCK DIAGRAM

Acceptance Filter
RXF2

R
X
B
1

A
c
c
e
p
t

A
c
c
e
p
t

Identifier

Data Field Data Field

Identifier

Acceptance Mask
RXM1

Acceptance Filter
RXF3

Acceptance Filter
RXF4

Acceptance Filter
RXF5

M
A
B

Acceptance Mask
RXM0

Acceptance Filter
RXF0

Acceptance Filter
RXF1

R
X
B
0

M
S

G
R

E
Q

TXB2

T
X

A
B

T
T

X
LA

R
B

T
X

E
R

R
M

T
X

B
U

F
F

M
E

S
S

A
G

E

Message
Queue
Control

Transmit Byte Sequencer

M
S

G
R

E
Q

TXB1
T

X
A

B
T

T
X

LA
R

B
T

X
E

R
R

M
T

X
B

U
F

F

M
E

S
S

A
G

E

M
S

G
R

E
Q

TXB0

T
X

A
B

T
T

X
LA

R
B

T
X

E
R

R
M

T
X

B
U

F
F

M
E

S
S

A
G

E

Receive ShiftTransmit Shift

Receive
Error

Transmit
Error

Protocol

RXERRCNT

TXERRCNT

ErrPas
BusOff

Finite
State

Machine

Counter

Counter

Transmit
Logic

Bit
Timing
Logic

TX RX

Bit Timing
Generator

PROTOCOL
ENGINE

BUFFERS

CRC CheckCRC Generator
DS00853A-page 2  2002 Microchip Technology Inc.

AN853
Bus Arbitration and Message Latency

In the CAN protocol, if two or more bus nodes start their
transmission at the same time, message collision is
avoided by bit-wise arbitration. Each node sends the
bits of its identifier and monitors the bus level. A node
that sends a recessive identifier bit, but reads back a
dominant one, loses bus arbitration and switches to
Receive mode. This condition occurs when the mes-
sage identifier of a competing node has a lower binary
value (dominant state = logic 0), which results in the
competing node sending a message with a higher pri-
ority. Because of this, the bus node with the highest pri-
ority message wins arbitration, without losing time by
having to repeat the message. Transmission of the
lower priority message is delayed until all high priority
traffic on the bus is finished, which adds some latency
to the message transmission. This type of message
latency cannot be avoided.

Depending on software driver implementation,
additional latency can be avoided by proper design of
the driver. If CAN is working at low bus utilization, then
the delay in message transmission is not a concern
because of arbitration. However, if CAN bus utilization
is high, unwanted message latency can be reduced
with good driver design.

To illustrate this point, let us examine latency that
occurs because of the implementation of driver
software. Consider the case when a buffer contains a
low priority message in queue and a high priority
message is loaded. If no action is taken, the
transmission of the high priority message will be
delayed until the low priority message is transmitted. A
PIC18CXX8 device provides a workaround for this
problem.

In PIC18CXX8 devices, it is possible to assign priority
to all transmit buffers, which causes the highest priority
message to be transmitted first and so on. By setting
the transmit buffer priority within the driver software,
this type of message latency can be avoided.

Additionally, consider the case where all buffers are
occupied with a low priority message and the controller
wants to transmit a high priority message. Since all
buffers are full, the high priority message will be
blocked until one of the low priority messages is
transmitted. The low priority message will be sent only
after all the high priority messages on the bus are sent.
This can considerably delay the transmission of high
priority messages.

How then, can this problem be solved? Adding more
buffers may help, but most likely the same situation will
occur. What then, is the solution? The solution is to
unload the lowest priority message from the transmit
buffer and save it to a software buffer, then load the
transmit buffer with the higher priority message. To
maintain bus control, all n Transmit buffers should be
loaded with n highest priority messages. Once the
transmit buffer is emptied, load the lower priority
message into the transmit buffer for transmission. To
do this, intelligent driver software is needed that will
manage these buffers, based on the priority of the
message (Lower binary value of identifier -> Higher
priority, see "Terminology Conventions" on page 5).
This method minimizes message latency for higher
priority messages.
 2002 Microchip Technology Inc. DS00853A-page 3

AN853
Macro Wrappers

One of the problems associated with assembly
language programming is the mechanism used to pass
parameters to a function. Before a function can be
called, all parameters must be copied to a temporary
memory location. This becomes quite cumbersome
when passing many parameters to a generalized
function. One way to facilitate parameter passing is
through the use of “macro wrappers”. This new concept
provides a way to overcome the problems associated
with passing parameters to functions.

A macro wrapper is created when a macro is used to
“wrap” the assembly language function for easy
access. In the following examples, macros call the
same function, but the way they format the data is
different. Depending on the parameters, different
combinations of macro wrappers are required to fit the
different applications.

Macro wrappers for assembly language functions
provide a high level ‘C-like’ language interface to these
functions, which makes passing multiple parameters
quite simple. Because the macro only deals with literal
values, different macro wrappers are provided to suit
different calling requirements for the same functions.

For example, if a function is used that copies the data
at a given address, the data and address must be sup-
plied to the function.

EXAMPLES

Using standard methods, a call to the assembly lan-
guage function CopyDataFunc might look like the
macro shown in Example 1.

EXAMPLE 1: CODE WITHOUT MACRO
WRAPPER

Using a macro wrapper, the code in Example 2 shows
how to access the same function that accepts the data
value directly.

EXAMPLE 2: CODE WITH MACRO
WRAPPER

The code in Example 3 shows variable data stored in
DataLoc.

EXAMPLE 3: CODE WITHOUT MACRO
WRAPPER

Using a macro wrapper, the code shown in Example 4
supplies the memory address location for data instead
of supplying the data value directly.

EXAMPLE 4: CODE WITH MACRO
WRAPPER

The code in Example 5 shows one more variation using
a macro wrapper for the code of both variable
arguments.

EXAMPLE 5: CODE WITH MACRO
WRAPPER

To summarize, the code examples previously
described call for the same function, but the way they
format the data is different. By using a macro wrapper,
access to assembly functions is simplified, since the
macro only deals with literal values.

#define Address 0x1234

UDATA
TempWord RES 02

banksel TempWord
movlw low(Address)
movwf TempWord
movlw high(Address)
movwf TempWord+1
movlw 0x56 ;Copy data
call CopyDataFunc

#define Address 0x1234

CopyData 0x56, Address

#define Address 0x1234

UDATA
TempWord RES 02
DataLoc RES 01

banksel TempWord
movlw low(Address)
movwf TempWord
movlw high(Address)
movwf TempWord+1
banksel DataLoc
movf DataLoc,W
call CopyDataFunc

#define Address 0x1234

UDATA
Dataloc RES 01
CopyData_IDDataLoc, AddressLoc

UDATA
AddressLoc RES 02
Dataloc RES 01

CopyData_ID_IA DataLoc, AddressLoc
DS00853A-page 4  2002 Microchip Technology Inc.

AN853
PIC18XXX8 CAN FUNCTIONS

All PIC18XXX8 CAN functions are grouped into the
following three categories:

• Configuration/Initialization Functions

• Module Operation Functions
• Status Check Functions

The following table lists each function by category,
which are described in the following sections.

TABLE 1: FUNCTION INDEX

Terminology Conventions

The following applies when referring to the terminology used in this application note.

