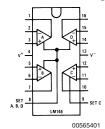


LM146/LM346

Programmable Quad Operational Amplifiers

General Description

The LM146 series of quad op amps consists of four independent, high gain, internally compensated, low power, programmable amplifiers. Two external resistors (R_{SET}) allow the user to program the gain bandwidth product, slew rate, supply current, input bias current, input offset current and input noise. For example, the user can trade-off supply current for bandwidth or optimize noise figure for a given source resistance. In a similar way, other amplifier characteristics can be tailored to the application. Except for the two programming pins at the end of the package, the LM146 pin-out is the same as the LM124 and LM148.

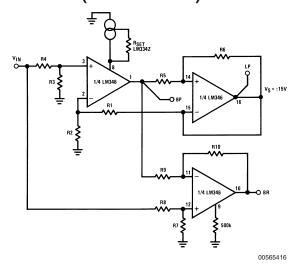

Features

 $(I_{SET}=10 \mu A)$

- Programmable electrical characteristics
- Battery-powered operation
- Low supply current: 350 µA/amplifier
- Guaranteed gain bandwidth product: 0.8 MHz min
- Large DC voltage gain: 120 dB ■ Low noise voltage: 28 nV/√Hz
- Wide power supply range: ±1.5V to ±22V
- Class AB output stage-no crossover distortion
- Ideal pin out for Biquad active filters
- Input bias currents are temperature compensated

Connection Diagram

Dual-In-Line Package


Top View Order Number LM146J, LM146J/883, LM346M,LM346MX or LM346N See NS Package Number J16A, M16A or N16A

PROGRAMMING EQUATIONS

Total Supply Current = 1.4 mA ($I_{SET}/10 \mu A$)
Gain Bandwidth Product = 1 MHz ($I_{SET}/10 \mu A$)
Slew Rate = 0.4V/ μ s ($I_{SET}/10 \mu A$)
Input Bias Current \approx 50 nA ($I_{SET}/10 \mu A$) I_{SET} = Current into pin 8, pin 9 (see schematic-diagram)

$$I_{SET} = \frac{V^+ - V^- - 0.6V}{R_{SET}}$$

Capacitorless Active Filters (Basic Circuit)

Absolute Maximum Ratings (Notes 1,

5)

If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/ Distributors for availability and specifications.

	LM146	LM346
Supply Voltage	±22V	±18V
Differential Input Voltage (Note 1)	±30V	±30V
CM Input Voltage (Note 1)	±15V	±15V
Power Dissipation (Note 2)	900 mW	500 mW
Output Short-Circuit Duration (Note 3)	Continuous	Continuous
Operating Temperature Range	-55°C to +125°C	0°C to +70°C
Maximum Junction Temperature	150°C	100°C
Storage Temperature Range	-65°C to +150°C	-65°C to +150°C
Lead Temperature (Soldering, 10 seconds)	260°C	260°C
Thermal Resistance (θ_{jA}) , (Note 2)		
Cavity DIP (J) Pd	900 mW	900 mW
$ heta_{jA}$	100°C/W	100°C/W
Small Outline (M) θ_{jA}		115°C/W
Molded DIP (N) Pd		500 mW
$ heta_{jA}$		90°C/W
Soldering Information		
Dual-In-Line Package		
Soldering (10 seconds)	+260°C	+260°C
Small Outline Package		
Vapor Phase (60 seconds)	+215°C	+215°C
Infrared (15 seconds)	+220°C	+220°C

See AN-450 "Surface Mounting Methods and Their Effect on Product Reliability" for other methods of soldering surface mount devices.

ESD rating is to be determined.

