®
TechnicalNote EEE /5.
TN213

Rabbit 2000 Serial Port Software

Z-World supplies both stream- and frame-based drivers for the four serial ports of the Rabbit 2000 micro-
processor. Thistechnical note will discuss both types of drivers.

The Rabbit 3000 microprocessor has additional serial ports with additional features. Please see the
Rabbit 3000 Microprocessor User’'s Manual for details.

Overview of Serial Communication

Seria interfaces, among the oldest and most widely used methods for machine communication, send and
receive individual bits over asingle digital line. Full-duplex communication (sending and receiving at the
sametime) is possible with only three wires: TX (transmit), RX (receive) and GND (ground).

Serial communication is either synchronous or asynchronous. Synchronous communication requires an
additional wire for a clocking signal to coordinate the transmitting and receiving of each bit. Asynchro-
nous communication does not need the additional wire, but requires that each byte that is transmitted be
identified with stop and start bits. The sender transmits bits at precise time intervals and the receiver may
then sample the transmission line at these same intervalsto retrieve the bits.

The most common asynchronous seria interfaces are RS-232, RS-485, and RS-422. The seria ports on
IBM PC-type computers are asynchronous RS232. Asynchronous interfaces use the same data format and
differ only in electrical specifications. This dataformat consists of a start bit, followed by 7 or 8 data bits,
followed by an optional bit, followed by one or two stop bits. The optional bit is the 8th bit when there are
7 data bits and it is the 9th bit when there are 8 data bits. This extrabit may be used as either a parity check
bit or aframe-based driver may use it as aframe-signalling bit in a packet protocol. Our frame-based
driver only supports 8 data hits.

The start bit isalogica zero and the stop bit isalogical one. A logical zero may be noted by: 0, low or
space. A logica one may be noted by: 1, high or mark. An idle communication lineisin the high state (a
logical one). Since stop bits are also alogical one, they can be thought of as minimum idle time between
transmitted bytes.

Asynchronous Serial Drivers

All four serial ports of the Rabbit 2000 microprocessor may be used for asynchronous communication;
ports A and B may aso be used for synchronous communication. The serial drivers that are provided with
Dynamic C and described here are meant for asynchronous communication and would need modification
to be used in the synchronous mode of either port A or B. (Synchronous drivers for an SPI interface are
available starting with Dynamic C version 7.05.)

022-0059 Rev. D 1



Data Transfer and Interrupt Times

The highest practical standard baud rate usable by the seria driversis 115,200 bps. The Rabbit 2000
alows transmitting at much higher baud rates, but significant gaps in data begin to appear, limiting the
actual transfer rate. Interrupt times for the serial driver interrupt service request (ISR) are approximately
500 cycles for transmitting a byte and 400 cycles for receiving a byte.

The Stream-Based Driver

The stream-based seria driver isimplemented by the Dynamic C library RS232. LI B. Thislibrary con-
sists of circular buffers, an interrupt service routine and user interface functions.

There aretwo circular buffers for each of the four seria ports, one for reading (the receive buffer) and one
for writing (the transmit buffer). These buffers temporarily hold data that is ready to transmit and data that
has been received but not processed. The default size of these buffersis set to 31 bytes. The sizes can be
changed using the macros XI NBUFSI ZE and XOUTBUFSI ZE, where X refersto seria port A, B, C, or D.
Valid sizes for the buffers are a power of 2 minus 1 (e.g., 15, 31, 63, 127).

A buffer size of 2"- 1 enables masking for fast roll-over calculations.

Stream-Based Driver Transmit and Receive Routines
The standard transmit and receive routinesin RS232. LI B arelisted here. XisA, B, C or D, and designates
the serial port. Complete function descriptions are in the Dynamic C Function Reference Manual.

e ser Xget c() readsthe next character in the receive buffer.

e ser Xread() readsa specified number of bytesin the receive buffer.

e ser Xpeek() looksat the next character in the receive buffer.

e ser Xput c() writesacharacter to the transmit buffer.

e ser Xput s() writesanull-terminated string to the transmit buffer.

e serXwrite() writesaspecified number of bytes to the transmit buffer.

Except for ser Xpeek() , they al first lock the buffer they use and unlock it before returning.

