
 Application Note

Feb 2003 Ramtron International Corporation
 1850 Ramtron Drive, Colorado Springs, CO 80921
 (800) 545-FRAM, (719) 481-7000, Fax (719) 481-7058
 www.ramtron.com

Routines for 2-Wire FRAM Using
Microchip MCUs
Author: Bob Axtell, Micro-Firmware

Phone: 520-219-2363 eFax: 702-995-5281
Web: http://www.micro-firmware.com

Overview
This application note describes bulletproof random
write- and read- block routines written specifically
for the Ramtron FM24C04 and FM24C16 for
Microchip microcontrollers (MCUs) where the
processor is the only Master. A third routine is
provided to sense the presence of the chip (in case
your device is socketed). Although the example here
is used on the PIC16C7X, PIC16C8X, and the flash
versions of the same devices, these routines are
adaptable for almost all PICs as no internal 2-wire
(I2C) hardware is used.

Micro-Firmware was prompted to write this
application note when it became apparent that most
application literature ignored Ramtron’s devices,
which are much easier to implement and devoid of
the restrictions imposed by standard EEPROM
devices. Due to the fact that Ramtron devices require
no write delays, and no restrictions exist on the
number of bytes that can be written. You can write
the entire FRAM in a single pass! When combined
with FRAM’s data storage lifetime (I’ve never met
anybody who’s seen a bad device), the combination
of the Microchip MCU plus FRAM memory is
unbeatable.

For clarity, consult Ramtron’s “FM24C04 Data
Sheet” when using this application note.

Hardware
The data pin of the FRAM must be pulled up with a
suitable resistor, since the FRAM device can only
pull down. Highest speeds will result from a low
value pull-up, as the rise times are reduced. Ramtron
recommends 1.8K as a minimum; in this application
we used 3K, using a PIC16C73B and a 12M
oscillator.

For highest noise immunity, this application actively
drives the data pin to both states unless reading from
the FRAM, even when the 2-wire bus is idle.

Although the Ramtron data sheet indicates that the
clock pin should also have a resistor, in a single
master system there is no reason to have it, as the
clocks are driven to both levels. Only when another
master can seize the line is a pull-up resistor needed.

Driving the clock improves the noise immunity of the
2-wire system somewhat.

This application shows the 2-wire pins on portc:3 and
portc:4, but in fact they can be on any pin, on any
port, as long as they can drive both states.

Software
The code that follows contains three routines actually
used by EDTec in several designs. The code will
work properly for all Microchip clock speeds (up to
20MHz) without timing problems. All three routines
consume less than 170 program code locations. The
NOPs are present to show where a wait would have
to go in case it is needed. Older Ramtron devices may
need the waits.

The routines below can be interrupted without
problem, but they should not operate within an
interrupt routine due to the PIC’s limited stack (8
levels max). Previous MCUs have a 2-level stack,
and some calls within TX and RX will have to be
rewritten into macros, to eliminate the call.

The temporary registers may be used elsewhere in
non-interrupt code.

The code begins by ensuring that the 2-wire bus and
the FRAM device are both in an idle state by issuing
a STOP, then a START, followed by another STOP
condition. A non-idle state can occur because an
inadvertant START could have been issued when the
system powered up.

HINT: It is usually a good idea to determine the
actual SIZE of the FRAM when first powering up,
since there is no other way to know.

Write Block Routine
The write block routine is error-checked at every
acknowledge point, and if any error is found, the pass
will abort and start over. This allows the 2-wire to
exist in a very noisy environment and still provide
error-free data. The routine will attempt up to 4
passes before giving up: TMP3 is the variable set to
4. The error flag is cleared and a much-used temp
counter is also cleared. Then a start condition is
created to begin the command.

 Application Note Routines for 2-Wire FRAM Using Microchip MCUs

 2 of 10

The slave address is transferred, 8 bits, A7 first, data
true. At the end of this transfer, an Acknowledge
from the FRAM is expected. If no Acknowledge is
received, that device might not be present on the 2-
wire bus; in fact, this is the basis for the third routine
which stops at this point.

If there was an Acknowledge, the internal 8-bit
FRAM address is transferred, A7 first. At the end of
this transfer, an Acknowledge from the FRAM is
expected. If no Acknowledge is received, the reason
is usually that the clock signal was not properly
received, and the routine will retry.

If there was an Acknowledge, the first byte to be
transferred is sent, A7 first. At the end of this
transfer, an Acknowledge from the FRAM is
expected. If no Acknowledge is received, the reason
is usually that the clock signal was not properly
received, and the routine will retry. This is repeated
until all bytes have been transferred and the final
acknowledge received, after which a STOP is issued.