DC Electrical Characteristics

 $(V_S = \pm 15V, I_{SET} = 10 \mu A), (Note 4)$

Parameter	Conditions	LM146			LM346			Units
		Min	Тур	Max	Min	Тур	Max	
Input Offset Voltage	V _{CM} =0V, R _S ≤50Ω, T _A =25°C		0.5	5		0.5	6	mV
Input Offset Current	V _{CM} =0V, T _A =25°C		2	20		2	100	nA
Input Bias Current	V _{CM} =0V, T _A =25°C		50	100		50	250	nA
Supply Current (4 Op Amps)	T _A =25°C		1.4	2.0		1.4	2.5	mA
Large Signal Voltage Gain	R _L =10 kΩ, Δ V _{OUT} =±10V,	100	1000		50	1000		V/mV
	T _A =25°C							
Input CM Range	T _A =25°C	±13.5	±14		±13.5	±14		V
CM Rejection Ratio	R _S ≤10 kΩ, T _A =25°C	80	100		70	100		dB
Power Supply Rejection Ratio	R _S ≤10 kΩ, T _A =25°C,	80	100		74	100		dB
	$V_S = \pm 5 \text{ to } \pm 15 \text{V}$							
Output Voltage Swing	R _L ≥10 kΩ, T _A =25°C	±12	±14		±12	±14		V
Short-Circuit	T _A =25°C	5	20	35	5	20	35	mA
Gain Bandwidth Product	T _A =25°C	0.8	1.2		0.5	1.2		MHz
Phase Margin	T _A =25°C		60			60		Deg
Slew Rate	T _A =25°C		0.4			0.4		V/µs
Input Noise Voltage	f=1 kHz, T _A =25°C		28			28		nV/√Hz
Channel Separation	$R_L=10 \text{ k}\Omega, \Delta V_{OUT}=0V \text{ to}$		120			120		dB

DC Electrical Characteristics (Continued)

(V_S= ± 15 V, I_{SET}=10 μ A), (Note 4)

Parameter	Conditions		LM146		LM346			Units
		Min	Тур	Max	Min	Тур	Max	
	±12V, T _A =25°C							
Input Resistance	T _A =25°C		1.0			1.0		MΩ
Input Capacitance	T _A =25°C		2.0			2.0		pF
Input Offset Voltage	$V_{CM}=0V, R_S \le 50\Omega$		0.5	6		0.5	7.5	mV
Input Offset Current	V _{CM} =0V		2	25		2	100	nA
Input Bias Current	V _{CM} =0V		50	100		50	250	nA
Supply Current (4 Op Amps)			1.7	2.2		1.7	2.5	mA
Large Signal Voltage Gain	R _L =10 kΩ, Δ V _{OUT} =±10V	50	1000		25	1000		V/mV
Input CM Range		±13.5	±14		±13.5	±14		V
CM Rejection Ratio	R _S ≤50Ω	70	100		70	100		dB
Power Supply Rejection Ratio	R _S ≤50Ω,	76	100		74	100		dB
	$V_S = \pm 5V$ to $\pm 15V$							
Output Voltage Swing	R _L ≥10 kΩ	±12	±14		±12	±14		V

DC Electrical Characteristic

 $(V_S = \pm 15V, I_{SET} = 10 \mu A)$

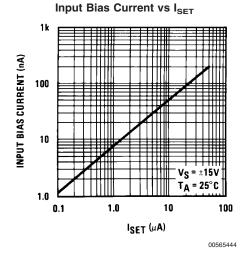
Parameter	Conditions	LM146				Units		
		Min	Тур	Max	Min	Тур	Max	
Input Offset Voltage	$V_{CM}=0V, R_S \le 50\Omega,$ $T_A=25^{\circ}C$		0.5	5		0.5	7	mV
	T _A =25°C							
Input Bias Current	$V_{CM}=0V$, $T_A=25$ °C		7.5	20		7.5	100	nA
Supply Current (4 Op Amps)	T _A =25°C		140	250		140	300	μA
Gain Bandwidth Product	T _A =25°C	80	100		50	100		kHz

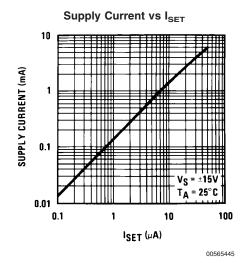
DC Electrical Characteristics

(V_S =±1.5V, I_{SET} =10 μA)

