
TN218

Implementing a Serial Download Manager for
a 256K Byte Flash

(For Dynamic C version 7.21 only)

Disclaimer
The programs described in this note are provided as a sample only with no guarantees that
they are fail-safe. How fail-safe a system needs to be is obviously application dependent. It is
unlikely this sample or future samples will meet all users’ needs. Sample systems are provided
as a starting point for programmers to implement their own field reprogramming solutions.

Introduction
This technical note describes a method of implementing a serial Download Manager (DLM) and down-
loaded program (DLP) as a pair of coresident programs on a Rabbit 2000 based board having a single
256K byte flash chip. Sample code is provided in an attached ZIP file. This sample was developed and
tested using Dynamic C 7.21 and it is not guaranteed to work under any later versions. Starting with
Dynamic C 7.31, a sample DLM/DLP system is included in Samples/DOWN_LOAD. If you are using
Dynamic C 7.31 (or later), please see Technical Note 218a for instructions on using the DLM/DLP system
provided with your version of Dynamic C.

The method described herein requires that pin A18 on the Rabbit processor be connected to pin A17 on the
flash chip. Many Rabbit/Z-World board level and core module products have a jumper for switching this
line. The Rabbit Memory Interface Unit (MIU) has a feature that allows A18 to be inverted for all memory
accesses within selected quadrants of the 1M physical address space by setting a bit in an internal I/O reg-
ister. The method explained here combines the physical rerouting of A18 in hardware with the MIU inver-
sion of A18 to allow both co-resident programs to be compiled to address 0x0000, but actually reside in
separate halves of the 256K byte flash.

Board Types Supported
Many Z-World/Rabbit Semiconductor board types with a single 256K flash have a jumper for connecting
A18 on the bus to A17 on the flash. The jumper (0 Ω resistor) is set in the normal A18-A18 position in the
factory and needs to be resoldered to implement this DLM. A factory option for shipping with the A18-
A17 configuration would be considered for a volume order.
022-0067 Rev. B 1

Why Use this Method?
The most robust way to field reprogram a remote Rabbit target is to have a separate device such as the
Rabbitlink receive the program and reprogram the target using the Rabbit 2000’s bootstrap mode. That
solution may be too expensive for some applications where low cost and small size are critical. Another
option is to use a board with two flash chips, and keep the unchanging resident DLM in one of the flash
chips. Starting with Dynamic C version 7.05, a fully functional sample DLM for two-flash boards comes
with Dynamic C in the subdirectory Samples\DOWN_LOAD. That method may also be too expensive in
parts cost and size for some applications.

For an application using a board with a single 256K flash, the fact that Dynamic C does not create relocat-
able programs is a problem because the BIOS must start at 0x0000 so that board and program initialization
code runs correctly. But sharing the BIOS between two coresident programs creates potential problems
with Dynamic C version compatibility if the permanently resident DLM compiled with an older version
remains unchanged, while a secondary program which may be built using later versions shares the BIOS
with the DLM. The method described in this note allows the DLP and DLM to both start at logical address
0x0000, each with their own BIOS.

Internet Protocol Alternatives
The techniques used in this serial method are adaptable to an Internet protocol based DLM/DLP system. It
is unnecessary to transmit the DLP in HEX format with checksums when a reliable transport protocol is
used; a BIN image file suffices. Using a TCP-based DLM removes much of the complexity in the current
sample, since the details of reliable transmission are hidden in the Z-World provided TCP/IP libraries.

Sample DLM/DLP systems for one and two flash boards that work over TCP/IP are provided with
Dynamic C starting with version 7.31. See Technical Note 224, “Implementing a TCP-Based Download
Manager,” for instructions on using these samples. The TCP DLM is a tight fit into 128K of split flash and
requires reducing the memory for the System ID block, so we recommend customers use two 256K flash
chips in their solution.
022-0067 Rev. B 2

Functional Overview
The Download Manager (DLM) is the primary program, the program that runs when the target is reset or
powered on. The DLP (or secondary program) is transmitted using RS232 (over serial port B or C in these
examples) in an Intel Hex file format. (See “Appendix: The Intel HEX File Format” at the end of this doc-
ument for details about this format.)