If there were less than 4 repeats, TMP3 will by non-
zero, indicating a successful write command. If
TMP3 is 0, the command failed.

Read Block Routine
Similar to the write block routine above, the read
block routine is error-checked at every acknowledge
point, and if an error is found, will abort the pass and
start over. The routine will attempt up to 4 passes
before giving up: TMP3 is the variable set to 4. Other
variables are cleared and a Start condition is created
to begin the command.

The slave address is transferred, 8 bits, A7 first, data
true. At the end of this transfer, an Acknowledge
from the FRAM is expected. If no Acknowledge is
received, that device might not be present on the 2-
wire bus; in fact, this is the basis for the third routine
which stops at this point.

If there was an Acknowledge, the internal 8-bit
FRAM address is transferred, A7 first. At the end of
this transfer, an Acknowledge from the FRAM is
expected. If no Acknowledge is received, the reason
is usually that the clock signal was not properly
received, and the routine will retry.

If there was an Acknowledge, there is an immediate
stop followed by an immediate Start. This halts the
write block command and now will read the byte at
the FRAM address pointed to.

The slave address is again transferred, 8 bits, A7 first,
data true, except that A0 is a 1, indicating that a
random read is required. At the end of this transfer,

an Acknowledge from the FRAM is expected. If no
Acknowledge is received, the routine will retry.

If there was an Acknowledge, the FRAM is now in
the Random Read Mode, and will output the data
pointed to by the internal FRAM address sent earlier.
The data is transferred A7 first. At the end of this
transfer, an Acknowledge from the MCU is provided
to the FRAM, to let it know that it must continue to
provide data bytes. This repeats until the MCU has
received all the bytes it needs, whereupon to stop, it
fails to provide an Acknowledge, and then issues a
STOP condition. If TMP3 is 0, there were 4 failed
attempts, otherwise the last one was successful and
the data is valid.

Test for Device on Bus
The test for device present simply uses the first few
steps of a write block command, except that it STOPs
after getting the very first Acknowledge.

Demo Program
A demo program was devised to allow simple
verification of the three routines. The demo program
(begins at main) will first verify that the FRAM is
actually present, will clear the first 256 bytes of the
FM24C04, then write h'A5 and h'5A at FRAM
location h'80' & h'81'.

Portb is h’00 when the unit powers up. If no errors
occur, then portb:7 is set high and processing will
halt. If there is an error, various pins of portb will be
set according to the problem found: if unable to find
the FRAM, portb:0 is high; if unable to clear the 256
bytes in FRAM, portb:1 is high; if unable to write to
FRAM location $80-$81, portb:2 is high; if unable to
read from the FRAM at location $80/$81, portb:3 is
high; or if the data read was simply incorrect, portb:4
is set high. This simple error check allows a
programmer to verify the routine with a simple
voltmeter; no oscilloscope is needed.

Problems
If problems are encountered with the application
note, let us know and we’ll correct it immediately.
Send your comments to engineer@cotse.net.

 Application Note Routines for 2-Wire FRAM Using Microchip MCUs

 3 of 10

;***
 title "Routines for 2-Wire FRAM Using Microchip MCUs"
 subtitle "Apr 10, 1999"
;
 list p=pic16c73a
 list c=80,mm=off,st=off,t=on,w=1
 list
;==
; assembler used is MicroChip MPLAB 4
;----- destination definitions for assembler------------
w equ h'00'
f equ h'01'
;----- register files ----------------------------------
indf equ h'00'
;
status equ h'03'
fsr equ h'04'
; although this app note shows PortC bits 3&4 being used as
; the i2c interface, almost any pin on any port will work fine
porta equ h'05'
portb equ h'06'
portc equ h'07'
portd equ h'08'
; a3 = SMB Clock+ {o} I2C Clock
; a4 = SMB Data+ {i} I2C Data
; equates for portc
SCL equ 3
SDA equ 4
; hi bank fsrs
option_reg equ h'81'
trisa equ h'85'
trisb equ h'86'
trisc equ h'87'
trisd equ h'88'
;----- status bits --
z equ h'02'
c equ h'00'
; Macros
; set lower register bank
bank0 macro
 bcf status,5
 endm
; set upper register bank
bank1 macro
 bsf status,5
 endm
;
; RAM area starts
; Bank 0 Internal Ram
flags equ h'20'
; A0: Temp Flag, Hi if "No Ack" from FRAM
tmp equ h'21' ; used in i2c; can be used elsewhere
tmp1 equ h'22' ; as long as there is no conflict
tmp2 equ h'23'
tmp3 equ h'24'
tmp4 equ h'25'
tmp5 equ h'26'
sadr equ h'27' ; slave adr of FRAM
i2cnt equ h'28' ; #bytes to write into FRAM

