
 Application Note

22 March 1999 Ramtron International Corporation
1850 Ramtron Drive, Colorado Springs, CO 80921

(800) 545-FRAM, (719) 481-7000, Fax (719) 481-7058
www.ramtron.com

1/2

Interrupting a 2-wire read
Characteristics of a 2-wire FRAM

Overview
The industry standard 2-wire bus is a robust protocol
for a variety of applications. It supports multiple
master- and slave-devices, and is intended for harsh
environments. Unfortunately, it has one limitation
that system developers may encounter. Interrupting a
memory read in progress may be difficult.

A read operation involves the master (receiver)
issuing clocks and the serial FRAM responding with
data. Successive read operations will continue as long
as the master acknowledges each byte. The preferred
method for ending a memory read operation is to
issue a ‘no-acknowledge’ condition after reading the
8th data bit. When the memory has transferred the last
bit of a byte, it releases the SDA line, allowing it to
be pulled high by the external pull-up resistor. At this
time, the master can acknowledge by driving SDA
low or ‘no-acknowledge’ by leaving SDA high
during the next clock. To end a read operation, the
master allows the SDA line to remain high for the 9th

clock. The timing for this operation is shown in
figure 1. After a no-acknowledge, the master can
assert a STOP, START, or other condition.

In most cases, this protocol is sufficient. The most
common error made by developers unfamiliar with
the protocol is to issue an acknowledge after the last
desired byte. This will cause the serial FRAM to
attempt to drive a new data byte on the next clock.
Since this is unexpected by the master, the result is
probable bus contention. The condition can be
corrected simply by giving a ‘no-acknowledge’ after
the last desired byte.

On occasion, the system may require aborting a read
prior to the end of a byte. The 2-wire protocol does
not offer a graceful method to accomplish this. This
situation is not unique to the serial FRAM devices,
but this application note explains the method for
clearing the condition.

Methods for Aborting a Read
Unfortunately, certain system requirements may
require ending a read as quickly as possible. This
may mean stopping prior to the end of a byte. It is
possible to abort a read in two ways. Neither is ideal
and the need for these methods usually results from
an undesirable system condition.

First, a read may be aborted by forcing a STOP
condition. The signal relationship for a STOP is
shown in figure 2. As shown, the STOP requires the
master to raise the SDA signal from a low to a high
state while SCL is high. Forcing a STOP requires
overdriving the output of the memory device. If the
memory is transmitting a ‘1’ value, then the SDA is
in a high condition. The master can drive the bus low
(for START), then high (for STOP), quite easily.
Setup time specifications for START and STOP must
be met. Difficulty results when the serial memory is
driving the SDA line in a low condition. This means
that the data bit value being output is a ‘0’. The
master can use a strong active-high driver to force the
state of the pin to logic high. This will generate the
rising edge needed to create the STOP condition.

The current drive characteristics of the serial FRAM
SDA pin are shown in figure 3 below. It is necessary
to pull the SDA line up to VCC*0.7 or nominally
3.5V to create a logic high condition. This will
require approximately 67 mA at 3.5V until the new
condition is recognized.

Figure 1. Preferred Method to End a Read Operation

SCL

SDA 7 6

Data Bit
(driven by memory)

0

Acknowledge
(driven by master)

Data Bit Data Bit
(driven by memory)

Interrupting a 2-wire read

22 March 1999 2/2

New serial FRAM devices will have a substantially
weaker SDA driver and consequently they will be
easier to forcibly pull up. A system that must initiate
this action by design should be designed with a very
strong active-high SDA driver for the master(s).

The second way of aborting a read operation in
progress is to issue clocks until a data bit value of ‘1’
occurs. A data bit of ‘1’ will cause the serial FRAM
to release the SDA line since it drives only active
low. To make this procedure work, the master will
issue a clock rising edge, then read the SDA line
while SCL is high. If SDA is ‘0’, then another clock
must be issued. If SDA is ‘1’, then the master can
force SDA to a ‘0’ while SCL is high. This is a
START condition. A START condition also will
cause the memory to end the read operation
immediately. Figure 2 shows the timing of a START
condition.

This is the fastest method to clear a read operation if
the bus cannot be forced. A diagram in figure 4
illustrates the concept. Unfortunately, the time to
terminate a read is unknown since it is data
dependent. A maximum of nine clocks will be needed
since this will be enough to read an entire byte and
proceed to the acknowledge state.

This procedure also assumes that master still
recognizes its ownership of the 2-wire bus.
Unfortunately one of the reasons for early
termination of a read is that the device that was
master is reset and no longer is the master. This
situation is complex since no device owns the bus.
Any device seeking ownership will see that SDA is
low and therefore the bus is not idle. In this case, it is
helpful if a host processor in the system can
recognize that the bus is hung and implement the
early termination protocol as described above. An
activity timeout while SDA is low is one method of
determining that the bus is hung.

Alternatives to 2-Wire Devices
The 2-wire protocol offers robust communication in
multi-master multi-slave environments. It also is
considered cost effective. In order to accomplish
these dual missions, the 2-wire bus has a rigid
protocol. Hardware devices that follow it directly can
become stranded by system faults unless software
that is more flexible can intervene.

An alternative is to use another serial bus such as
SPI. The Serial Peripheral Interface is designed for
higher speed communication with a far simpler
protocol. Because it operates at a more basic level,
users must determine their own multi-master
arbitration protocol. However, for early termination
of reads, it is far simpler. The memory (slave)
devices use chip select, data I/O, and serial clock
pins. Each slave device is enabled by an active low
chip select. Thus, a system with multiple masters and
multiple slaves requires a decoding scheme and more
connections. However, any operation can be
terminated at any time by making chip enable
inactive.

Figure 2. STOP and START Condition Timing

SCL

SDA

STOP
(Master)

START
(Master)

Figure 4 Clearing a Read Operation

SCL

SDA

Figure 3 Current Drive of SDA

0
10
20
30
40
50
60
70

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

V

m
A