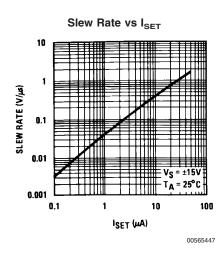
Parameter	Conditions	LM146				Units		
		Min	Тур	Max	Min	Тур	Max	
Input Offset Voltage	$V_{CM}=0V$, $R_S \leq 50\Omega$,		0.5	5		0.5	7	mV
	T _A =25°C							
Input CM Range	T _A =25°C	±0.7			±0.7			V
CM Rejection Ratio	R _S ≤50Ω, T _A =25°C		80			80		dB
Output Voltage Swing	R _L ≥10 kΩ, T _A =25°C	±0.6			±0.6			V

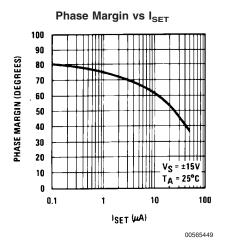
 $\textbf{Note 1:} \ \ \text{For supply voltages less than ± 15V, the absolute maximum input voltage is equal to the supply voltage.}$


Note 2: The maximum power dissipation for these devices must be derated at elevated temperatures and is dictated by T_{JMAX} , θ_{JA} , and the ambient temperature, T_A . The maximum available power dissipation at any temperature is $P_d = (T_{JMAX} - T_A)/\theta_{JA}$ or the 25°C P_{dMAX} , whichever is less.

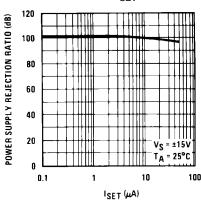

Note 3: Any of the amplifier outputs can be shorted to ground indefinitely; however, more than one should not be simultaneously shorted as the maximum junction temperature will be exceeded.

Note 4: These specifications apply over the absolute maximum operating temperature range unless otherwise noted.

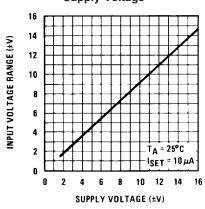

Note 5: Refer to RETS146X for LM146J military specifications.


Typical Performance Characteristics

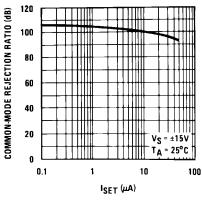
Open Loop Voltage Gain vs I_{SET} 160 OPEN LOOP VOLTAGE GAIN (48) 140 120 100 80 60 40 20 0 0.1 100 ISET (µA) 00565446


Typical Performance Characteristics (Continued)

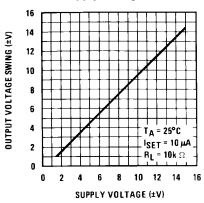
Input Offset Voltage vs I_{SET}


00565450

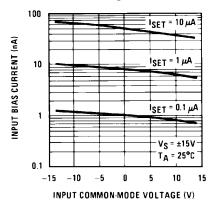
Power Supply Rejection Ratio vs I_{SET}


00565452

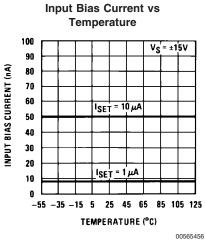
Input Voltage Range vs Supply Voltage

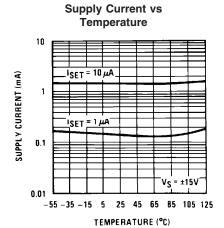

00565454

Common-Mode Rejection Ratio vs I_{SET}

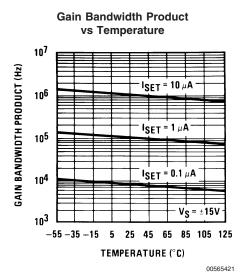

00565451

Open Voltage Swing vs Supply Voltage

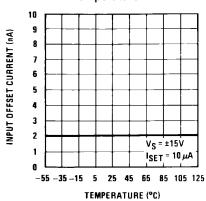



00565453

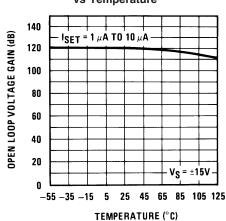
Input Bias Current vs Input Common-Mode Voltage