Both the DLM and DLP monitor the channel for non-ASCII characters (bytes with the high bit set) in
order to detect a predefined/user-definable command string of user-definable length that is understood to
be the restart command. When the restart command is detected, the DLM starts. A menu is displayed on a
terminal emulator screen, giving the user a choice of actions. The first action either must be to enter a pass-
word or restart the DLP. These are the only actions that may be performed without entering a password
first. If no password is entered within a user-specifiable time limit, the DLM checks for the presence of a
valid DLP and runs it if one is present, or restarts itself if one is not. The user can set the initial password at
DLM compile time, and specify whether the password will be run-time changeable.

Other Software Needed
A terminal emulation program with the ability to send a raw ASCII or binary file, handle ANSI escape
sequences and use software flow control (XON/XOFF) is needed. A good terminal program called Tera
Term was used to test these samples.

http://hp.vector.co.jp/authors/VA002416/teraterm.html

(In the author’s opinion, HyperTerminal is notoriously cranky and should not be used.)

Software flow control is required so that receiving the program data can be paused while interrupts are
turned off during a write to a flash sector. This is necessary to prevent interrupt service routines from run-
ning code in flash while the flash is being written.

Running the DLM and DLP
These programs were tested under Dynamic C 7.21 only. They are not guaranteed to work with later ver-
sions of Dynamic C. They will not work with earlier versions without BIOS modifications.

The files needed for running this example are in the ZIP file, TN218.zip. Create a new directory in the
Samples directory: Samples\DOWN_LOAD\ONEFLASH. Extract the files to this location. The contents
of the ZIP file are:

• DLMoneFlash.dcp - The project file for this example. (See the Dynamic C User’s Manual for a
description of project files.)

• DLM_256kFlash.C - The primary program (the DLM).

• DLP_256kFlash.C - A simple secondary program (the DLP). This should be placed in the same
directory as DLM_256kFlash.C.

• RESTART.BIN - Contains the DLM restart command which when sent to the target will signal
either the DLM or DLP to restart the DLM.

• write_idblock.c - Contains an application that will write a System ID block on a board that
either doesn’t have one or has version 2.
022-0067 Rev. B 3

http://hp.vector.co.jp/authors/VA002416/teraterm.html

The following files are also in TN218.zip. They are files normally used by Dynamic C, which have
been slightly altered for the purpose of running the DLM and DLP. Dynamic C will be directed to use
these altered files without overwriting the existing files Dynamic C would normally use.

• IDBLOCK.LIB - A replacement for the like named file in LIB\BIOSLIB\. This version com-
pile-switches some code to make writeUserBlock() work correctly when A18 is inverted.

NOTE: The User block can not be accessed from the DLP in this sample system. The DLM/DLP
system available starting with Dynamic C 7.31 allows the DLP to read and write the User block.

• LIB.DIR - A replacement for the like named file in the root directory. This file is for Dynamic C
Premier, and so contains libraries that are not present in Dynamic C SE versions. This will cause
"library not found" error messages to be generated if you are not using Dynamic C Premier. To
avoid that, copy the LIB.DIR that came with your SE version of Dynamic C to the directory
Samples\DOWN_LOAD\ONEFLASH. Replace the line LIB\BIOSLIB\IDBLOCK.LIB with
Samples\DOWN_LOAD\ONEFLASH\IDBLOCK.LIB.

• RABBITBIOS.C - A replacement for the like named file in BIOS subdirectory.

The following numbered list walks through the hardware and software setup.

1. Hardware Set Up (modemless)
Make a 3-wire connection between the target board and the PC by connecting TX of the serial channel
being used on the Rabbit target board to the RX line of the PC COMM port being used. RX on the tar-
get goes to the TX line of the PC, and a common ground is the third connection. The samples are set up
to use serial port B or C, uncomment the appropriate macro near the tops of the DLM and DLP sam-
ples to select the port.

//*** uncomment one only! ***
#define USE_SERIAL_PORT_B
//#define USE_SERIAL_PORT_C

Find the 0 Ω jumper on your board that connects A18 from the processor to A18 on the flash and
change it to connect A18 on the processor to A17 on the flash.