TABLE 2: TERMINOLOGY CONVENTIONS

Function Category Page Number

CANInitialize Configuration/Initialization 6

CANSetOperationMode Configuration/Initialization 8

CANSetOperationModeNoWait Configuration/Initialization 9

CANSetBaudRate Configuration/Initialization 10

CANSetReg Configuration/Initialization 12

CANSendMessage Module Operation 16

CANReadMessage Module Operation 19

CANAbortAll Module Operation 22

CANGetTxErrorCount Status Check 23

CANGetRxErrorCount Status Check 24

CANIsBusOff Status Check 25

CANIsTxPassive Status Check 26

CANIsRxPassive Status Check 27

CANIsRxReady Status Check 28

CANIsTxReady Status Check 30

Term Meaning

xyzFunc Used for original assembly language functions.

xyz The macro that will accept all literal values.

xyz_I(First letter of argument) The macro that will accept the memory address location for variable implementation.

xyz_D(First letter of argument) The macro that expects the user is directly copying the specified parameter at the
required memory location by assembly function.

LL:LH:HL:HH

bit 0bit 31

HH HL LH LL

8-bits 8-bits 8-bits 8-bits
 2002 Microchip Technology Inc. DS00853A-page 5

AN853
CONFIGURATION/INITIALIZATION FUNCTIONS

CANInitialize

This function initializes the PIC18 CAN module by the given parameters.

Function

CANInitializeFunc

Input

m_SJW

SJW value as defined in the PIC18CXX8 data sheet (must be between 1 and 4).

m_BRP

BRP value as defined in the PIC18CXX8 data sheet (must be between 1 and 64).

m_PHSEG1

PHSEG1 value as defined in the PIC18CXX8 data sheet (must be between 1 and 8).

m_PHSEG2

PHSEG2 value as defined in the PIC18CXX8 data sheet (must be between 1 and 8).

m_PROPSEG2

PROPSEG value as defined in the PIC18CXX8 data sheet (must be between 1 and 8).

m_Flags1

Flag value of type CAN_CONFIG_FLAGS.

This parameter can be any combination (AND’d together) of the following values:

TABLE 3: CAN_CONFIG_FLAG VALUES

Value Meaning Bit(s) Position Status(1)

CAN_CONFIG_DEFAULTS Default flags

CAN_CONFIG_PHSEG2_
PRG_ON

Use supplied PHSEG2 value 1 CAN_CONFIG_PHSEG2_
PRG_BIT_NO

Set

CAN_CONFIG_PHSEG2_
PRG_OFF

Use maximum of PHSEG1 or
Information Processing Time
(IPT), whichever is greater

1 CAN_CONFIG_PHSEG2_
PRG_BIT_NO

Clear

CAN_CONFIG_LINE_
FILTER_ON

Use CAN bus line filter for
wake-up

1 CAN_CONFIG_LINE_
FILTER_BIT_NO

Set

CAN_CONFIG_LINE_
FILTER_OFF

Do not use CAN bus line
filter for wake-up

1 CAN_CONFIG_LINE_
FILTER_BIT_NO

Clear

CAN_CONFIG_SAMPLE_
ONCE

Sample bus once at the
sample point

1 CAN_CONFIG_SAMPLE_
BIT_NO

Set

CAN_CONFIG_SAMPLE_
THRICE

Sample bus three times prior
to the sample point

1 CAN_CONFIG_SAMPLE_
BIT_NO

Clear

CAN_CONFIG_ALL_MSG Accept all messages
including invalid ones

2 CAN_CONFIG_MSG_BITS

CAN_CONFIG_VALID_
XTD_MSG

Accept only valid Extended
Identifier messages

2 CAN_CONFIG_MSG_BITS

CAN_CONFIG_VALID_
STD_MSG

Accept only valid Standard
Identifier messages

2 CAN_CONFIG_MSG_BITS

CAN_CONFIG_ALL_
VALID_MSG

Accept all valid messages 2 CAN_CONFIG_MSG_BITS

Note 1: If a definition has more than one bit, position symbol provides information for bit masking. ANDing it
with the value will mask all the bits except the required one. Status information is not provided, since
the user needs to use ANDing and ORing to set/get value.
DS00853A-page 6  2002 Microchip Technology Inc.

AN853
Return Values

None

Pre-condition

None

Side Effects

All pending CAN messages are aborted.

Remarks

This function does not allow the calling function to specify receive buffer mask and filter values. All mask registers are
set to 0x00, which essentially disables the message filter mechanism. If an application requires the message filter
operation, it must perform initialization in discrete steps. See CANSetReg for more information.

Macro

CANInitialize SJW, BRP, PHSEG1, PHSEG2, PROPSEG, Flags

Input

SJW

SJW value as defined in the PIC18CXX8 data sheet (must be between 1 and 4).

BRP

BRP value as defined in the PIC18CXX8 data sheet (must be between 1 and 64).

PHSEG1

PHSEG1 value as defined in the PIC18CXX8 data sheet (must be between 1 and 8).

PHSEG2

PHSEG2 value as defined in the PIC18CXX8 data sheet (must be between 1 and 8).

PROPSEG

PROPSEG value as defined in the PIC18CXX8 data sheet (must be between 1 and 8).

Flags

Flag value of type CAN_CONFIG_FLAGS, as previously described.

Example 1

;Initialize for 125kbps@20MHz, all valid messages
CANInitialize 1, 5, 7, 6, 2, CAN_CONFIG_ALL_VALID_MSG

Example 2

;Initialize for 125kbps@20MHz, valid extended message and line filter on
CANInitialize 1, 5, 7, 6, 2, CAN_CONFIG_LINE_FILTER_ON & CAN_CONFIG_VALID_XTD_MSG
 2002 Microchip Technology Inc. DS00853A-page 7

AN853
CANSetOperationMode

This function changes the PIC18 CAN module Operation mode.

Function

CANSetOperationModeFunc

Input

W reg

Value of type CAN_OP_MODE.

This parameter must be only one of the following values:

Return Values

None

Pre-condition

None

Side Effects

If CAN_OP_MODE_CONFIG is requested, all pending messages will be aborted.

Remarks

This is a blocking function. It waits for a given mode to be accepted by the CAN module and then returns the control. If
a non-blocking call is required, see the CANSetOperationModeNoWait function.

Macro

CANSetOperationMode OpMode

Input

OpMode

Value of type CAN_OP_MODE.

This parameter must be only one of the values listed in Table 4.

Example

...
CANSetOperationMode CAN_OP_MODE_CONFIG
; Module is in CAN_OP_MODE_CONFIG mode.
...

TABLE 4: CAN_OP_MODE VALUES

Value Meaning

CAN_OP_MODE_NORMAL Normal mode of operation

CAN_OP_MODE_SLEEP SLEEP mode of operation

CAN_OP_MODE_LOOP Loopback mode of operation

CAN_OP_MODE_LISTEN Listen Only mode of operation

CAN_OP_MODE_CONFIG Configuration mode of operation
DS00853A-page 8  2002 Microchip Technology Inc.

AN853
CANSetOperationModeNoWait

This macro changes the PIC18 CAN module Operation mode.

Macro

CANSetOperationModeNoWait

Input

W reg

Value of type CAN_OP_MODE.

This parameter must be only one of the values listed in Table 4.

Return Values

None

Pre-condition

None

Side Effects

If CAN_OP_MODE_CONFIG is requested, all pending messages will be aborted.

Remarks

This is a non-blocking function. It requests a given mode of operation and immediately returns the control. Caller must
make sure that the desired mode of operation is set before performing any mode specific operation. If a blocking call is
required, see the CANSetOperationMode function.

Example

...
CANSetOperationModeNoWait CAN_OP_MODE_CONFIG
 2002 Microchip Technology Inc. DS00853A-page 9

AN853
CANSetBaudRate

This function programs the PIC18 CAN module for given bit rate values.

Function

CANSetBaudRateFunc

Input

m_SJW

SJW value as defined in the PIC18CXX8 data sheet (must be between 1 and 4).

m_BRP

BRP value as defined in the PIC18CXX8 data sheet (must be between 1 and 64).

m_PHSEG1

PHSEG1 value as defined in the PIC18CXX8 data sheet (must be between 1 and 8).

m_PHSEG2

PHSEG2 value as defined in the PIC18CXX8 data sheet (must be between 1 and 8).

m_PROPSEG2

PROPSEG value as defined in the PIC18CXX8 data sheet (must be between 1 and 8).

m_Flags1

Flag value of type CAN_CONFIG_FLAGS.