Typical Performance Characteristics (Continued)

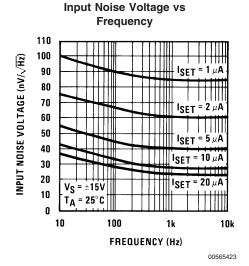


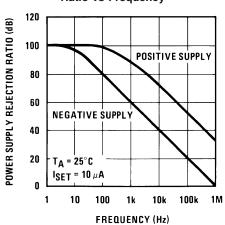
00565458



Input Offset Current vs **Temperature**

00565457


Open Loop Voltage Gain vs Temperature


00565420

Slew Rate vs **Temperature**

Typical Performance Characteristics (Continued)

Power Supply Rejection Ratio vs Frequency

00565425

OUTPUT (mV) 50 0 -50 50 I_{SET} = 10 μA INPUT (mV) V_S = ±15V 0 TA = 25°C

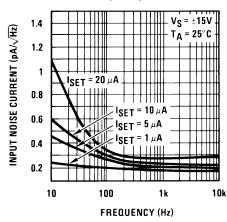
C_L = 100 pF

 R_L = 10k Ω

2 TIME (µs)

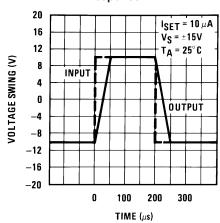
3

-50

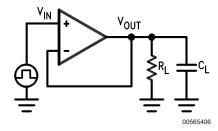

0

Voltage Follower Transient

Response


00565427

Input Noise Current vs Frequency


00565424

Voltage Follower Pulse Response

00565426

Transient Response Test Circuit

Application Hints

Avoid reversing the power supply polarity; the device will fail.

COMMON-MODE INPUT VOLTAGE

The negative common-mode voltage limit is one diode drop above the negative supply voltage. Exceeding this limit on either input will result in an output phase reversal. The positive common-mode limit is typically 1V below the positive supply voltage. No output phase reversal will occur if this limit is exceeded by either input.

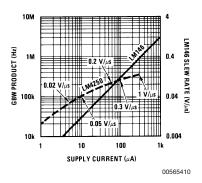
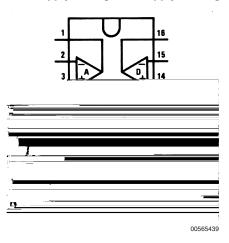
OUTPUT VOLTAGE SWING VS ISET

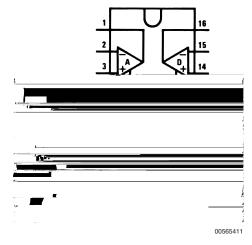
For a desired output voltage swing the value of the minimum load depends on the positive and negative output current capability of the op amp. The maximum available positive output current, (I_{CL+}), of the device increases with I_{SET} whereas the negative output current (I_{CL-}) is independent of I_{SET} . Figure 1 illustrates the above.

INPUT CAPACITANCE

The input capacitance, C_{IN}, of the LM146 is apprip89ersany2(p89ers0 TDy2(p89ersput)-278.8(capa89ersce,)-278.8(C) TJ6.5854 0.1(329815)

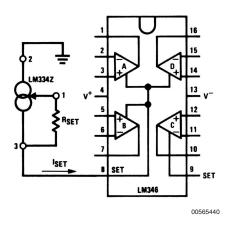
Application Hints (Continued)