 Application Note Routines for 2-Wire FRAM Using Microchip MCUs

 4 of 10

i2adr equ h'29' ; Internal FRAM adr
i2ptr equ h'2a' ; uP Orig Adr of Bytes to send
i2buf equ h'2b' ; useable as buffer area to rd/wr
;***********************************
 org 0
;***********************************
; program starts here
;***********************************
 nop ; out of habit, I'm an ol' Z80 guy
 clrf porta
 clrf portb
 movlw h'18'
 movwf portc ; Set SDA, SCL to hi state (normal)
; clrf portd ; use 'em if ya got 'em
 bank1
 movlw h'85' ; 10000110b **
 movwf option_reg
 clrw
 movwf trisa ; set to all outputs
 movwf trisb
 movwf trisc
; movwf trisd ;
; only registers needed buy i2c routines are
; initialized.
 goto main
;**
; I2C Routines: Do not access within interrupts!
;**
;***
; write i2cnt bytes @^i2ptr to FRAM @i2adr
;***
;**;
; Write Block Of Data to FRAM Device ;
; variables used but unchanged: ;
; sadr = slave adr of FRAM (usually $a0);
; i2cnt = # bytes to write into FRAM ;
; i2adr = Internal FRAM adr to put Data ;
; i2ptr = uP Orig Adr of Bytes to send ;
; variables used, changed: ;
; w, tmp, tmp1-tmp4,flags:0 ;
; if error detected, tries four times ;
; if successful, tmp3 > 0 ;
;**;
i2wr: call Bstrtx ; Generate START bit
i2wry: movf sadr,w ; Put raw slave address onto bus
 movwf tmp
 call TX ; Output RAW SLAVE data address
 btfsc flags,0 ; Check for no ack error
 goto BSTOPw ; To error Rtn
 movf i2adr,w ; Put slave internal data address onto bus
 movwf tmp ; Xmit buffer
 call TX ; Output WORD address. Check ACK.
 btfsc flags,0 ; Check for no ack error
 goto BSTOPw
 movf i2cnt,w ; load byte count to tmp4
 movwf tmp4
 movf i2ptr,w ; load origination address to fsr
 movwf fsr
i2wr1: movf indf,w ; Move DATA
 movwf tmp ; into transmit buffer

 Application Note Routines for 2-Wire FRAM Using Microchip MCUs

 5 of 10

 call TX ; Output DATA and detect acknowledgement
 btfsc flags,0 ; Check for no ack error
 goto BSTOPw
 incf fsr,f ; next byte
 decfsz tmp4,f
 goto i2wr1
 goto BSTOP ; Generate STOP bit
;**
; read i2cnt bytes @^i2ptr fr FRAM @i2adr
;***
;**;
; Read Block Of Data fr FRAM Device ;
; variables used but unchanged: ;
; sadr = slave adr of FRAM (usually $a0);
; i2cnt = # bytes to read from FRAM ;
; i2adr = Internal FRAM adr to get Data ;
; i2ptr = uP Dest Adr of Bytes Received ;
; variables used, changed: ;
; w, tmp, tmp1-tmp4,flags:0 ;
; if error detected, tries four times ;
; if successful, tmp3 > 0 ;
;**;
i2rd: call Bstrtx ; Generate START bit
i2rdy: movf sadr,w ; put raw slave address onto bus
 movwf tmp
 call TX ; Output RAW SLAVE data address
 btfsc flags,0 ; Check for error
 goto BSTOPr ; To Error Rtn
 movf i2adr,w ; Put slave internal data address onto bus
 movwf tmp ; Xmit buffer
 call TX ; Output WORD address. Check ACK.
 btfsc flags,0 ; Check for error
 goto BSTOPr
 call BSTOP
; at this point, the FRAM address is now set
; data may collides for a partial bit here; ignore..
 call BSTART ; START READ
 movf sadr,w ; slave adr
 movwf tmp
 bsf tmp,0 ; Specify READ mode (R/W = 1)
 call TX ; Output SLAVE address
 btfsc flags,0 ; Check for error
 goto BSTOPr
 movf i2cnt,w
 movwf tmp4
 movf i2ptr,w
 movwf fsr
i2rd1: call RX ; READ in data and provide ack
 movf tmp1,w
 movwf indf ; Save data into buffer
 incf fsr,f ; next byte
 decfsz tmp4,f
 goto i2rd1
 goto BSTOP ; Generate STOP bit
; RECEIVE eight data bits subroutine
; exit = w has data
RX: bsf tmp2,3 ; 8 bits of data
RXLP: call BITIN ; get data
 rlf tmp1,f ; install bit, LS last
 decfsz tmp2,f ; 8 bits?