This parameter can be any combination (AND’d together) of the values listed in Table 3.

Return Values

None

Pre-condition

PIC18 CAN module must be in the Configuration mode or else given values will be ignored.

Side Effects

None

Remarks

None

Macro

CANSetBaudRate SJW, BRP, PHSEG1, PHSEG2, PROPSEG, Flags

Input

SJW

SJW value as defined in the PIC18CXX8 data sheet (must be between 1 and 4).

BRP

BRP value as defined in the PIC18CXX8 data sheet (must be between 1 and 64).

PHSEG1

PHSEG1 value as defined in the PIC18CXX8 data sheet (must be between 1 and 8).

PHSEG2

PHSEG2 value as defined in the PIC18CXX8 data sheet (must be between 1 and 8).

PROPSEG

PROPSEG value as defined in the PIC18CXX8 data sheet (must be between 1 and 8).

Flags

Flag value of type CAN_CONFIG_FLAGS as previously described.
DS00853A-page 10  2002 Microchip Technology Inc.

AN853
Example

...
CANSetOperationMode CAN_OP_MODE_CONFIG

;Set 125bps at 20MHz oscillator frequency
CANSetBaudRate 1, 5, 7, 6, 2,

 CAN_CONFIG_SAMPLE_ONCE &
 CAN_CONFIG_PHSEG2_PRG_OFF &
 CAN_CONFIG_LINE_FILTER_ON

CANSetOperationMode CAN_OP_MODE_NORMAL
...
 2002 Microchip Technology Inc. DS00853A-page 11

AN853
CANSetReg

This function sets the PIC18 CAN module mask/filter values for the given receive buffer.

Function

CANSetRegFunc

Input

FSR0H:FSR0L

Starting address of 32-bit buffer to be updated.

Reg1:Reg1+3

32-bit mask/filter value that may correspond to 11-bit Standard Identifier or 29-bit Extended Identifier, with binary zero
padded on left. Reg1 = LL, Reg1+1 = LH, Reg1+2 = HL and Reg1+3 = HH byte (see "Terminology Conventions" on
page 5).

m_Flags1

Type of message Flag.

This parameter must be only one of the following values:

Return Values

None

Pre-condition

PIC18 CAN module must be in the Configuration mode or else given values will be ignored.

Side Effects

None

Remarks

None

Macro

CANSetReg RegAddr, val, Flags

Input

RegAddr

This parameter must be only one of the following values:

TABLE 5: CAN_CONFIG_MSG VALUES

Value Meaning Bit(s) Position Status

CAN_CONFIG_STD_MSG Standard Identifier message 1 CAN_CONFIG_MSG_TYPE_BIT_NO Set

CAN_CONFIG_XTD_MSG Extended Identifier message 1 CAN_CONFIG_MSG_TYPE_BIT_NO Clear

TABLE 6: REGISTER ADDRESS VALUES

Value Meaning

CAN_MASK_B1 Receive Buffer 1 mask value

CAN_MASK_B2 Receive Buffer 2 mask value

CAN_FILTER_B1_F1 Receive Buffer 1, Filter 1 value

CAN_FILTER_B1_F2 Receive Buffer 1, Filter 2 value

CAN_FILTER_B2_F1 Receive Buffer 2, Filter 1 value

CAN_FILTER_B2_F2 Receive Buffer 2, Filter 2 value

CAN_FILTER_B2_F3 Receive Buffer 2, Filter 3 value

CAN_FILTER_B2_F4 Receive Buffer 2, Filter 4 value
DS00853A-page 12  2002 Microchip Technology Inc.

AN853
val

32-bit mask/filter value that may correspond to 11-bit Standard Identifier, or 29-bit Extended Identifier, with binary
zero padded on left.

Flags

Value of CAN_CONFIG type.

This parameter must be only one of the values listed in Table 6.

Macro

CANSetReg_IF RegAddr, val, FlagsReg

Input

RegAddr

This parameter must be only one of the values listed in Table 6.

val

32-bit mask/filter value that may correspond to 11-bit Standard Identifier, or 29-bit Extended Identifier, with binary
zero padded on left.

FlagsReg

Memory Address location that contains the Flag information. This parameter must be only one of the values listed
in Table 6.

Macro

CANSetReg_IV RegAddr, Var, Flags

Input

RegAddr

This parameter must be only one of the values listed in Table 6.

Var

Starting address of 32-bit buffer containing mask/filter value. Buffer storage format should be Low -> High
(LL:LH:HL:HH) byte (see "Terminology Conventions" on page 5).

32-bit mask/filter value that may correspond to 11-bit Standard Identifier, or 29-bit Extended Identifier, with binary
zero padded on left.

Flags

Value of CAN_CONFIG type. This parameter must be only one of the values listed in Table 6.

Macro

CANSetReg_IV_IF RegAddr, Var, FlagsReg

Input

RegAddr

This parameter must be only one of the values listed in Table 6.

Var

Starting address of 32-bit buffer containing mask/filter value. Buffer storage format should be Low -> High
(LL:LH:HL:HH) byte (see "Terminology Conventions" on page 5).

32-bit mask/filter value that may correspond to 11-bit Standard Identifier, or 29-bit Extended Identifier, with binary
zero padded on left.

FlagsReg

Memory Address location that contains the Flag information. This parameter must be only one of the values listed
in Table 6.
 2002 Microchip Technology Inc. DS00853A-page 13

AN853
Macro

CANSetReg_DREG_IV_IF Var, FlagsReg

Input

FSR0H:FSR0L

FSR0 contains starting address of 32-bit buffer to be updated. This buffer must be of the mask/filter type. The
starting address is the address of the SIDH register for that mask/filter.

Var

Starting address of 32-bit buffer containing mask/filter value. Buffer storage format should be Low -> High
(LL:LH:HL:HH) byte (see "Terminology Conventions" on page 5).

32-bit mask/filter value that may correspond to 11-bit Standard Identifier, or 29-bit Extended Identifier, with binary
zero padded on left.

FlagsReg

Memory Address location that contains the Flag information. This parameter must be only one of the values listed
in Table 6.

Macro

CANSetReg_DREG_DV_IF FlagsReg

Input

FSR0H:FSR0L

FSR0 contains starting address of 32-bit buffer to be updated. This buffer must be of the mask/filter type. The
starting address is the address of the SIDH register for that mask/filter.

Reg1:Reg1+3

Starting address of 32-bit buffer containing mask/filter value. Buffer storage format should be Low -> High
(Reg1 = LL:Reg1+1 = LH:Reg1+2 = HL:Reg1+3 = HH) byte (see "Terminology Conventions" on page 5).

32-bit mask/filter value that may correspond to 11-bit Standard Identifier, or 29-bit Extended Identifier, with binary
zero padded on left.

FlagsReg

Memory Address location that contains the Flag information. This parameter must be only one of the values listed
in Table 6.

Example

...
CANSetReg CAN_MASK_B1, 0x00000001, CAN_STD_MSG
CANSetReg CAN_MASK_B2, 0x00008001, CAN_XTD_MSG
CANSetReg CAN_FILTER_B1_F1, 0x0000, CAN_STD_MSG
CANSetReg CAN_FILTER_B1_F2, 0x0001, CAN_STD_MSG
CANSetReg CAN_FILTER_B2_F1, 0x8000, CAN_XTD_MSG
CANSetReg CAN_FILTER_B2_F2, 0x8001, CAN_XTD_MSG
CANSetReg CAN_FILTER_B2_F3, 0x8002, CAN_XTD_MSG
CANSetReg CAN_FILTER_B2_F4, 0x8003, CAN_XTD_MSG

UDATA
Flags RES 01

;Memory location Flags contains configuration flags
;information (Indirect Flag info (pointer to Flag))

CANSetReg_IF CAN_MASK_B1, 0x00000001, Flags
DS00853A-page 14  2002 Microchip Technology Inc.