Running the Terminal Emulator

Set your terminal emulation program for 57600 baud, one stop bit, no parity, ANSI terminal emulation,
XON/XOFF flow control, a transmit delay of 1 ms/line and the appropriate COM port.

Slower boards may require a slower baud rate. Change the baud rate with this macro in
DLP_256kFlash.c and DLM_256kFlash.c:

#define SERIAL_BAUDRATE 57600ul
022-0067 Rev. B 4

2. Compiling DLP_256kFlash.C
From Dynamic C’s File menu, choose Project and open the file DLMoneFlash.DCP that you
extracted into Samples\DOWN_LOAD\ONEFLASH.

Open the Options | Compiler dialog box from the main menu. Use the Defines button on the lower
left corner to open the Defines dialog box. Verify that the following macros are defined:

COMPILE_PRIMARY_PROGx ; COMPILE_SECONDARY_PROG ;
INVERT_A18_ON_PRIMARY_FLASH

Hint: Just adding an ‘x’ to the macro names when they are not needed saves a lot of typing.

These macros are used in the BIOS source code to split the RAM between the DLM and DLP, and to
invert A18 when compiling the DLP and the BIOS so that they work correctly when located in the top
half of the 256K flash chip.

Under User Defined BIOS File, check the Use checkbox, and enter the BIOS file,
RabbitBIOS.c, that was extracted into the new Samples directory. You can type the path and file-
name in the text box or click on the Ellipses button to browse for the file instead.

Next, under User Defined Lib Directory File check the Use checkbox, and enter the location of the
file LIB.DIR that was extracted from TN218.zip or the LIB.DIR you modified if you are an SE
user.

Open DLP_256kFlash.C and compile it by selecting Compile | Compile to a .bin file. Choose
the option, Compile with defined target configuration rather than Use attached target. When
compilation finishes there should be a file called DLP_256kFlash.HEX in the same directory as
DLP_256kFlash.C. This is the secondary program that will be coresident with the DLM.

3. Compiling DLM_256kFlash.C
To compile the DLM open DLM_256kFlash.C. Use the Options | Compiler dialog box and the
Defines button to change the macros to this:

COMPILE_PRIMARY_PROG; COMPILE_SECONDARY_PROGx;
INVERT_A18_ON_PRIMARY_FLASHx

Recompile the BIOS with <Ctrl-Y>. Now compile DLM_256kFlash.C to the target. After it loads,
power down the target, remove the programming cable and repower the board.
022-0067 Rev. B 5

Using the Download Manager Menu via the Terminal Emulator
The following menu should appear in the terminal emulator window.

Type “1” and at the prompt enter the default password “123” followed by <Enter>.

Now type 3 and see the prompt “Send HEX file as raw ASCII or Binary.” Use the terminal emulator to
send the file DLP_256kFlash.HEX. After it loads, you will see a message that a valid DLP was found
and is starting, then a continuous stream of ‘X’s.

To restart the DLM, use the terminal emulator to send the file RESTART.BIN. This file has the default
byte sequence that the DLM and DLP interpret as a restart command. The menu should appear refreshed
on the terminal afterwards. If you do nothing for 10 seconds, the DLP will start again. If you choose option
4, the DLP will also run again. Or you can enter the password again and send another program or change
the password.

Configuring the DLM
The following properties can be easily modified by changing macros at the top the DLM source code, see
the source code for details:

• Password time-out period - the time allowed to enter the password after the DLM starts before run-
ning the currently loaded DLP, if present.

• Default password - the password used when the DLM is run for the first time.

• Minimum password length allowed

• Maximum password length allowed

• Whether the password can be changed at run-time

• The DLM restart command sequence

• General time-out period - the period of inactivity allowed after the password is entered before the
currently DLP is run.

• Error message delay - the time which error messages are displayed for.
022-0067 Rev. B 6

In addition, the following functions may be redefined by the user to adapt the DLM for different serial
channels or other communication means. See the source code for detailed specifications:

PutChar(), GetChar(), UserTask()
InitComm(), CloseComm(), PauseComm(), ResumeComm()

Functional Details
This section discusses some of the implementation details and issues involved in a Download Manager
system.

BIOS Changes
The following conditional macro redefinitions are in RABBITBIOS.C (the BIOS file in TN218.zip).