FIGURE 4. LM146 vs LM4250

Typical Applications

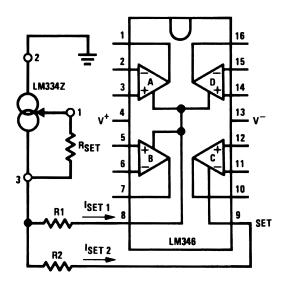
Dual Supply or Negative Supply Blasing



Single (Positive) Supply Blasing

$$I_{SET} \approx \frac{V^+ - 0.6V}{R_{SET}}$$

Current Source Blasing with Temperature Compensation

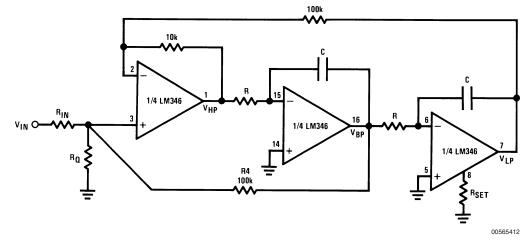


$$I_{SET} = \frac{67.7 \text{ mV}}{R_{SET}}$$

• The LM334 provides an I_{SET} directly proportional to absolute temperature. This cancels the slight GBW product Temperature coefficient of the LM346.

Typical Applications (Continued)

Blasing all 4 Amplifiers with Single Current Source


00565441

$$\frac{I_{SET1}}{I_{SET2}} = \frac{R2}{R1}, I_{SET1} + I_{SET2} = \frac{67.7 \text{ mV}}{R_{SET}}$$

• For $I_{SET1} = I_{SET2}$ resistors R1 and R2 are not required if a slight error between the 2 set currents can be tolerated. If not, then use R1 = R2 to create a 100 mV drop across these resistors.

Active Filters Applications

Basic (Non-Inverting "State Variable") Active Filter Building Block

 The LM146 quad programmable op amp is especially suited for active filters because of their adequate GBW product and low power consumption.

Circuit synthesis equations (for circuit analysis equations, consult with the LM148 data sheet).

Need to know desired: f_0 = center frequency measured at the BP output

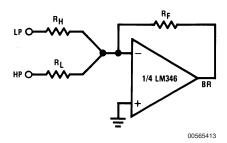
Qo = quality factor measured at the BP output

Ho = gain at the output of interest (BP or HP or LP or all of them)

• Relation between different gains: $H_{O(BP)} = 0.316 \times Q_0 \times H_{O(LP)}$; $H_{O(LP)} = 10 \times H_{O(HP)}$

$$\bullet\,\mathsf{R}\times\mathsf{C}=\frac{5.033\times10^{-2}}{\mathsf{f}_0}\,\mathsf{(sec)}$$

$$\bullet \text{ For BP output: } R_Q = \left(\frac{3.478\,Q_0 - H_{o(BP)}}{10^5} - \frac{H_{o(BP)}}{10^5 \times 3.748 \times Q_0}\right)^{-1}; R_{IN} = \frac{\left(\frac{3.478\,Q_0}{H_{o(BP)}} - 1\right)}{\frac{1}{RQ} + 10^{-5}}$$


• For HP ouput:
$$R_Q = \frac{1.1 \times 10^5}{3.478 \, Q_0 \, (1.1 - H_{0(HP)}) - H_{0(HP)}}; R_{IN} = \frac{\frac{1.1}{H_{0(HP)}} - 1}{\frac{1}{BQ} + 10^{-5}}$$

• For LP output:
$$R_Q = \frac{11 \times 10^5}{3.478 \, Q_0 \, (11 - H_{o(LP)}) - H_{o(LP)}}$$
; $R_{IN} = \frac{\frac{11}{H_{o(LP)}} - 1}{\frac{1}{RQ} + 10^{-5}}$

• For BR (notch) output: Use the 4th amplifier of the LM146 to sum the LP and HP outputs of the basic filter.

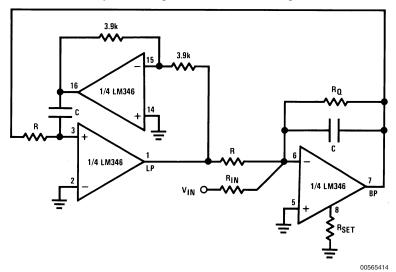
00565433

Note. All resistor values are given in ohms.

$$\sqrt{\frac{R_H}{R_L}} = 0.316 \frac{f_{notch}}{f_0}$$

Determine R_F according to the desired gains: $H_{o(BR)} \Big|_{f < f_{notch}} = \frac{R_F}{R_L} H_{o(LP)}$, $H_{o(BR)} \Big|_{f > f_{notch}} = \frac{R_F}{R_H} H_{o(HP)}$ • Where to use amplifier C: Examine the above gain relations and determine the dynamics of the filter. Do not allow slew rate limiting in any output $(V_{HP}, V_{BP}, V_{BP},$