AN853
UDATA
IDVal RES 04

;32-bit memory location IDVal contains 32-bit mask
;value (Indirect value info (pointer to value))

CANSetReg_IV CAN_MASK_B2, IDVal, CAN_XTD_MSG

UDATA
Flags RES 01
IDVal RES 04

;32-bit memory location IDVal contains 32-bit mask
;value (Indirect value info (pointer to value))
;Memory location Flags contains configuration flags
;information (Indirect Flag info (pointer to Flag))

CANSetReg_IV_IF CAN_FILTER_B1_F1, IDVal, Flags

UDATA
Flags RES 01
IDVal RES 04

;32-bit memory location IDVal contains 32-bit mask
;value (Indirect value info (pointer to value))
;Memory location Flags contains configuration flags
;information (Indirect Flag info (pointer to Flag))

movlw low(RxF0SIDH)
movwf FSR0L
movlw high(RxF0SIDH)
movwf FSR0H

;Because of above or some other operation FSR0
;contains starting address of buffer (xxxxSIDH reg.)
;for mask/filter value storage.

CANSetReg_DREG_IV_IF IDVal, Flags

UDATA
Flags RES 01

;32-bit memory location IDVal contains 32-bit mask
;value (Indirect value info (pointer to value))
;Memory location Flags contains configuration flags
;information (Indirect Flag info (pointer to Flag))

movlw low(RxF0SIDH)
movwf FSR0L
movlw high(RxF0SIDH)
movwf FSR0H

;Because of above or some other operation FSR0
;contains starting address of buffer (xxxxSIDH reg.)
;for mask/filter value storage.
;Reg1:Reg1+3 contains 32-bit ID value.

CANSetReg_DREG_DV_IF Flags
 2002 Microchip Technology Inc. DS00853A-page 15

AN853
MODULE OPERATION FUNCTIONS

CANSendMessage

This function copies the given message to one of the empty transmit buffers and marks it as ready to be transmitted.

Function

CANSendMessageFunc

Input

Reg1:Reg1+3

32-bit identifier value that may correspond to 11-bit Standard Identifier, or 29-bit Extended Identifier, with binary zero
padded on left. Exact number of bits to use depends on M_TxFlags. Buffer storage format should be Low -> High
(Reg1 = LL:Reg1+1 = LH:Reg1+2 = HL:Reg1+3 = HH) byte (see "Terminology Conventions" on page 5).

FSR1H:FSR1L

Starting address of data buffer.

m_DataLength

Number of bytes to send.

m_TxFlags

Value of type CAN_TX_MSG_FLAGS.

This parameter can be any combination (AND’d together) of the following group values:

Return Values

W =1, if the given message was successfully placed in one of the empty transmit buffers.

W= 0, if all transmit buffers were full.

Pre-condition

None

Side Effects

None

Remarks

None

Macro

CANSendMessage msgID, DataPtr, DataLngth, Flags

msgID

32-bit identifier value that may correspond to 11-bit Standard Identifier, or 29-bit Extended Identifier, with binary zero
padded on left. Exact number of bits to use depends on Flags.

TABLE 7: CAN_TX_MSG_FLAGS VALUES

Value Meaning Bit(s) Position Status

CAN_TX_STD_FRAME Standard Identifier message 1 CAN_TX_FRAME_BIT_NO Set

CAN_TX_XTD_FRAME Extended Identifier message 1 CAN_CONFIG_MSG_TYPE_BIT_NO Clear

CAN_TX_NO_RTR_FRAME Regular message - not RTR 1 CAN_TX_RTR_BIT_NO Set

CAN_TX_RTR_FRAME RTR message 1 CAN_TX_RTR_BIT_NO Clear
DS00853A-page 16  2002 Microchip Technology Inc.

AN853
DataPtr

Pointer to zero or more of data bytes to send.

DataLngth

Number of bytes to send.

Flags

Value of type CAN_TX_MSG_FLAGS.

This parameter can be any combination (AND’d together) of the group values listed in Table 7.

Macro

CANSendMessage_IID_IDL_IF msgIDPtr, DataPtr, DataLngthPtr, FlagsReg

msgIDPtr

Starting address of memory location containing 32-bit message ID. Buffer storage format should be Low -> High
(LL:LH:HL:HH) byte (see "Terminology Conventions" on page 5).

32-bit identifier value that may correspond to 11-bit Standard Identifier, or 29-bit Extended Identifier, with binary zero
padded on left. Exact number of bits to use depends on FlagsReg.

DataPtr

Pointer to zero or more of data bytes to send.

DataLngth

Memory Address location having data of number of bytes to send.

FlagsReg

Memory Address location that contains the Flag information. Flags must be of type CAN_TX_MSG_FLAGS.

This parameter can be any combination (AND’d together) of the group values listed in Table 7.

Example A

UDATA
MessageData RES 02

call CANIsTxReady
bnc TxNotRdy
movlw 0x01
movwf MessageData ;Copy Data byte 1
movlw 0x02
movwf MessageData+1 ;Copy Data byte 2

CANSendMessage 0x20,
 MessageData,
 2,
 CAN_TX_STD_FRAME &
 CAN_TX_NO_RTR_FRAME

TxNotRdy:
;All Buffer are full, Try again
 2002 Microchip Technology Inc. DS00853A-page 17

AN853
Example B

UDATA
MessageData RES 02

movlw 0x01
movwf MessageData ;Copy Data byte 1
movlw 0x02
movwf MessageData+1 ;Copy Data byte 2

CANSendMessage 0x20,
 MessageData,
 2,
 CAN_TX_STD_FRAME &
 CAN_TX_NO_RTR_FRAME

addlw 0x00 ;Check for return value 0 in W
bz TxNotRdy ;Buffer Full, Try again

;Message is copied in buffer for Transmission. It will be
;transmitted based on priority and pending messages in
;buffers

nop ;Application specific code

TxNotRdy:
;All Buffer are full, Message was not copied in buffer for
;Transmission
...

UDATA
MessageData RES 02
Idval RES 04
DataLength RES 01
Flags RES 01

call CANIsTxReady
bnc TxNotRdy
movlw 0x01
movwf MessageData ;Copy Data byte 1
movlw 0x02
movwf MessageData+1 ;Copy Data byte 2
movwf DataLength ;Set Data length to 2

;IDval contains 32-bit message ID and Flags
;contains TX Flags info.
CANSendMessage_IID_IDL_IF

IDval,
MessageData,
DataLength,
Flags

TxNotRdy:
;All Buffer are full, Try again
DS00853A-page 18  2002 Microchip Technology Inc.

AN853
CANReadMessage

This function copies the new available message to the user supplied buffer.

Function

CANReadMessageFunc

Input

FSR0H:FSR0L

Starting address for received data storage.

Output

Temp32Data:Temp32Data+3

Received Message ID. Buffer storage format is Low -> High (LL:LH:HL:HH) byte (see "Terminology Conventions"
on page 5).

32-bit identifier value that may correspond to 11-bit Standard Identifier, or 29-bit Extended Identifier, with binary zero
padded on left.

 DataLen

Number of bytes received.

m_RxFlags

Value of type CAN_RX_MSG_FLAGS.

This parameter can be any combination (AND’d together) of the following values. If a flag bit is set, the
corresponding meaning is TRUE; if cleared, the corresponding meaning is FALSE.

Return Values

W =1, if new message was copied to given buffer.

W= 0, if no new message was found.