These functions rely on global data, making them non-reentrant. When using them with uC/OS-Il, or
another preemptive multitasker, only one process at atime will be able to use a particular seria port. The
stream-based driver (ak.a., the RS232 driver) is otherwise compatible with uC/OS-I.

The functionsser Xput s() andser Xwri t e() block. They do not return until the last of the data they
are to write has been successfully placed into the circular buffer, at which point the functions return while
the data transmission proceeds using the I SR.

TIP: The datatransmission is complete when the statement (! ser Xwr Used() &&
I Bi t RdPort | ( SxSR, 2)) isTRUE. This meansthat the output buffer is empty and the
status register reportsidle. Since there are cases where the tranmitter is off for short periods of
time even when there is more data in the buffer, it is safest to test for both conditions.

022-0059 Rev. D 2



Stream-Based Driver Cofunction Routines

Cofunction versions of the standard send and receive routines are provided by RS232. LI B. Thereceive
functions use time-outs to exit if no characters are received. These functions are aso considered non-reen-
trant with respect to preemptive multitaskers, so only asingle task has accessto a particular port at any one

time.

The cofunction routines yield to other tasks while waiting for an operation to complete, but do not return to
execute the next statement within their own costatement block until they have completed their operation.
The transmitting functions yield to other tasks whenever the output buffer becomes full, while transmis-
sion takes place using the ISR.

Hereisalist of the cofunction send and receive routines. X is A, B, C or D, and designates the serial port.
Complete function descriptions are in the Dynamic C Function Reference Manual.

cof ser Xget c() yiedsto other tasks until a character isread from the receive buffer.

cof ser Xget s() reads characters from the receive buffer until one of several conditionsis met.
Yields to other tasks if the buffer is locked or empty.

cof _ser Xread() readsthe specified number of characters from the receive buffer unless a
time-out occurs between characters. Yields to other tasksiif the buffer islocked or empty.

cof _ser Xput c() writesacharacter to the transmit buffer. Yields to other tasks if the buffer is
locked or full.

cof _ser Xput s() writesanull-terminated string to the transmit buffer. Yields to other tasks if
the buffer islocked or full.

cof _ser Xwrite() writesthe specified number of bytes to the transmit buffer. Yields to other
tasksif the buffer islocked or full.

Other Stream-Based Driver Routines
The following functions make up the rest of the RS232 driver API. XisA, B, C or D, and designates the
seria port. Complete function descriptions are in the Dynamic C Function Reference Manual.

ser CheckPari ty() tests8-bit character for correct parity.

ser Xcl ose() disable serial port.

ser Xdat abi t s() configures serial port to use 7 or 8 data bits.

ser Xget Error () get byteof error flags set sincelast call to the function.

ser Xopen() enable serial port.

ser Xparity() setparity mode.

ser Xr dFl ush() flushesreceive buffer.

ser Xr dFr ee() returnsthe number of bytes unused in the receive buffer.

ser Xr dUsed() returnsthe number of bytes currently in use in the receive buffer.
ser XW Fl ush() flushestransmit buffer.

ser XW Fr ee() returnsthe number of bytes available for use in the transmit buffer.

022-0059 Rev. D 3



Using Alternate Pins

All four serial ports share pins with parallel port C. Serial ports A and B can be configured to use the alter-
nate pins of parallel port D instead. For those designing a board with the Rabbit 2000 microprocessor or a
Z-World Core Maodule, to use the alternate pins of parallel port D for seria port A or B, include the appro-
priate macro definition in your application:

#defi ne SERA_USEPORTD
or
#defi ne SERB_USEPORTD

Thisis not necessary for the RCM 2200, the RCM 2300 or the RCM2250. The driver will define
SERB_USEPORTD when any of those board types are recogni zed.

If you have aZ-World controller board the choice to use the alternate pins of parallel port C or D for serid
port B has already been made by the designers of the board. Consult the hardware user’s manual for your
Z-World board for more information.

Using Flow Control with the RS232 Driver

Sometimes a system can not process incoming data at the rate it is being transmitted. Buffers may be used
in these situations, but they will overflow if the receiver is unable to keep up with the transmitter. Flow
control solves the problem by allowing the receiver to signal when the transmitter should pause.

