
HT48R50
8-bit OTP Microcontrollers

Features
• Operating voltage: 3.0V~5.2V
• 32 bidirectional I/O lines
• One interrupt input
• One 8-bit and one 16-bit programmable

timer/event counters with overflow interrupts
• On-chip crystal and RC oscillator
• Watchdog timer
• 4K × 15 program memory PROM
• 1 × 14 option memory PROM
• 184 × 8 data memory RAM

• Halt function and wake-up feature reduce
power consumption

• Up to 1µs instruction cycle with 4MHz
system clock at VDD=5V

• Four-level subroutine nesting
• All instructions in one or two machine cycles
• 15-bit table read instruction
• Bit manipulation instruction
• 63 powerful instructions

General Description

The HT48R50 is an 8-bit high performance
RISC-like microcontroller designed for multiple
I/O product applications. The device is particu-
larly suitable for use in products such as remote
controllers, fan/light controllers, washing ma-
chine controllers, scales, toys and various sub-

system controllers. A halt feature is included to
reduce power consumption.

The program and option PROM can be electri-
cally programmed making the HT48R50 suit-
able for use in product development.

1 31st July ’98

Block Diagram

HT48R50

2 31st July ’98

Pin Assignment

Notes: For Dice form, the TMR0 and TMR1 pads must be bonded to VDD or VSS if the TMR0 and/or
TMR1 pads are not used.

The (TMR0) INT indicates that the TMR0 pad must be bonded to the INT pad.

The PC5(TMR1) indicates that the TMR1 pad must be bonded to the PC5 pad.

HT48R50

3 31st July ’98

Pin Description

Pin Name I/O ROM Code
Option Function

PA0~PA7 I/O Wake-up

Bidirectional 8-bit input/output port. Each bit can be configured
as wake-up input by ROM code option. Software instructions
determine the CMOS output or schmitt trigger input with pull high
resistor.

PB0~PB7 I/O —
Bidirectional 8-bit input/output port. Software instructions
determine the CMOS output or schmitt trigger input with pull
high resistor.

VSS — — Negative power supply, GND

INT I —
External interrupt schmitt trigger input with pull high resistor. Edge
triggered activated on high to low transition.

TMR0 I — Schmitt trigger input for timer/event counter 0

TMR1 I — Schmitt trigger input for timer/event counter 1

PC0~PC7 I/O
Bidirectional 8-bit input/output port. Software instructions
determine the CMOS output or schmitt trigger input with pull
high resistor.

RES I — Schmitt trigger reset input. Active low.

VDD — — Positive power supply

OSC1
OSC2

I
O

Crystal or
RC

OSC1, OSC2 are connected to an RC network or a crystal
(determined by ROM code option) for the internal system clock.
In the case of RC operation, OSC2 is the output terminal for 1/4
system clock.

PD0~PD7 I/O —
Bidirectional 8-bit input/output port. Software instructions
determine the CMOS output or schmitt trigger input with pull
high resistor.

Absolute Maximum Ratings*

Supply Voltage –0.3V to 5.5V Input Voltage..................VSS–0.3V to VDD+0.3V

Storage Temperature................. –50°C to 125°C Operating Temperature............... –25°C to 70°C

*Note: These are stress ratings only. Stresses exceeding the range specified under “Absolute Maxi-
mum Ratings” may cause substantial damage to the device. Functional operation of this
device at other conditions beyond those listed in the specification is not implied and prolonged
exposure to extreme conditions may affect device reliability.

HT48R50

4 31st July ’98

D.C. Characteristics Ta=25°C

Symbol Parameter
Test Conditions

Min. Typ. Max. Unit
VDD Conditions

VDD Operating Voltage — — 3.0 — 5.2 V

IDD1
Operating Current
(Crystal OSC)

3V
No load, fSYS=2MHz

— 0.7 1.5 mA

5V — 2 3 mA

IDD2
Operating Current
(RC OSC)

3V
No load, fSYS=2MHz

— 0.5 1 mA

5V — 2 3 mA

ISTB1
Standby Current
(WDT Enabled)