• Where to use amplifier C: Examine the above gain relations and determine the dynamics of the filter. Do not allow slew rate limiting in any output (V_{HP}, V_{BP}, V_{LP}), that is:


$$V_{\text{IN(peak)}}$$
 < 63.66 $imes$ 10³ $imes$ $\frac{I_{\text{SET}}}{10~\mu\text{A}}$ $imes$ $\frac{1}{f_{\text{O}} \times H_{\text{O}}}$ (Volts)

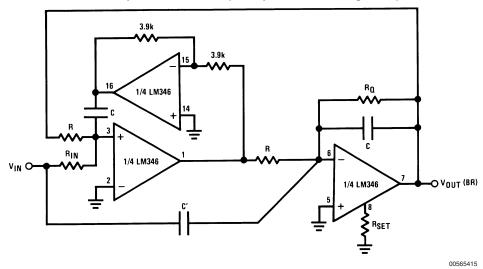
If necessary, use amplifier C, biased at higher I_{SET}, where you get the largest output swing.

Deviation from Theoretical Predictions: Due to the finite GBW products of the op amps the for Qo will be slightly different from the theoretical predictions.

$$f_{real} \simeq \frac{f_0}{1 + \frac{2\,f_0}{GBW}}, Q_{real} \simeq \frac{Q_0}{1 - \frac{3.2\,f_0 \times Q_0}{GBW}}$$

A Simple-to-Design BP, LP Filter Building Block

• If resistive biasing is used to set the LM346 performance, the Q₀ of this filter building block is nearly insensitive to the op amp's GBW product temperature drift; it has also better noise performance than the state variable filter.

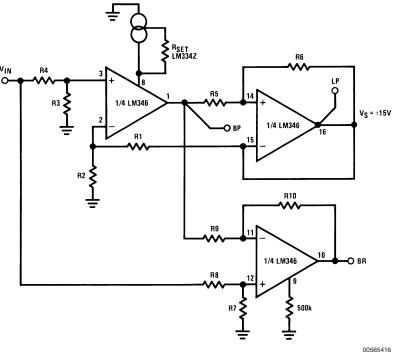

Circuit Synthesis Equations

$$H_{0(BP)} = Q_{0}H_{0(LP)}; R \times C = \frac{0.159}{f_{0}}; R_{Q} = Q_{0} \times R; R_{IN} = \frac{R_{Q}}{H_{0(BP)}} = \frac{R}{H_{0(LP)}}$$

00565436

•For the eventual use of amplifier C, see comments on the previous page.

A 3-Amplifier Notch Filter (or Elliptic Filter Building Block)

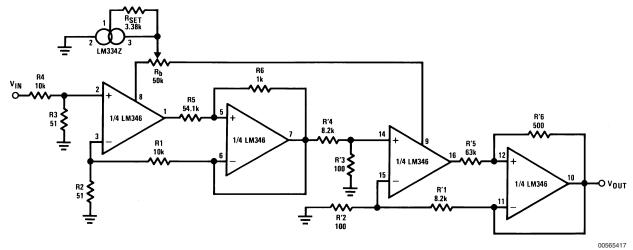


Circuit Synthesis Equations

$$\begin{split} R \times C &= \frac{0.159}{f_o}; R_o \!=\! Q_o \times R; R_{IN} = \frac{0.159 \times f_o}{C' \times f^2_{notch}} \\ H_{o(BR)}|_{f < < f_{notch}} \!=\! \frac{R}{R_{IN}} H_{o(BR)}|_{f > > f_{notch}} = \! \frac{C'}{C} \end{split}$$

•For nothing but a notch output: R_{IN}=R, C'=C.

