
TN209

Using the MD5 Hash Library

This technical note describes the Message Digest version 5 (MD5) hashing algorithm. MD5 is a one-way
hash algorithm that addresses two main concerns that are created when communicating over a network:
authenticity and data integrity. MD5 is fast and simple, yet offers a higher level of security than MD4 and
is much more reliable than a checksum.

A Hashing Algorithm
A hashing algorithm transforms an arbitrarily long block of data into a large number. This number (called
the hash value, or just hash) has a few useful properties:

• It has no correlation to the original data, and nothing about the original data can be inferred from it.

• Small changes in the original data produce large, essentially random, changes in the hash value.

• Generated hash values are evenly dispersed throughout the space of possible values (i.e., all
possible values are equally likely to occur).

Uses of MD5
The MD5 algorithm takes a block of data of arbitrary length and produces a 16-byte hash. For additional
security, a block of data can be broken into smaller blocks that are hashed separately. The individual hash
values are then put together and hashed as a final step.

MD5 hashes can be used to verify the integrity of a block of data. Hashing data and comparing it with a
previously calculated hash value will determine if that data has been changed. An MD5 hash is better than
a checksum because it will detect transmission errors that a checksum would not be able to detect.

MD5 hashes can be used to verify the source of the transmitted data. This is done by generating the MD5
hash of a message concatenated with a secret password, and then transmitting the message and the hash. A
receiver can then hash the message with the password and see if the hash values match.

MD5 is a one-way hashing algorithm i.e., it does not encrypt data.
022-0055 Rev. C 1



Example
The following program, md5_test.c, is available in \Samples\tcpip. It demonstrates the MD5
hashing library.

#use "md5.lib"

const char string_a[] = "Buy low, sell high.";
const char string_b[] = "Buy low, sell high?";

md5_state_t hash_state;

char hash[16];

void hexprint(char *data, int len);

main()
{

md5_init(&hash_state); // prepare for a new hash
md5_append(&hash_state, string_a, strlen(string_a));
md5_finish(&hash_state, hash); // calculate hash value

printf("%s\n", string_a);
printf("--hashes to---\n");

hexprint(hash, 16);

printf("\n");

md5_init(&hash_state); // prepare for a new hash
md5_append(&hash_state, string_b, strlen(string_b));
md5_finish(&hash_state, hash); // calculate hash value

printf("%s\n", string_b);
printf("--hashes to---\n");
hexprint(hash, 16);

printf("\n");
}

void hexprint(char *data, int len)
{

auto int i;
for(i = 0;i < len;i++)
{
/* "%02x" for lowercase, "%02X" for uppercase hexidecimal letters */

printf("%02x", data[i]);
}

}

022-0055 Rev. C 2



MD5 Library Functions
There are three API functions in the MD5 library (MD5.LIB). Each function takes as an argument a
pointer to a structure of type md5_state_t. This structure must be instantiated by the user.

void md5_init(md5_state_t *pms);

DESCRIPTION

Initialize the MD5 hash process. Initial values are generated for the structure, and this structure
will identify a particular transaction in all subsequent calls to the md5 library.

PARAMETER

void md5_append(md5_state_t *pms, char *data, int nbytes);

DESCRIPTION

This function will take a buffer and compute the MD5 hash of its contents, combined with all pre-
vious data passed to it. This function can be called several times to generate the hash of a large
amount of data

PARAMETERS

md5_init

pms Pointer to the md5_state_t structure.

md5_append

pms Pointer to the md5_state_t structure that was initialized by
md5_init.

data Pointer to the data to be hashed.

nbytes Length of the data to be hashed.
022-0055 Rev. C 3



void md5_finish(md5_state_t *pms, char digest[16]);

DESCRIPTION

Completes the hash of all the received data and generates the final hash value.

PARAMETERS

md5_finish

pms Pointer to the md5_state_t structure that was initialized by
md5_init.

digest The 16-byte array that the hash value will be written into.
022-0055 Rev. C 4

Z-World, Inc.

2900 Spafford Street
Davis, California 95616-6800

USA

Telephone: (530) 757-3737
Fax: (530) 757-3792

www.zworld.com

Rabbit Semiconductor

2932 Spafford Street
Davis, California 95616-6800

USA

Telephone: (530) 757-8400
Fax: (530) 757-8402

www.rabbitsemiconductor.com


	A Hashing Algorithm
	Uses of MD5
	Example
	MD5 Library Functions