Pre-condition

id, Data, DataLen and MsgFlags pointers must point to valid/desired memory locations.

Side Effects

None

Remarks

This function will fail if there are no new message(s) to read. Caller may check the return value to determine new
message availability, or may call CANIsRxReady function.

TABLE 8: CAN_RX_MSG_FLAGS VALUES

Value Meaning Bit(s) Position Status

CAN_RX_FILTER_1,
CAN_RX_FILTER_2,
CAN_RX_FILTER_3,
CAN_RX_FILTER_4,
CAN_RX_FILTER_5,
CAN_RX_FILTER_6

Receive buffer filter that
caused this message to
be accepted.

3 CAN_RX_FILTER_BITS

CAN_RX_OVERFLOW Receive buffer overflow
condition

1 CAN_RX_OVERFLOW_BIT_NO Set

CAN_RX_INVALID_MSG Invalid message 1 CAN_RX_INVALID_MSG_BIT_NO Set

CAN_RX_XTD_FRAME Extended message 1 CAN_RX_XTD_FRAME_BIT_NO Set

CAN_TX_RTR_FRAME RTR message 1 CAN_RX_RTR_FRAME_BIT_NO Set

CAN_RX_DBL_BUFFERED This message was
double-buffered

1 CAN_RX_DBL_BUFFERED_BIT_NO Set
 2002 Microchip Technology Inc. DS00853A-page 19

AN853
Macro

CANReadMessage msgIDPtr, DataPtr, DataLngth, Flags

msgIDPtr

Starting address of 32-bit buffer for message ID storage. Buffer storage format is Low -> High (LL:LH:HL:HH) byte
(see "Terminology Conventions" on page 5). 32-bit identifier value that may correspond to 11-bit Standard Identifier,
or 29-bit Extended Identifier, with binary zero padded on left.

DataPtr

Starting address of data buffer for storage of received data byte.

DataLngth

Address of the memory location for storage of number of bytes received.

Flags

Address of the memory location for storage of number of bytes received.

Value of type CAN_RX_MSG_FLAGS.

This parameter can be any combination (AND’d together) of the values listed in Table 8. If a flag bit is set, the
corresponding meaning is TRUE; if cleared, the corresponding meaning is FALSE.

Example A

UDATA
NewMessage RES 04
NewMessageData RES 08
NewMessageLen RES 01
NewMessageFlags RES 01
RxFilterMatch RES 01

call CANIsRxReady
bnc RxNotRdy

CANReadMessage NewMessage,
NewMessageData,
NewMessageLen,
NewMessageFlags

banksel NewMessageFlags

btfsc NewMessageFlags,CAN_RX_OVERFLOW_BIT_NO
bra RxOvrFlow ;Branch to Logic for Rx

;overflow occurred.

btfsc NewMessageFlags,CAN_RX_INVALID_MSG_BIT_NO
bra RxInvldMsg ;Branch to Logic for Invalid

;Message received

btfsc NewMessageFlags,CAN_RX_XTD_FRAME_BIT_NO
nop ;Logic for Extended frame

;received
nop ;Else logic for standard

;frame received

btfsc NewMessageFlags,CAN_RX_RTR_FRAME_BIT_NO
bra RxRTRFrame ;Branch to Logic for RTR

;frame received
nop ;Regular frame received
DS00853A-page 20  2002 Microchip Technology Inc.

AN853
movlw CAN_RX_FILTER_BITS
andwf NewMesageFlags,W
movwf RxFilterMatch ;Save matched Filter ;number

RxNotReady:
;Receive buffer is empty, Wait for new message
...

Example B

UDATA
NewMessage RES 04
NewMessageData RES 08
NewMessageLen RES 01
NewMessageFlags RES 01
RxFilterMatch RES 01

CANReadMessage NewMessage,
NewMessageData,
NewMessageLen,
NewMessageFlags

xorlw 0x01 ;Check for Success code
bnz RxNotReady

banksel NewMessageFlags

btfsc NewMessageFlags,CAN_RX_OVERFLOW_BIT_NO
bra RxOvrFlow ;Branch to Logic for Rx

;overflow occurred.

btfsc NewMessageFlags,CAN_RX_INVALID_MSG_BIT_NO
bra RxInvldMsg ;Branch to Logic for Invalid

;Message received

btfsc NewMessageFlags,CAN_RX_XTD_FRAME_BIT_NO
nop ;Logic for Extended frame

;received
nop ;Else logic for standard

;frame received

btfsc NewMessageFlags,CAN_RX_RTR_FRAME_BIT_NO
bra RxRTRFrame ;Branch to Logic for RTR

;frame received
nop ;Regular frame received

movlw CAN_RX_FILTER_BITS
andwf NewMesageFlags,W
movwf RxFilterMatch ;Save matched Filter ;number

RxNotReady:
;Receive buffer is empty, Wait for new message
 2002 Microchip Technology Inc. DS00853A-page 21

AN853
CANAbortAll

This macro aborts all pending messages from the PIC18 CAN module. See the PIC18CXX8 Data Sheet for rules
regarding message abortion.

Macro

CANAbortAll

Input

None

Return Values

None

Pre-condition

None

Side Effects

None

Remarks

None

Example

...
CANAbortAll
...
DS00853A-page 22  2002 Microchip Technology Inc.

AN853
STATUS CHECK FUNCTIONS

CANGetTxErrorCount

This macro returns the PIC18 CAN transmit error count, as defined by BOSCH CAN Specifications, in WREG. See the
PIC18CXX8 Data Sheet for more information.

Macro

CANGetTxErrorCount

Input

None

Return Values

WREG contains the current value of transmit error count.

Pre-condition

None

Side Effects

None

Remarks

None

Example

UDATA
TxErrorCount RES 01

...
CANGetTxErrorCount ;Returns error count in W
banksel TxErrorCount
movwf TxErrorCount
...
 2002 Microchip Technology Inc. DS00853A-page 23

AN853
CANGetRxErrorCount

This macro returns the PIC18 CAN receive error count, as defined by BOSCH CAN Specifications, in WREG. See the
PIC18CXX8 Data Sheet for more information.

Macro

CANGetRxErrorCount

Input

None

Return Values

WREG contains the current value of receive error count.

Pre-condition

None

Side Effects

None

Remarks

None

Example

UDATA
RxErrorCount RES 01
...
CANGetRxErrorCount ; Returns error count in W
banksel RxErrorCount
movwf RxErrorCount
...
DS00853A-page 24  2002 Microchip Technology Inc.

AN853
CANIsBusOff

This function returns the PIC18 CAN module On/Off state.

Function

CANIsBusOff

Input

None

Return Values

Carry C = 1, if PIC18 CAN module is in the Bus Off state.

Carry C = 0, if PIC18 CAN module is in the Bus On state.

Pre-condition

None

Side Effects

None

Remarks

None

Example

...
call CANIsBusOff()
bnc CANBusNotOff
nop ;CAN Module is in Bus off state

CANBusNotOff
nop ;CAN Module isn’t in Bus off state
 2002 Microchip Technology Inc. DS00853A-page 25

AN853
CANIsTxPassive

This function returns the PIC18 CAN transmit error status, as defined by BOSCH CAN Specifications. See the
PIC18CXX8 Data Sheet for more information.

Function

CANIsTxPassive

Input

None

Return Values

Carry C = 1, if the PIC18 CAN module is in transmit error passive state.

Carry C = 0, if the PIC18 CAN module is not in transmit error passive state.

Pre-condition

None

Side Effects

None

Remarks

None

Example

...
call CANIsTxPassive()
bnc CANIsNotTxPassive
nop ;CAN Module is in Transmit Passive

;state

CANBIsNotTxPassive
nop ;CAN Module isn’t in Tx Passive

;state
...
DS00853A-page 26  2002 Microchip Technology Inc.