 Application Note Routines for 2-Wire FRAM Using Microchip MCUs

 6 of 10

 goto RXLP
 bsf status,c ; try no ack
 decfsz tmp4,w ; last one?
 bcf status,c ; needs ack
 goto BITOUT
; TRANSMIT 8 data bits subroutine in tmp
TX: bsf tmp2,3 ; 8 bits of data
 clrwdt
TXLP: rlf tmp,f ; Shift data bit out.
 call BITOUT ; Serial data out
 decfsz tmp2,f ; 8 bits done?
 goto TXLP ; No.
 call BITIN ; Read acknowledge bit
 btfss status,c ; acknowledgement?
 retlw 0 ; yep, done
 bsf flags,0 ; not received
 retlw 0
; Single bit receive from I2C to PIC
; data in carry
BITIN: bank1
 bsf trisc,SDA ; Set SDA for input
 bank0
 nop
 bsf portc,SCL ; Clock high
 bcf status,c ; def=0 (has ack)
 btfsc portc,SDA ; Read SDA pin, for ACK low
 bsf status,c ; no ack detected
 nop
 bcf portc,SCL ; finish bit in case
 nop
 retlw 0
; Single bit data transmit from PIC to I2C
; Input= carry bit
BITOUT: btfss status,c
 goto BIT0
 bsf portc,SDA ; drive it high
 goto CLK1
BIT0: bcf portc,SDA ; drive low
CLK1: bank1
 bcf trisc,SDA ; Output bit 0
 bank0
 bsf portc,SCL
 nop
 bcf portc,SCL ; on low
 retlw 0
; start but also set loop count
Bstrtx: bsf tmp3,2 ; 4 x max
Bstrty: bcf flags,0 ; no error yet
 clrf tmp2 ; pre-clear to 00
; START bit generation routine
; Generate START bit (SCL is high while SDA goes from high to low transition)
; quiescent state is both high....
BSTART: bank1
 bcf trisc,SDA ; both driven
 bcf trisc,SCL
 bank0
 clrwdt ; need one someplace
 bcf portc,SDA ; SDA=lo = START CDX
 nop
 bcf portc,SCL

 Application Note Routines for 2-Wire FRAM Using Microchip MCUs

 7 of 10

 nop
 retlw 0
; write repeat stop; deeper stack not needed
BSTOPw: call BSTOP ; issue a full stop
 call Bstrty ; new start
 decfsz tmp3,f
 goto i2wry
 goto BSTOP
; read repeat stop
BSTOPr: call BSTOP
 call Bstrty
 decfsz tmp3,f
 goto i2rdy
; STOP bit generation routine
;Generate STOP bit (SDA goes from low to high during SCL high state)
BSTOP: bank1
; loop until SDA is released
; NOTE: needed in case FRAM is driving SDA and a stop
; would be ignored. Havoc might result! Max# clks is 9
; but usually only 1 is needed
 bsf trisc,SDA
 bank0
BSLP: btfsc portc,SDA
 goto BSTP
 bsf portc,SCL
 nop
 btfsc portc,SDA
 goto BSTP
 bcf portc,SCL
 nop
 goto BSLP
BSTP: bcf portc,SCL
 bcf portc,SDA
 bank1
 bcf trisc,SCL ; both driven
 bcf trisc,SDA
 nop
 bank0
 bsf portc,SCL
 nop
 bsf portc,SDA ; SDA=hi = STOP CDX
 nop
 nop
 retlw 0
;**;
; Test For Presence of FRAM Device ;
; variables used: ;
; sadr = slave adr of FRAM (usually $a0);
; w, tmp, tmp2 = temp regs ;
; if present, returns carry=0 ;
;**;
i2ready:call BSTART
 movf sadr,w
 movwf tmp
 clrf tmp2
 bsf tmp2,3 ; 8 bits of data
i2redy: rlf tmp,f ; Shift data bit out.
 call BITOUT ; Serial data out
 decfsz tmp2,f ; 8 bits done?
 goto i2redy ; No.