3V
No load, system HALT

— — 5 µA

5V — — 10 µA

ISTB2
Standby Current
(WDT Disabled)

3V
No load, system HALT

— — 1 µA

5V — — 2 µA

VIL1
Input Low Voltage for I/O
Ports

3V — 0 — 0.9 V

5V — 0 — 1.5 V

VIH1
Input High Voltage for I/O
Ports

3V — 2.1 — 3 V

5V — 3.5 — 5 V

VIL2
Input Low Voltage
(TMR0, TMR1, INT)

3V — 0 — 0.7 V

5V — 0 — 1.3 V

VIH2
Input High Voltage
(TMR0, TMR1, INT)

3V — 2.3 — 3 V

5V — 3.8 — 5 V

VIL3
Input Low Voltage
(RES)

3V — — 1.5 — V

5V — — 2.5 — V

VIH3
Input High Voltage
(RES)

3V — — 2.4 — V

5V — — 4.0 — V

IOL I/O Port Sink Current
3V VDD=3V, VOL=0.3V 1.5 4 — mA

5V VDD=5V, VOL=0.5V 4 10 — mA

IOH I/O Port Source Current
3V VDD=3V, VOH=2.7V –1 –2 — mA

5V VDD=5V, VOH=4.5V –2 –4.5 — mA

RPH
I/O Port Pull-high Resistance
and INT

3V — 40 60 80 kΩ

5V — 10 30 50 kΩ

HT48R50

5 31st July ’98

A.C. Characteristics Ta=25°C

Symbol Parameter
Test conditions

Min. Typ. Max. Unit
VDD Conditions

fSYS1
System Clock
(Crystal OSC)

3V — 400 — 2000 kHz

5V — 400 — 4000 kHz

fSYS2
System Clock
(RC OSC)

3V — 400 — 2000 kHz

5V — 400 — 3000 kHz

fTIMER
Timer I/P Frequency
(TMR0, TMR1)

3V — 0 — 2000 kHz

5V — 0 — 4000 kHz

tWDTOSC Watchdog Oscillator
3V — 45 90 180 µs

5V — 35 65 130 µs

tWDT1
Watchdog Time-out
Period (RC)

3V Without WDT
prescaler

12 23 45 ms

5V 9 17 35 ms

tWDT2
Watchdog Time-out Period
(System Clock)

—
Without WDT
prescaler

— 1024 — tSYS

tRES
External Reset Low Pulse
Width

— — 1 — — µs

tSST
System Start-up Timer
Period

—
Power-up or
wake-up from halt

— 1024 — tSYS

tINT Interrupt Pulse Width — — 1 — — µs

Note: tSYS=1/fSYS

HT48R50

6 31st July ’98

Application Circuits

HT48R50

7 31st July ’98

Execution flow

System Architecture

Execution flow

The system clock for the HT48R50 is derived
from either a crystal or an RC oscillator. The
system clock is internally divided into four non-
overlapping clocks denoted by P1, P2, P3 and
P4. One instruction cycle consists of T1 to T4.

Instruction fetching and execution are pipelined in
such a way that a fetch takes one instruction cycle
while decoding and execution takes the next instruc-
tion cycle. However, the pipelining scheme causes
each instruction to effectively execute in one cycle. If
an instruction changes the program counter, two
cycles are required to complete the instruction.

Program counter – PC

The 12-bit program counter (PC) controls the
sequence in which the instructions stored in
program ROM are executed and its contents
specify a maximum of 4096 addresses.

After accessing a program memory word to fetch
an instruction code, the contents of the program
counter are incremented by one. The program
counter then points to the memory word contain-
ing the next instruction code.

When executing a jump instruction, conditional
skip execution, loading PCL register, subrou-
tine call, initial reset, internal interrupt, exter-
nal interrupt or return from subroutine, the PC
manipulates the program transfer by loading
the address corresponding to each instruction.

The conditional skip is activated by instruction.

Once the condition is met, the next instruction,
fetched during the current instruction execu-
tion, is discarded and a dummy cycle replaces it
to get the proper instruction. Otherwise proceed
with the next instruction.