AN853
CANIsRxPassive

This function returns the PIC18 CAN receive error status, as defined by BOSCH CAN Specifications. See the
PIC18CXX8 Data Sheet for more information.

Function

CANIsRxPassive

Input

None

Return Values

Carry C = 1, if the PIC18 CAN receive module is in receive error passive state.

Carry C = 0, if the PIC18 CAN receive module is not in receive error passive state.

Pre-condition

None

Side Effects

None

Remarks

None

Example

...
call CANIsRxPassive()
bnc CANIsNotRxPassive
nop ;CAN Module is in Receive Passive

;state, Do Something

CANBIsNotRxPassive
nop ;CAN Module isn’t in Rx Passive

;state
...
 2002 Microchip Technology Inc. DS00853A-page 27

AN853
CANIsRxReady

This function returns the PIC18 CAN receive buffer(s) readiness status.

Function

CANIsRxReady

Input

None

Return Values

Carry C = 1, if at least one of the PIC18 CAN receive buffers is full.

Carry C = 0, if none of the PIC18 CAN receive buffers are full.

Pre-condition

None

Side Effects

None

Remarks

None

Example

UDATA
NewMessage RES 04
NewMessageData RES 08
NewMessageLen RES 01
NewMessageFlags RES 01
RxFilterMatch RES 01

call CANIsRxReady
bnc RxNotRdy

CANReadMessage NewMessage,
NewMessageData,
NewMessageLen,
NewMessageFlags

banksel NewMessageFlags

btfsc NewMessageFlags,CAN_RX_OVERFLOW_BIT_NO
bra RxOvrFlow ;Branch to Logic for Rx

;overflow occurred.

btfsc NewMessageFlags,CAN_RX_INVALID_MSG_BIT_NO
bra RxInvldMsg ;Branch to Logic for Invalid

;Message received

btfsc NewMessageFlags,CAN_RX_XTD_FRAME_BIT_NO
nop ;Logic for Extended frame

;received
nop ;Else logic for standard

;frame received

btfsc NewMessageFlags,CAN_RX_RTR_FRAME_BIT_NO
bra RxRTRFrame ;Branch to Logic for RTR

;frame received
DS00853A-page 28  2002 Microchip Technology Inc.

AN853
nop ;Regular frame received

movlw CAN_RX_FILTER_BITS
andwf NewMesageFlags,W
movwf RxFilterMatch ;Save matched Filter

;number
RxNotReady
;Receive buffer is empty, wait for new message
...
 2002 Microchip Technology Inc. DS00853A-page 29

AN853
CANIsTxReady

This function returns the PIC18 CAN transmit buffer(s) readiness status.

Function

CANIsTxReady

Input

None

Return Values

Carry C = 1, if at least one of the PIC18 CAN transmit buffers is empty.

Carry C = 0, if none of the PIC18 CAN transmit buffers are empty.

Pre-condition

None

Side Effects

None

Remarks

None

Example

UDATA
MessageData RES 02

call CANIsTxReady
bnc TxNotRdy
movlw 0x01
movwf MessageData ;Copy Data byte 1
movlw 0x02
movwf MessageData+1 ;Copy Data byte 2

CANSendMessage 0x20,
 MessageData,
 2,
 CAN_TX_STD_FRAME &
 CAN_TX_NO_RTR_FRAME

TxNotRdy:
;All Buffer are full, Try again
...
DS00853A-page 30  2002 Microchip Technology Inc.

AN853
PIC18 CAN FUNCTIONS
ORGANIZATION AND USAGE

These functions were developed for Microchip
MPLAB® using MPLINKTM Object Linker; however, they
can easily be ported to any assembler supporting
linking for PIC18 devices.

Source code for the PIC18XXX8 CAN module is
divided into the following three files:

• CAN18xx8.asm

• CAN18xx8.inc

• CANDef.inc

To employ these CAN functions in your project, perform
the following steps:

1. Copy “CAN18xx18.asm”, “CANDef.inc” and
“CAN18xx8.inc” files to your project source
directory.

2. Include “CAN18xx8.asm” file in your project as
an asm source file.

3. Add #include “CAN18xx8.inc” line in each
source file that will be calling CAN routines.

4. By default, CAN interrupt priority is high. CAN
interrupt can be assigned a lower priority by
defining CANIntLowPrior in CANDef.inc.
User must call CANISR function from the
respective interrupt vector to service CAN
transmit interrupt.

5. Firmware implements user defined size of
transmit buffer. User can define size of software
transmit buffer to increase the buffer size that is
available in hardware (3). In that case, it will use
14 bytes of general purpose RAM for each extra
buffer. User should define required extra
software buffer size in CANDef.inc at
MAX_TX_SOFT_BUFFER.

FIGURE 2: PIC18 CAN MODULE INITIALIZATION PROCEDURE

No

Yes

Start Can Module
Initialization

Initialize CAN Module by
Calling CANInitialize
with Desired Bit Rate and

CONFIG Flags

Is Message Filtering End CAN Initialization

Set CONFIG Operation Mode
by Calling

CANSetOperationMode

Set Desired Mask and Filter
Values by Calling
CANSetMask and

Set Normal Operation
Mode by Calling

CANSetOperationMode

CANSet Filter

End CAN Initialization

Required?
 2002 Microchip Technology Inc. DS00853A-page 31

AN853
SAMPLE APPLICATION PROGRAM
USING THE PIC18 CAN LIBRARY

An application program that uses the PIC18 CAN func-
tions must follow certain initialization steps, as shown
in Figure 2.

The following is a portion of a sample application
program that requires all CAN Standard Identifier
messages to be accepted.

EXAMPLE 6: ALL IDENTIFIER MESSAGES ACCEPTED

UDATA
NewMessage RES 04
NewMessageData RES 08
NewMessageLen RES 01
NewMessageFlags RES 01
RxFilterMatch RES 01
MessageData RES 02

;Application specific initialization code

;Initialize CAN module with no message filtering
CANInitialize 1, 5, 7, 6, 2, CAN_CONFIG_ALL_VALID_MSG

Loop:
call CANIsRxReady ;Check for CAN message
bnc RxNotRdy

CANReadMessage NewMessage,
NewMessageData,
NewMessageLen,
NewMessageFlags

banksel NewMessageFlags

btfsc NewMessageFlags,CAN_RX_OVERFLOW_BIT_NO
bra RxOvrFlow ;Branch to Logic for Rx

;overflow occurred.

btfsc NewMessageFlags,CAN_RX_INVALID_MSG_BIT_NO
bra RxInvldMsg ;Branch to Logic for Invalid

;Message received

btfsc NewMessageFlags,CAN_RX_XTD_FRAME_BIT_NO
nop ;Logic for Extended frame

;received
nop ;Else logic for standard

;frame received

btfsc NewMessageFlags,CAN_RX_RTR_FRAME_BIT_NO
bra RxRTRFrame ;Branch to Logic for RTR

;frame received
nop ;Regular frame received

movlw CAN_RX_FILTER_BITS
andwf NewMesageFlags,W
movwf RxFilterMatch ;Save matched Filter

;number

RxNotReady:
;Receive buffer is empty, Wait for new message
DS00853A-page 32  2002 Microchip Technology Inc.

AN853
EXAMPLE 6: ALL IDENTIFIER MESSAGES ACCEPTED (Continued)

; Process received message
...