#ifdef COMPILE_SECONDARY_PROG
#undef RAM_SIZE
#undef CS_FLASH
#define CS_FLASH 0x02 // This is the chip select (CS) for 2 flash boards

#ifdef INVERT_A18_ON_PRIMARY_FLASH
#undef MB0CR_INVRT_A18
#define MB0CR_INVRT_A18 1
#undef CS_FLASH
#define CS_FLASH 0x00 // This is the CS for 1flash
#undef FLASH_SIZE // This is the number of 4K pages
#define FLASH_SIZE 0x20 // Assume we are splitting 256K

#endif

#if (_RAM_SIZE_==0x80) // The rest of the directives
#undef _RAM_SIZE_ // split RAM and make the start of
#define _RAM_SIZE_ 0x40 // RAM for the DLP begin after

#else // the RAM used for the DLM
#if (_RAM_SIZE_==0x40)

#undef _RAM_SIZE_
#define _RAM_SIZE_ 0x20

#else
#if (_RAM_SIZE_==0x20)

#undef _RAM_SIZE_
#define _RAM_SIZE_ 0x10

#else
#error "unknown RAM size"

#endif
#endif

#endif
#undef RAM_START
#define RAM_SIZE _RAM_SIZE_
#define RAM_START 0x80+RAM_SIZE

#endif
022-0067 Rev. B 7

The macros redefined above are used later in the BIOS to set up memory mapping information in ORG
statements used by the compiler. A similar block of compiler directives exists for compiling the DLM:

#ifdef COMPILE_PRIMARY_PROG
...

The code can be viewed in RabbitBios.c. The directives cause the DLM to lose half of the available
flash and RAM to accommodate the DLP.

Memory Management
Technical Note 202 explains how the Rabbit Memory Management Unit (MMU) and the Memory Inter-
face Unit (MIU) work. The trickiest part of the method used here is the inversion of A18 in quadrant 0.
What this inversion does is cause A18 to be asserted for all accesses in physical memory quadrant 0
(addresses 00000-3FFFF). Since A18 is connected to A17 on the flash, when this inversion is in effect, all
accesses in quadrant zero will cause A17 on the flash to be asserted, and therefore address 00000-3FFFF

will really access the top half of the 256K flash, since 217 = 128K (131072) . So when we are running the
DLM in the lower half of flash and we want to start the DLP in the upper half, all we have to do is call a
function that sets the Memory Bank Control Register for quadrant 0 (MB0CR) to invert A18 (it has a bit
for this purpose) and then jump to address 0. Of course this function must be run from RAM, or else as
soon as the MB0CR A18 inversion is enabled, execution from flash would proceed in the upper half of
flash, and it is unlikely the correct jump instruction will happen to be there!

Likewise, when we are running the DLP in the upper half of flash and want to start the DLM, we run a
RAM resident function that clears the MB0CR A18 inversion bit and jumps to address 0x0000.

When the DLM has to access the top half of the flash to write the DLP or other data, the method used will
be to make sure quadrant 1 (40000-7FFFF) addresses CS0/OE0/WE0 (which the flash is connected to),
and use quadrant 1 without enabling A18 inversion in the MIU. Since address bit 18 is set in the
quadrant 1 address range, and A18 is crossed with A17, those addresses will really correspond to offsets
20000-3FFFF in the flash chip.

Monitoring for the DLM Restart Signal
It is the responsibility of the DLP to monitor for the string that signals a DLM restart. The DLM is also set
up to do this, but this is less critical since the DLM will time-out and restart itself, or the DLP, if a valid
restart string is present, if no password is entered or no data is received

The following macros are needed in the DLP.