The lower byte of the program counter (PCL) is
a readable and writeable register (06H). Mov-
ing data into the PCL performs a short jump.
The destination will be within 256 locations.

When a control transfer takes place, an addi-
tional dummy cycle is required.

Program memory – PROM

The program memory is used to store the program
instructions which are to be executed. It also con-
tains data, table, and interrupt entries, and is
organized 4096 × 15 bits, addressed by the pro-
gram counter and table pointer.

Certain locations in the program memory are
reserved for special usage:

• Location 000H
This area is reserved for the initialization pro-
gram. After chip reset, the program always be-
gins execution at location 000H.

• Location 004H
This area is reserved for the external interrupt
service program. If the INT input pin is acti-
vated, and the interrupt is enabled and the
stack is not full, the program begins execution
at location 004H.

HT48R50

8 31st July ’98

• Location 008H
This area is reserved for the timer/event counter
0 interrupt service program. If timer interrupt
results from a timer/event counter overflow, and
if the interrupt is enabled and the stack is not
full, the program begins execution at location
008H.

• Location 00CH
This area is reserved for the timer/event counter
1 interrupt service program. If timer interrupt
resulting from a timer/event counter 1 overflow,
and if the interrupt is enabled and the stack is
not full, the program begins execution at loca-
tion 00CH.

• Table location
Any location in the PROM space can be used
as look–up tables. The instructions “TABRDC
[m]” (the current page, 1 page=256 words) and
“TABRDL [m]” (the last page) transfer the
contents of the lower-order byte to the speci-
fied data memory, and the higher-order byte
to TBLH (08H). Only the destination of the
lower-order byte in the table is well-defined,
the other bits of the table word are trans-
ferred to the lower portion of TBLH, the re-
maining one bit is read as “0”. The table
higher-order byte register (TBLH) is read

only. The table pointer (TBLP) is a read/write
register (07H), which indicates the table loca-
tion. Before accessing the table, the location
must be placed in TBLP. The TBLH is read only
and cannot be restored. If the main routine and
the interrupt service routine (ISR) both employ
the table read instruction, the contents of the
TBLH in the main routine are likely to be
changed by the table read instruction used in

Program memory

Mode
Program Counter

∗11 ∗10 ∗9 ∗8 ∗7 ∗6 ∗5 ∗4 ∗3 ∗2 ∗1 ∗0

Initial reset 0 0 0 0 0 0 0 0 0 0 0 0

External interrupt 0 0 0 0 0 0 0 0 0 1 0 0

Timer/event counter 0 overflow 0 0 0 0 0 0 0 0 1 0 0 0

Timer/event counter 1 overflow 0 0 0 0 0 0 0 0 1 1 0 0

Skip PC+2

Loading PCL ∗11 ∗10 ∗9 ∗8 @7 @6 @5 @4 @3 @2 @1 @0

Jump, call branch #11 #10 #9 #8 #7 #6 #5 #4 #3 #2 #1 #0

Return from subroutine S11 S10 S9 S8 S7 S6 S5 S4 S3 S2 S1 S0

Program counter

Notes: ∗11~∗0: Program counter bits

 #11~#0: Instruction code bits

S11~S0: Stack register bits

@7~@0: PCL bits

HT48R50

9 31st July ’98

Instruction(s)
Table Location

∗11 ∗10 ∗9 ∗8 ∗7 ∗6 ∗5 ∗4 ∗3 ∗2 ∗1 ∗0

TABRDC [m] P11 P10 P9 P8 @7 @6 @5 @4 @3 @2 @1 @0

TABRDL [m] 1 1 1 1 @7 @6 @5 @4 @3 @2 @1 @0

Table location

Notes: ∗11~∗0: Table location bits

 @7~@0: Table pointer bits

P11~P8: Current program counter bits

the ISR. Errors can occur. In other words,
using the table read instruction in the main
routine and the ISR simultaneously should be
avoided. However, if the table read instruc-
tion has to be applied in both the main routine
and the ISR, the interrupt is supposed to be
disabled prior to the table read instruction. It
will not be enabled until the TBLH has been
backed up. All table related instructions need
two cycles to complete the operation. These
areas may function as normal program mem-
ory depending upon the requirements.