;Transmit a message due to previously received message or
;due to application logic itself.

call CANIsTxReady
bnc TxNotRdy
movlw 0x01
movwf MessageData ;Copy Data byte 1
movlw 0x02
movwf MessageData+1 ;Copy Data byte 2

CANSendMessage 0x20,
MessageData,
2,
CAN_TX_STD_FRAME &
CAN_TX_NO_RTR_FRAME

TxNotRdy:
;All Buffer are full, Try again

;Other application specific logic
...

goto Loop ;Do this forever

;End of program
 2002 Microchip Technology Inc. DS00853A-page 33

AN853
The following is a portion of a sample application pro-
gram that requires only a specific group of CAN
Standard Identifier messages to be accepted:

EXAMPLE 7: SPECIFIC IDENTIFIER MESSAGES ACCEPTED
UDATA

NewMessage RES 04
NewMessageData RES 08
NewMessageLen RES 01
NewMessageFlags RES 01
RxFilterMatch RES 01
MessageData RES 02

;Application specific initialization code

;Initialize CAN module with no message filtering
CANInitialize 1, 5, 7, 6, 2, CAN_CONFIG_ALL_VALID_MSG

CANSetOperationMode CAN_OP_MODE_CONFIG
;Set Buffer Mask 1 value

CANSetReg CAN_MASK_B1, 0x0000000f, CAN_STD_MSG

;Set Buffer Mask 2 value
CANSetReg CAN_MASK_B2, 0x000000f0, CAN_STD_MSG

;Set Buffer 1, Filter 1 value
CANSetReg CAN_FILTER_B1_F1, 0x00000001, CAN_STD_MSG

;Set Buffer 1, Filter 2 value
CANSetReg CAN_FILTER_B1_F2, 0x00000002, CAN_STD_MSG

;Set Buffer 2, Filter 1 value
CANSetReg CAN_FILTER_B2_F1, 0x00000010, CAN_STD_MSG

;Set Buffer 2, Filter 2 value
CANSetReg CAN_FILTER_B2_F2, 0x00000020, CAN_STD_MSG

;Set Buffer 3, Filter 3 value
CANSetReg CAN_FILTER_B2_F3, 0x00000030, CAN_STD_MSG

;Set Buffer 4, Filter 4 value
CANSetReg CAN_FILTER_B2_F4, 0x00000040, CAN_STD_MSG

Loop:
call CANIsRxReady ;Check for CAN message
bnc RxNotRdy

CANReadMessage NewMessage,
NewMessageData,
NewMessageLen,
NewMessageFlags

banksel NewMessageFlags

btfsc NewMessageFlags,CAN_RX_OVERFLOW_BIT_NO
bra RxOvrFlow ;Branch to Logic for Rx

;overflow occurred.

btfsc NewMessageFlags,CAN_RX_INVALID_MSG_BIT_NO
bra RxInvldMsg ;Branch to Logic for Invalid

;Message received
DS00853A-page 34  2002 Microchip Technology Inc.

AN853
EXAMPLE 7: SPECIFIC IDENTIFIER MESSAGES ACCEPTED (Continued)

btfsc NewMessageFlags,CAN_RX_XTD_FRAME_BIT_NO
nop ;Logic for Extended frame

;received
nop ;Else logic for standard

;frame received

btfsc NewMessageFlags,CAN_RX_RTR_FRAME_BIT_NO
bra RxRTRFrame ;Branch to Logic for RTR

;frame received
nop ;Regular frame received

movlw CAN_RX_FILTER_BITS
andwf NewMesageFlags,W
movwf RxFilterMatch ;Save matched Filter

;number

RxNotReady:
;Receive buffer is empty, Wait for new message

; Process received message
...

;Transmit a message due to previously received message or
;due to application logic itself.

call CANIsTxReady
bnc TxNotRdy
movlw 0x01
movwf MessageData ;Copy Data byte 1
movlw 0x02
movwf MessageData+1 ;Copy Data byte 2

CANSendMessage 0x20,
 MessageData,
 2,
 CAN_TX_STD_FRAME &
 CAN_TX_NO_RTR_FRAME

TxNotRdy:
;All Buffers are full, Try again

;Other application specific logic
...

goto Loop ;Do this forever

;End of program
 2002 Microchip Technology Inc. DS00853A-page 35

AN853
CONCLUSION

The CAN library provided in this application note can
be used in any application program that needs an
interrupt controlled mechanism to implement CAN
transmission and a simple polling mechanism to
implement CAN reception. This library can be used as
a reference to create prioritized receive buffer CAN
communication. Macro wrappers, provided for the
functions described, may not be sufficient for all
requirements. Using the code provided in this
application note, users can develop their own wrappers
to fit their needs.

APPENDIX A: SOURCE CODE

Due to size considerations, the complete source code
for this application note is not included in the text.

A complete version of the source code, with all required
support files, is available for download as a Zip archive
from the Microchip web site, at:

www.microchip.com
DS00853A-page 36  2002 Microchip Technology Inc.

Note the following details of the code protection feature on PICmicro® MCUs.

• The PICmicro family meets the specifications contained in the Microchip Data Sheet.
• Microchip believes that its family of PICmicro microcontrollers is one of the most secure products of its kind on the market today,

when used in the intended manner and under normal conditions.
• There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our knowl-

edge, require using the PICmicro microcontroller in a manner outside the operating specifications contained in the data sheet.
The person doing so may be engaged in theft of intellectual property.

• Microchip is willing to work with the customer who is concerned about the integrity of their code.
• Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not

mean that we are guaranteeing the product as “unbreakable”.
• Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of

our product.

If you have any further questions about this matter, please contact the local sales office nearest to you.
Information contained in this publication regarding device
applications and the like is intended through suggestion only
and may be superseded by updates. It is your responsibility to
ensure that your application meets with your specifications.
No representation or warranty is given and no liability is
assumed by Microchip Technology Incorporated with respect
to the accuracy or use of such information, or infringement of
patents or other intellectual property rights arising from such
use or otherwise. Use of Microchip’s products as critical com-
ponents in life support systems is not authorized except with
express written approval by Microchip. No licenses are con-
veyed, implicitly or otherwise, under any intellectual property
rights.
 2002 Microchip Technology Inc.
Trademarks

The Microchip name and logo, the Microchip logo, KEELOQ,
MPLAB, PIC, PICmicro, PICSTART and PRO MATE are
registered trademarks of Microchip Technology Incorporated
in the U.S.A. and other countries.

FilterLab, microID, MXDEV, MXLAB, PICMASTER, SEEVAL
and The Embedded Control Solutions Company are
registered trademarks of Microchip Technology Incorporated
in the U.S.A.

dsPIC, dsPICDEM.net, ECONOMONITOR, FanSense,
FlexROM, fuzzyLAB, In-Circuit Serial Programming, ICSP,
ICEPIC, microPort, Migratable Memory, MPASM, MPLIB,
MPLINK, MPSIM, PICC, PICDEM, PICDEM.net, rfPIC, Select
Mode and Total Endurance are trademarks of Microchip
Technology Incorporated in the U.S.A. and other countries.

Serialized Quick Turn Programming (SQTP) is a service mark
of Microchip Technology Incorporated in the U.S.A.

All other trademarks mentioned herein are property of their
respective companies.

© 2002, Microchip Technology Incorporated, Printed in the
U.S.A., All Rights Reserved.

 Printed on recycled paper.
DS00853A - page 37

Microchip received QS-9000 quality system
certification for its worldwide headquarters,
design and wafer fabrication facilities in
Chandler and Tempe, Arizona in July 1999
and Mountain View, California in March 2002.
The Company’s quality system processes and
procedures are QS-9000 compliant for its
PICmicro® 8-bit MCUs, KEELOQ® code hopping
devices, Serial EEPROMs, microperipherals,
non-volatile memory and analog products. In
addition, Microchip’s quality system for the
design and manufacture of development
systems is ISO 9001 certified.

DS00853A-page 38  2002 Microchip Technology Inc.