Capacitorless Active Filters (Basic Circuit)

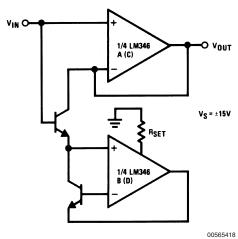

- This is a BP, LP, BR filter. The filter characteristics are created by using the tunable frequency response of the LM346.

• Limitations:
$$Q_0 < 10$$
, $f_0 \times Q_0 < 1.5$ MHz, output voltage should not exceed Vpeak(out) $\leq \frac{63.66 \times 10^3}{f_0} \times \frac{I_{SET}(\mu A)}{10 \ \mu A}$ (V)
• Design equations: $a = \frac{R6 + R5}{R6}$, $b = \frac{R2}{R1 + R2}$, $c = \frac{R3}{R3 + R4}$, $d = \frac{R7}{R8 + R7}$, $e = \frac{R10}{R9 + R10}$, $f_{O(BP)} = f_{U}\sqrt{\frac{b}{a}}$, $f_{O(BP)} = a \times c$, $f_{O(BP)$

- Advantage: f₀Q₀, H₀ can be independently adjusted; that is, the filter is extremely easy to tune.
- Tuning procedure (ex. BP tuning)

- 1. Pick up a convenient value for b; (b \leq 1)
- 2. Adjust Qo through R5
- 3. Adjust $H_{o(BP)}$ through R4
- 4. Adjust f_0 through R_{SET} . This adjusts the unity gain frequency (f_u) of the op amp.

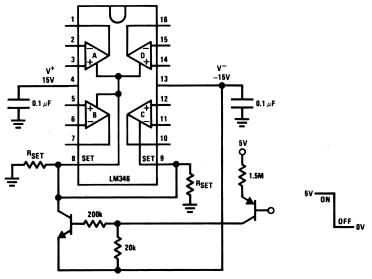
A 4th Order Butterworth Low Pass Capacitorless Filter



Ex: $f_c = 20$ kHz, H_o (gain of the filter) = 1, $Q_{01} = 0.541$, $Q_{o2} = 1.306$.

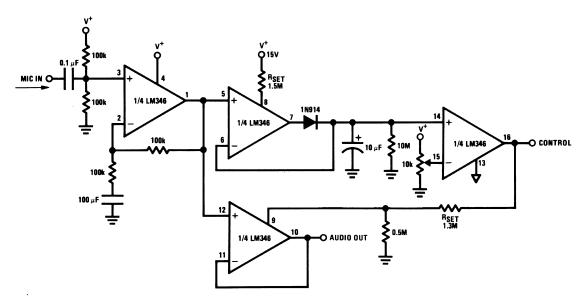
•Since for this filter the GBW product of all 4 amplifiers has been designed to be the same (~1 MHz) only one current source can be used to bias the circuit. Fine tuning can be further accomplished through R_b.

Miscellaneous Applications

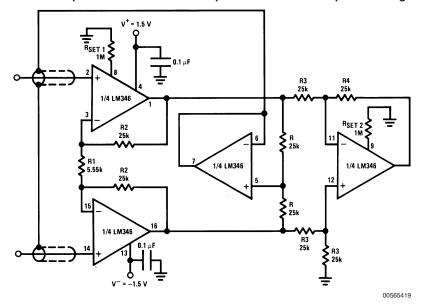

A Unity Gain Follower with Bias Current Reduction

• For better performance, use a matched NPN pair.

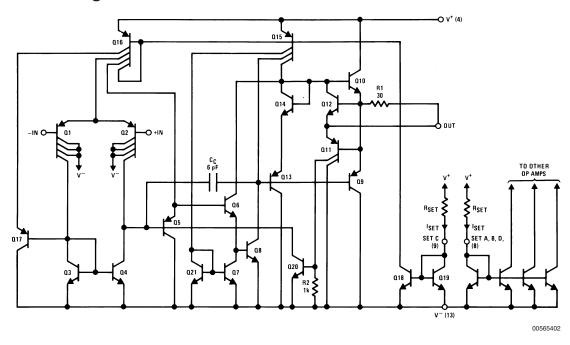
Miscellaneous Applications (Continued)