Flow control may be implemented in software or hardware. The RS232 driver uses hardware flow control.
Thetwo functionsser Xf | owcont rol On() andser Xf | owcont rol O f () areused to enable or
disable hardware flow control. Xis A, B, C or D, and designates the seria port.

The Rabbit is configured as a DTE (Data Terminal Equipment), meaning that the flow control line RTS
(Request To Send) is an output asserted by the Rabbit when it is ready for more data, and CTS (Clear To
Send) is an input that monitors the ready state of the system that is connected to the Rabbit. RTS and CTS
are currently configured using #def i ne macrosto specify which port and bit a particular line will use.
Hereis an example of configuring RTS/CTS for Serial Port B.

#defi ne SERB_RTS PORT PBDR /1 useport B dataregister
#defi ne SERB_RTS_ SHADOW PBDRShadow // useport B shadow register
#define SERB RTS BI T 6 /1 output

#defi ne SERB_CTS_PORT PBDR /1 input

#define SERB CTS BI T 5

022-0059 Rev. D 4



The Frame-Based Driver

The frame-based driver for the serial ports of the Rabbit 2000 microprocessor isimplemented by the
Dynamic C library PACKET. LI B. Unlike the RS232 driver with its point-to-point interface, the packet
driver was designed for the multipoint communications of an RS485 interface.

The packet driver handles transmitting and receiving data packet formats in half-duplex mode. The sup-
ported packet formats are:

*  Gap—packetsthat are separated in transmission by gaps of a set length. No such gaps exist within
the packet. M odbus uses this technique for delimiting frames; an end of frameis recognized if a
gap of more than 3.5 character times exists between characters.

» Oth Bit—packets that use the 9th bit to mark the first byte in a packet. Thisis used in the Opto 22
protocol and others. The Rabbit 2000 supports transmitting and receiving a low 9th bit. Transmit-
ting and receiving a high 9th bit is simulated by the packet driver. Using the 9th bit to mark the first
byte in a packet precludes the use of a parity bit or an extra stop bit.

e Sart Character—packets that use a special byte to mark the beginning of a packet. Thisis used
in protocols that use ASCII rather than binary data.

The gap packet and start character modes can be configured to use the 9th data bit for parity or as an extra
stop bit. Thisisdone by acall to pkt Xset Parity().

Recognizing Solitary Packets

With 9th bit and start character packet formats, the driver assumes a packet is completely received when it
recognizes another ‘start packet’ signal. Thisis aproblem if asolitary packet is received. The solution to
thisis a user-defined function that can determine whether or not a packet is complete. The packet driver
will call this user-defined function when pkt Xr ecei ve() iscalled and the only packet availableisthe
one currently being received. The prototype for the functioniis:

int test packet(char *packet bytes, int count);

packet bytes The current packet contents to te<t.
count The number of bytesin the current packet.
The function should return 1 if the packet is complete. A pointertot est _packet () ispassed to

pkt Xopen() when using 9th bit or start character packet formats. A null pointer is passed to
pkt Xopen() when using the gap packet format.

022-0059 Rev. D 5



Packet Driver API
Full descriptions for these functions are in the Dynamic C Function Reference Manual. The X in the func-
tion nameis A, B, C, or D and designates the serid port.

Open, Close, and Configuration Functions
The open and close functions enable and disable serial communication over the specified port.
e pkt Xi ni t Buf f ers() allocates ablock of extended memory for the packet driver.

e pkt Xopen() opensserial port, identifies baud rate, packet scheme and the user-supplied function
that checks for packet completeness.

e pkt Xset Parity() configures9th bit usage for gap and start character packet modes.
e pkt Xcl ose() disablesthe serial port ISR.

Send and Receive Functions
* pkt Xsend() initiates sending a packet.
* cof pkt Xsend() cofunction version of pkt Xsend() .
* pkt Xrecei ve() getsareceived packet if thereisone.
o cof _pkt Xrecei ve() thecofunction version of pkt Xr ecei ve().

Status and Error Checking Functions
* pkt Xsendi ng() returnstrueif apacket is currently being transmitted.
* pkt Xget Error s() returnsabyte of error flags.