M
AMERICAS
Corporate Office
2355 West Chandler Blvd.
Chandler, AZ 85224-6199
Tel: 480-792-7200 Fax: 480-792-7277
Technical Support: 480-792-7627
Web Address: http://www.microchip.com
Rocky Mountain
2355 West Chandler Blvd.
Chandler, AZ 85224-6199
Tel: 480-792-7966 Fax: 480-792-4338

Atlanta
500 Sugar Mill Road, Suite 200B
Atlanta, GA 30350
Tel: 770-640-0034 Fax: 770-640-0307
Boston
2 Lan Drive, Suite 120
Westford, MA 01886
Tel: 978-692-3848 Fax: 978-692-3821
Chicago
333 Pierce Road, Suite 180
Itasca, IL 60143
Tel: 630-285-0071 Fax: 630-285-0075
Dallas
4570 Westgrove Drive, Suite 160
Addison, TX 75001
Tel: 972-818-7423 Fax: 972-818-2924
Detroit
Tri-Atria Office Building
32255 Northwestern Highway, Suite 190
Farmington Hills, MI 48334
Tel: 248-538-2250 Fax: 248-538-2260
Kokomo
2767 S. Albright Road
Kokomo, Indiana 46902
Tel: 765-864-8360 Fax: 765-864-8387
Los Angeles
18201 Von Karman, Suite 1090
Irvine, CA 92612
Tel: 949-263-1888 Fax: 949-263-1338
New York
150 Motor Parkway, Suite 202
Hauppauge, NY 11788
Tel: 631-273-5305 Fax: 631-273-5335
San Jose
Microchip Technology Inc.
2107 North First Street, Suite 590
San Jose, CA 95131
Tel: 408-436-7950 Fax: 408-436-7955
Toronto
6285 Northam Drive, Suite 108
Mississauga, Ontario L4V 1X5, Canada
Tel: 905-673-0699 Fax: 905-673-6509

ASIA/PACIFIC
Australia
Microchip Technology Australia Pty Ltd
Suite 22, 41 Rawson Street
Epping 2121, NSW
Australia
Tel: 61-2-9868-6733 Fax: 61-2-9868-6755
China - Beijing
Microchip Technology Consulting (Shanghai)
Co., Ltd., Beijing Liaison Office
Unit 915
Bei Hai Wan Tai Bldg.
No. 6 Chaoyangmen Beidajie
Beijing, 100027, No. China
Tel: 86-10-85282100 Fax: 86-10-85282104
China - Chengdu
Microchip Technology Consulting (Shanghai)
Co., Ltd., Chengdu Liaison Office
Rm. 2401, 24th Floor,
Ming Xing Financial Tower
No. 88 TIDU Street
Chengdu 610016, China
Tel: 86-28-86766200 Fax: 86-28-86766599
China - Fuzhou
Microchip Technology Consulting (Shanghai)
Co., Ltd., Fuzhou Liaison Office
Unit 28F, World Trade Plaza
No. 71 Wusi Road
Fuzhou 350001, China
Tel: 86-591-7503506 Fax: 86-591-7503521
China - Shanghai
Microchip Technology Consulting (Shanghai)
Co., Ltd.
Room 701, Bldg. B
Far East International Plaza
No. 317 Xian Xia Road
Shanghai, 200051
Tel: 86-21-6275-5700 Fax: 86-21-6275-5060
China - Shenzhen
Microchip Technology Consulting (Shanghai)
Co., Ltd., Shenzhen Liaison Office
Rm. 1315, 13/F, Shenzhen Kerry Centre,
Renminnan Lu
Shenzhen 518001, China
Tel: 86-755-82350361 Fax: 86-755-82366086
China - Hong Kong SAR
Microchip Technology Hongkong Ltd.
Unit 901-6, Tower 2, Metroplaza
223 Hing Fong Road
Kwai Fong, N.T., Hong Kong
Tel: 852-2401-1200 Fax: 852-2401-3431
India
Microchip Technology Inc.
India Liaison Office
Divyasree Chambers
1 Floor, Wing A (A3/A4)
No. 11, O’Shaugnessey Road
Bangalore, 560 025, India
Tel: 91-80-2290061 Fax: 91-80-2290062

Japan
Microchip Technology Japan K.K.
Benex S-1 6F
3-18-20, Shinyokohama
Kohoku-Ku, Yokohama-shi
Kanagawa, 222-0033, Japan
Tel: 81-45-471- 6166 Fax: 81-45-471-6122
Korea
Microchip Technology Korea
168-1, Youngbo Bldg. 3 Floor
Samsung-Dong, Kangnam-Ku
Seoul, Korea 135-882
Tel: 82-2-554-7200 Fax: 82-2-558-5934
Singapore
Microchip Technology Singapore Pte Ltd.
200 Middle Road
#07-02 Prime Centre
Singapore, 188980
Tel: 65-6334-8870 Fax: 65-6334-8850
Taiwan
Microchip Technology (Barbados) Inc.,
Taiwan Branch
11F-3, No. 207
Tung Hua North Road
Taipei, 105, Taiwan
Tel: 886-2-2717-7175 Fax: 886-2-2545-0139

EUROPE
Austria
Microchip Technology Austria GmbH
Durisolstrasse 2
A-4600 Wels
Austria
Tel: 43-7242-2244-399
Fax: 43-7242-2244-393
Denmark
Microchip Technology Nordic ApS
Regus Business Centre
Lautrup hoj 1-3
Ballerup DK-2750 Denmark
Tel: 45 4420 9895 Fax: 45 4420 9910
France
Microchip Technology SARL
Parc d’Activite du Moulin de Massy
43 Rue du Saule Trapu
Batiment A - ler Etage
91300 Massy, France
Tel: 33-1-69-53-63-20 Fax: 33-1-69-30-90-79
Germany
Microchip Technology GmbH
Steinheilstrasse 10
D-85737 Ismaning, Germany
Tel: 49-89-627-144 0 Fax: 49-89-627-144-44
Italy
Microchip Technology SRL
Centro Direzionale Colleoni
Palazzo Taurus 1 V. Le Colleoni 1
20041 Agrate Brianza
Milan, Italy
Tel: 39-039-65791-1 Fax: 39-039-6899883
United Kingdom
Microchip Ltd.
505 Eskdale Road
Winnersh Triangle
Wokingham
Berkshire, England RG41 5TU
Tel: 44 118 921 5869 Fax: 44-118 921-5820

08/01/02

WORLDWIDE SALES AND SERVICE

	Introduction
	Can Module Overview
	FIGURE 1: CAN Buffers and Protocol Engine Block Diagram
	Bus Arbitration and Message Latency
	Macro Wrappers
	EXAMPLE 1: Code without Macro wrapper
	EXAMPLE 2: Code With Macro Wrapper
	EXAMPLE 3: Code without Macro Wrapper
	EXAMPLE 4: code with Macro Wrapper
	EXAMPLE 5: Code With Macro Wrapper

	PIC18XXX8 Can Functions
	TABLE 1: function index
	Terminology Conventions
	TABLE 2: TERMINOLOGY CONVENTIONS

	Configuration/Initialization Functions
	TABLE 3: Can_config_Flag Values�
	TABLE 4: CAN_OP_MODE Values
	TABLE 5: CAN_CONFIG_MSG Values
	TABLE 6: Register Address Values�

	Module Operation Functions
	TABLE 7: CAN_TX_MSG_FLAGS Values
	TABLE 8: CAN_RX_MSG_FLAGS Values

	Status Check Functions
	PIC18 CAN Functions Organization and Usage
	FIGURE 2: PIC18 CAN Module Initialization Procedure

	Sample Application Program Using the PIC18 CAN Library
	EXAMPLE 6: All Identifier Messages accepted
	EXAMPLE 6: All Identifier Messages accepted (Continued)
	EXAMPLE 7: Specific Identifier Messages Accepted
	EXAMPLE 7: Specific Identifier Messages Accepted (Continued)

	Conclusion
	Appendix A: Source Code
	Worldwide Sales and Service