 Application Note Routines for 2-Wire FRAM Using Microchip MCUs

 8 of 10

 call BITIN ; Read acknowledge bit
 goto BSTOP
;***
; The following demo program will first verify that the FRAM
; is actually present, then it will clear the first 256 bytes
; of a FM24C04 then write h'a5' and h'5a' at location h'80'/h'81'.
; If no errors occur, then porta:7 is hi
; if unable to find the FRAM, porta:0 is hi
; if unable to clear the 256 bytes in FRAM, porta:1 is hi
; if unable to write to FRAM Loc $80-$81, porta:2 is hi
; if unable to read fr FRAM at Loc $80/$81, porta:3 is hi
; if the data read was incorrect, porta:4 is hi
; processing then halts (endless loop)
main: call BSTOP
 call BSTART
 call BSTOP ; to initialize the i2c bus to idle

 movlw h'a0' ; slave adr for FM24C04
 movwf sadr
 call i2ready
 btfsc status,c
 goto maine0
 clrf i2buf ; clr 8 locs in i2c buffer
 clrf i2buf+1
 clrf i2buf+2
 clrf i2buf+3
 clrf i2buf+4
 clrf i2buf+5
 clrf i2buf+6
 clrf i2buf+7
 movlw d'32' ; 32 loops = 256 bytes
 movwf tmp5 ; loop counter
; the next instructions are redundant
; movlw h'a0' ; slave adr for FM24C04
; movwf sadr
 clrf i2adr ; Internal FRAM adr start
 movlw i2buf ; from this uP RAM adr
 movwf i2ptr ; uP Orig Adr of Bytes to send
 movlw d'8'
 movwf i2cnt ; #bytes per pass
main1: call i2wr ; write 8 bytes
 movf tmp3,w
 btfsc status,z
 goto maine1 ; error if = 0
 movf i2cnt,w ; w=8
 addwf i2adr,f ; add 8 to FRAM DEST adr
 addwf i2ptr,f ; " uP ORIG "
 decfsz tmp5,f
 goto main1
 movlw h'a5'
 movwf i2buf ; set 2 locs in i2c buf
 movlw h'5a'
 movwf i2buf+1
 movlw h'80'
 movwf i2adr ; Internal FRAM adr = $80
 movlw i2buf ; from this uP RAM adr
 movwf i2ptr ; uP Orig Adr of Bytes to send
 movlw d'2'
 movwf i2cnt ; #bytes per pass
 call i2wr ; write 2 bytes
 movf tmp3,w

 Application Note Routines for 2-Wire FRAM Using Microchip MCUs

 9 of 10

 btfsc status,z
 goto maine2 ; error if tmp3 = 0
 clrf i2buf ; optional- clr 2 locs in i2buf,
 clrf i2buf+1 ; make sure I didn’t flimflam ya
; the following values never changed, so these are redundant
; movlw h'80'
; movwf i2adr ; Internal FRAM adr = $80
; movlw i2buf ; from this uP RAM adr
; movwf i2ptr ; uP Orig Adr of Bytes to send
; movlw d'2'
; movwf i2cnt ; #bytes per pass
 call i2rd ; read 2 bytes
 movf tmp3,w
 btfsc status,z
 goto maine3 ; error if = 0
 movlw h'a5'
 xorwf i2buf,w ; see if i2buf is $A5 (better be)
 btfss status,z
 goto maine4
 movlw h'5a'
 xorwf i2buf+1,w ; see if i2buf+1 is $5A (better be)
 btfss status,z
 goto maine4
; good exit: set portb,7 = 1 and halt.
 bsf portb,7
main0: clrwdt ; endless loop
 goto main0
; misc errors: portb will reflect where error occurred
maine0: bsf portb,0 ; couldn't find the FRAM
 goto main0
maine1: bsf portb,1 ; write error, couldn't clear FRAM
 goto main0
maine2: bsf portb,2 ; write error, couldn't write to loc $80/$81
 goto main0
maine3: bsf portb,3 ; read error, couldn't read from FRAM Loc $80/$81
 goto main0
maine4: bsf portb,4 ; The data I got back wasn't $a5/$5a
 goto main0
;
 end
;
 list off
;

 Application Note Routines for 2-Wire FRAM Using Microchip MCUs

 10 of 10

	Overview
	Hardware
	Software
	Write Block Routine
	Read Block Routine
	Test for Device on Bus
	Demo Program
	Problems