User-Defined Functions

The packet driver is meant to be used with avariety of transceiver hardware, so some functions must be
defined by the user. Each of these functions, listed below, take no arguments and return nothing.

e pkt Xi nit() - Initializesthe communication hardware. Called inside pkt Xopen() . Thisfunc-
tion may bewrittenin C. It will only be called once each time the packet driver is opened, so speed
isnot amajor concern. Thisiswhere I/O pins should be configured and any other setup should be
performed.

e pkt Xrx() - Setsthe hardwareto receive data. This function must be written in assembly. Any
registers besides the 8-bit accumulator A must be preserved first, and restored before returning.
Thisfunction is called when the driver switches from transmit to receive mode once there are no
packets to send. This function is necessary for half-duplex connections and other types of shared
bus schemes so that the transmitter can be disabled, allowing other nodes to use the lines.

e pkt Xt x() - Setsthe hardware to transmit data. This function must be written in assembly. The
same rules for register usage asfor pkt Xr x() apply. Thisfunction is called whenever the driver
switches from receive to transmit mode in response to an additional packet or packets being avail-
able for sending. A typical use of thisfunction isto enable any necessary transmitter hardware.

See the sample program Sanpl es/ PKTDEMO. Cfor an example of how to write these user-supplied
functions.

022-0059 Rev. D 6



Parity and Stop Bits
The RS232 driver and the packet driver can be configured to use most combinations of:
e 7 or 8 data bits (the packet driver only supports 8 data bits)
* even, odd, or no parity
e 1 or2stop bits
The only limitation for the RS232 driver is that parity bits and extra stop bits (more than one) cannot be

combined dueto limitations in the UART hardware; 11 bitsis the upper limit. The packet driver sharesthis
limitation and, in addition, disallows the 9th bit packet format to be used with parity or a second stop bit.

The default format is 1 start bit, 8 data bits, no parity, and one stop bit (8-N-1). This adds up to 10 bits.

Transmitting a 9th Data Bit

Special processing is required to transmit 9 data bits. A low 9th bit is handled in hardware by writing the
byte to a specia alternate port. For a high 9th bit, a special delay scheme is used by the serial drivers. For
the stream-based driver, the normal stop bit is used as the high 9th bit, and the transmitter is disabled
immediately after the byteis sent to create an idle state for one additional byte time. This creates ahigh 9th
bit followed by along stop bit. When using the RS232 driver, this delay scheme slows down the data
throughput rate and can cause problems with hardware that is sensitive to gapsin the data stream.

The packet driver resolves the issue of an additional byte time delay by speeding up the baud rate. The
result isan idle state of afew bit timesinstead of afull byte time. Because the transmitter and receiver
logic for aseria port both use the same baud rate counter this scheme can only be used in half-duplex
mode. The packet driver ISR is able to raise the baud rate temporarily with the knowledge that nothing will
be received during that period.

Here are the mode configuration functions. Compl ete descriptions for them can be found in the Dynamic C
Function Reference Manual.

e serXparity() establishes parity check or extrastop bit in RS232 driver.
* ser Xdat abi t s() establishes number of data bitsin RS232 driver.
e pktXsetParity() establishes parity check or extra stop bit in packet driver.

Summary

The serial port drivers for the Rabbit 2000 microprocessor are provided in source code format with
Dynamic C. The stream-based driver is suitable for full-duplex point-to-point communication. The frame-
based driver is suitable in a half-duplex multidrop system and has been designed to be easily adaptable for
many types of transceiver hardware.

Z-World, Inc. Rabbit Semiconductor
2900 Spafford Street 2932 Spafford Street
Davis, California 95616-6800 Davis, California 95616-6800
USA USA
Telephone: (530) 757-3737 Telephone: (530) 757-8400
Fax: (530) 757-3792 Fax: (530) 757-8402

www.zworld.com www.rabbitsemiconductor.com

022-0059 Rev. D 7



	Rabbit 2000 Serial Port Software
	Overview of Serial Communication
	Asynchronous Serial Drivers
	The Stream-Based Driver
	The Frame-Based Driver
	Parity and Stop Bits
	Summary