Circuit Shutdown

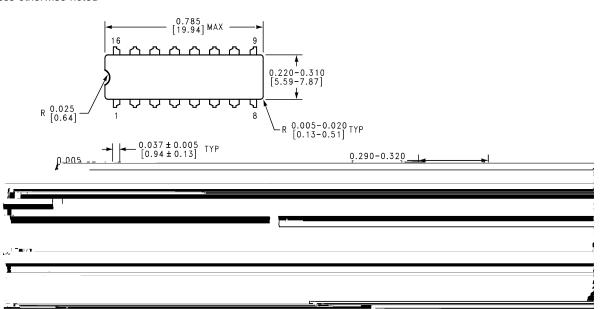
00565442


• By pulling the SET pin(s) to V⁻ the op amp(s) shuts down and its output goes to a high impedance state. According to this property, the LM346 can be used as a very low speed analog switch.

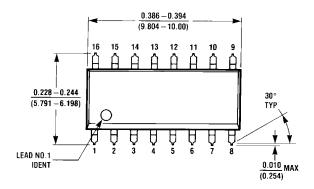
Voice Activated Switch and Amplifier

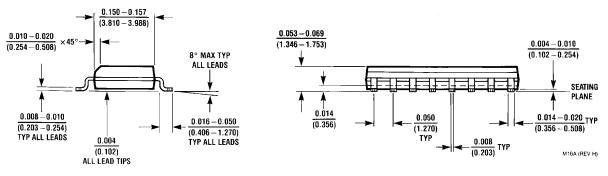

Miscellaneous Applications (Continued)

X10 Micropower Instrumentation Amplifier with Buffered Input Guarding

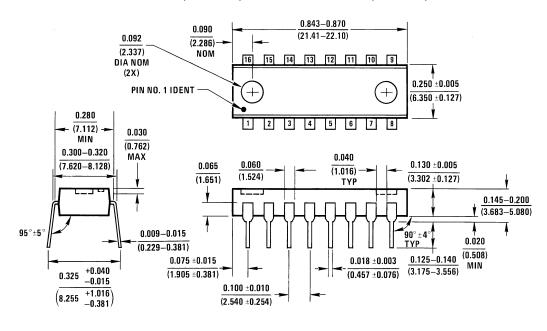


- CMRR: 100 dB (typ)
- Power dissipation: 0.4 mW


Schematic Diagram



Physical Dimensions inches (millimeters) unless otherwise noted


Cavity Dual-In-Line Package (J) Order Number LM146J, LM146J/883 NS Package Number J16A

S.O. Package (M) Order Number LM346M **NS Package Number M16A**

Physical Dimensions inches (millimeters) unless otherwise noted (Continued)

N16A (REV E)

Molded Dual-In-Line Package (N) Order Number LM346N NS Package Number N16A

LIFE SUPPORT POLICY

NATIONAL'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT AND GENERAL COUNSEL OF NATIONAL SEMICONDUCTOR CORPORATION. As used herein:

- Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
- A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

BANNED SUBSTANCE COMPLIANCE

National Semiconductor certifies that the products and packing materials meet the provisions of the Customer Products Stewardship Specification (CSP-9-111C2) and the Banned Substances and Materials of Interest Specification (CSP-9-111S2) and contain no "Banned Substances" as defined in CSP-9-111S2.

National Semiconductor Americas Customer Support Center

Email: new.feedback@nsc.com Tel: 1-800-272-9959

www.national.com

National Semiconductor
Europe Customer Support Center
Fax: +49 (0) 180-530 85 86
Email: europe.support@nsc.com

Email: europe.support@nsc.com
Deutsch Tel: +49 (0) 69 9508 6208
English Tel: +44 (0) 870 24 0 2171
Français Tel: +33 (0) 1 41 91 8790

National Semiconductor Asia Pacific Customer Support Center Email: ap.support@nsc.com National Semiconductor Japan Customer Support Center Fax: 81-3-5639-7507 Email: jpn.feedback@nsc.com Tel: 81-3-5639-7560