#define RESTARTSIGNAL "\xaa\xbb\xcc\xbb\xaa"
#define RESTARTSIGNAL_TIMEOUT 30

The restart signal may be made longer or shorter if desired, with the requirement that it be at least one byte
long and all bytes have the high bit set. It can be sent from the terminal as keyboard combinations if the
terminal program allows that, or as a file. An easy way to create a file containing the reset signal is to use
the Dynamic C debug options to log STDOUT (without appending) to a file, and run this program:

main(){
printf("\xaa\xbb\xcc\xbb\xaa");

}

The default reset string command above is provided in the ZIP file as RESTART.BIN.
022-0067 Rev. B 8

The following functions are also needed in the DLP.

void ProcessRestartCommand(char ch)
void RestartDLM()

The DLP sets up and monitors the download channel. It calls ProcessRestartCommand() each time
it receives a byte with the high bit set. The sample DLP hits a virtual watchdog timer in the tasks that
check the serial channel for input so that the board will reset if it is not entered periodically.
ProcessRestartCommand() is the same in both the DLM and the DLP. The function
RestartDLM() is also in both the DLM and DLP and though the goal is the same—to execute the DLM
code which resides at 0x0000—the means of reaching it differ.

For the DLM it’s easy. In a small assembly block, interrupts are turned off and a call is made to address
zero. That’s it. The download manager is restarted.

For the DLP, reaching the goal is more complex. To run the DLM, the DLP must copy code to RAM that
will switch to the beginning of the primary flash. This is done by allocating a root buffer to hold the code
and then calling memcpy() to place the flash switching function into the buffer. The flash switching
function sets bits in the memory bank control register (MB0CR) to access the beginning of the primary
flash and then jumps to it to run the DLM code.

Program Verification
The Intel HEX format file containing the program (DLP) has a one byte checksum for each 32 byte frag-
ment of code. Verification of the checksum is performed as the data is received. An overall 16 bit CRC is
also calculated as the data is received. The program size, starting address (always 40000h from the DLM’s
point of view), and CRC are stored in flash in the User ID Block area. A CRC check is made on the stored
DLP program before attempting to run it. If the CRC is not valid, the DLM will be restarted instead.

Please see Appendix: The Intel HEX File Format for more information.

Virtual Watchdog
The DLM and DLP both enable a single virtual watchdog timer to ensure that the programs don’t enter a
“hung” state. The periodic interrupt ISR normally hits the hardware watchdog timer in Dynamic C pro-
grams.
022-0067 Rev. B 9

Possible Complications
There are several situations to take into consideration when creating a DLM and/or a DLP.

Stuck in a Loop
If the following code fragment is run, the Rabbit board will be locked in a tight loop that cannot be exited
without recycling power or asserting the reset pin:

#asm
ipset 3 ; turn off interrupts

tightLoop: ; only a reset will get out of this!
call hitwd
jr tightLoop

#endasm

Interrupts are turned off, so the periodic ISR will not run and virtual watchdogs cannot time-out and cause
a needed reset. The hardware watchdog gets hit in the tight loop, so it can’t time-out and cause a reset
either. There’s no way out of the tight loop except asserting the reset externally or cycling power. It would
be silly to have a piece of code that did this in either the DLM or DLP, but careless programming could
result in a more complex set of instructions that have the same result. The best way to avoid this would be
to use virtual watchdogs in your programs, let the periodic interrupt take care of hitting the hardware
watchdog timer, and take great care not to create situations where interrupts could be shut off permanently.

Power Failure
The possibility of a power failure at the wrong time is something that any field reprogramming method
should take into consideration. In this sample, both the DLM and DLP write only to the top half of the
flash. Even huge sector flashes generally don’t have a sector that crosses the 128K boundary, so there is no
possibility that the DLM will be corrupted by a power failure while writing (or after erasing, but before
writing) a sector in the DLM.

When the password is changed and written to flash, the DLM uses the writeUserBlock function.
Starting with Dynamic C version 7.20, this function will do redundant writes to separate sectors to store
persistent data to protect against data loss if a power failure occurs at the wrong moment.The redundant
copies in the User block are only used if the board has a version 3 (or later) System ID block. A version 3
(or later) ID block is highly recommended. The only difference between version 3 and version 2 is the
version number itself. It can be examined in structure member SysIDBlockType.tableVersion.
The System ID block may be rewritten to be a later version using write_idblock.c, which is
included in the attached ZIP file, TN218.zip.
022-0067 Rev. B 10

Modem Failure
These samples make no attempt to exercise any control over any modem device. This is left to the user if it
is needed. A danger of using a modem for field reprogramming is that the modem could get into a hung
state. It might be a good idea to use a modem with an external reset, and have the DLP occasionally assert
the reset if no data has been received for a long while. The worst that could happen would be that a reset
would occur just as a remote user was starting to reprogram, and they might need a retry in order to estab-
lish the connection.

File System
The older version of the file system (filesystem.lib) has not been tested with this scheme and may
have problems. The new file system version (FS2.lib) requires the following lines be added to the
BIOS source after the call to initialize the flash drivers:

#if (_FLASH_SIZE_ != FLASH_SIZE)

//** Flash driver needs to know that only half the flash is available.
//** This will be the case when splitting a flash between a primary
//** and secondary program.

ld hl, (_FlashInfo+numSectors)
scf
ccf
rr hl // divide number of sectors by 2
ld (_FlashInfo+numSectors), hl

#endif

This change is provided in the BIOS file in TN218.zip.

Appendix: The Intel HEX File Format
The Hex file format consists of ASCII records of the following format:

:NNAAAATTDD1DD2DD3...DDNCC

A colon starts every record. Each letter represents a hexadecimal nibble with the following meanings.

NN - Number of data bytes in record. For Dynamic C generated hex files, this always either 02 for
extended address records, 20 for data records, or 00 for EOF records.

AAAA - 16 bit address. This is the offset portion off the destination address using the Intel real-mode
addressing. The segment portion of the real-mode address is given by the last extended address record in
the HEX file previous to the data record. The physical offset into the memory device is computed by shift-
ing the segment left 4 bits and adding the offset.

TT - Type of record. For Dynamic C generated hex files, this always either 02 for extended address
records, 00 for data records, or 01 for EOF records.

DDi - Data byte

CC - 8 bit checksum of all previous bytes int the record. The two’s complement of the checksum is used.
022-0067 Rev. B 11

Examples
There are three types of records: extended address, data and end of file. Each record starts with a colon.
The Address field is only meaningful for data records.

1. Extended Address Record
This is the first record in a Dynamic C generated HEX file, and applies to all addresses that come after
it until another extended address record is found.

:020000020000FC

2. Data record
Most of the records in a hex file will be of this type.

:200000003D183090DE3DBD803D7B803D7E80FFFF3DF3EE00000000003DF39000
0000000025

3. End of file record
This is the last record in a hex file

:00000001FF

Table 1. Extended Address Record

Data Length Address Record Type Data Checksum

02 0000 02 0000 FC

Table 2. Data Record

Data Length Address Record Type Data Checksum

20 0000 00 3D1830 . . . 00 25

Table 3. End of File Record

Data Length Address Record Type Checksum

00 0000 01 FF
022-0067 Rev. B 12

References
See Technical Note 220 “Implementing a Serial Download Manager for Two 256K Byte Flash Memories”
for a two flash chip solution.

See Technical Note 224 “Implementing a TCP-Based Download Manager” for a network-based solution.

See Technical Note 218a “Implementing a Serial Download Manager for a 256K Byte Flash (For Dynamic
C version 7.31 and later)” for a more robust one flash chip solution.
022-0067 Rev. B 13

Z-World, Inc.

2900 Spafford Street
Davis, California 95616-6800

USA

Telephone: (530) 757-3737
Fax: (530) 757-3792

www.zworld.com

Rabbit Semiconductor

2932 Spafford Street
Davis, California 95616-6800

USA

Telephone: (530) 757-8400
Fax: (530) 757-8402

www.rabbitsemiconductor.com

	Implementing a Serial Download Manager for a 256K Byte Flash
	Disclaimer
	Introduction
	Board Types Supported

	Why Use this Method?
	Internet Protocol Alternatives

	Functional Overview
	Other Software Needed

	Running the DLM and DLP
	1. Hardware Set Up (modemless)
	2. Compiling DLP_256kFlash.C
	3. Compiling DLM_256kFlash.C
	Using the Download Manager Menu via the Terminal Emulator
	Configuring the DLM

	Functional Details
	BIOS Changes
	Memory Management
	Monitoring for the DLM Restart Signal
	Program Verification
	Virtual Watchdog

	Possible Complications
	Stuck in a Loop
	Power Failure
	Modem Failure
	File System

	Appendix: The Intel HEX File Format
	Examples

	References