Stack register – STACK

This is a special part of the memory which is
used to save the contents of the program
counter (PC) only. The stack is organized into
four levels and is neither part of the data nor
part of the program space, and is neither read-
able nor writeable. The activated level is in-
dexed by the stack pointer (SP) and is neither
readable nor writeable. At a subroutine call or
interrupt acknowledgment, the contents of the
program counter are pushed onto the stack. At
end of a subroutine or an interrupt routine,
signaled by a return instruction (RET or
RETI), the program counter is restored to its
previous value from the stack. After a chip
reset, the SP will point to the top of the stack.

If the stack is full and a non-masked interrupt
takes place, the interrupt request flag will be
recorded but the acknowledgment will be inhib-
ited. When the stack pointer is decremented (by
RET or RETI), the interrupt will be serviced. This
feature prevents stack overflow allowing the pro-
grammer to use the structure more easily. In a
similar case, if the stack is full and a “CALL” is

subsequently executed, stack overflow occurs
and the first entry will be lost (only the most
recent four return addresses are stored).

Data memory – RAM

The data memory is designed with 184×8 bits.
The data memory is divided into two functional
groups: special function registers and general
purpose data memory (160×8). Most of them are
read/write, but some are read only.

The special function registers include the indi-
rect addressing register 0 (00H), the memory
pointer register 0 (MP0;01H), the indirect ad-
dressing register 1 (02H) the memory pointer
register 1 (MP1;03H), the accumulator
(ACC;05H), the program counter lower-byte
register (PCL;06H), the table pointer
(TBLP;07H), the table higher-order byte regis-
ter (TBLH;08H), the watchdog timer option
setting register (WDTS;09H), the status regis-
ter (STATUS;0AH), the interrupt control regis-
ter (INTC;0BH), the timer/event counter 0
higher-order byte register (TMR0H;0CH), the
timer/event counter 0 lower-order byte register
(TMR0L;0DH), the timer/event counter 0 con-
trol register (TMR0C;0EH), the timer/event
counter 1 (TMR1;10H), the timer/event counter 1
control register (TMR1C;11H), the I/O registers
(PA;12H, PB;14H, PC;16H, PD;18H) and the I/O
control registers (PAC;13H, PBC;15H, PCC;17H,
PDC;19H). The remaining space before the 60H is
reserved for future expanded usage and reading
these locations will get “00H”. The general pur-
pose data memory, addressed from 60H to FFH, is
used for data and control information under in-
struction command.

HT48R50

10 31st July ’98

All data memory areas can handle arithmetic,
logic, increment, decrement and rotate opera-
tions directly. Except for some dedicated bits,
each bit in the data memory can be set and reset
by “SET [m].i” and “CLR [m].i”. They are also
indirectly accessible through memory pointer
registers (MP0;01H, MP1;03H).

Indirect addressing register

Location 00H and 02H are indirect addressing
registers that are not physically implemented.
Any read/write operation of [00H] and [02H]
access data memory pointed to by MP0 (01H)
and MP1 (03H) respectively. Reading location
00H or 02H indirectly will return the result
00H. Writing indirectly results in no operation.

The function of data movement between two
indirect addressing registers, is not supported.
The memory pointer registers, MP0 and MP1,
are 8-bit register which can be used to access
the data memory by combining corresponding
Indirect addressing registers.

Accumulator

The accumulator is closely related to ALU opera-
tions. It is also mapped to location 05H of the data
memory and is capable of carrying out immediate
data operations. The data movement between two
data memory locations must pass through the
accumulator.

Arithmetic and logic unit – ALU

This circuit performs 8-bit arithmetic and logic
operation. The ALU provides the following
functions:
• Arithmetic operations (ADD, ADC, SUB,

SBC, DAA)
• Logic operations (AND, OR, XOR, CPL)
• Rotation (RL, RR, RLC, RRC)
• Increment and Decrement (INC, DEC)
• Branch decision (SZ, SNZ, SIZ, SDZ)

The ALU not only saves the results of a data
operation but can also change the status register.

Status register - STATUS

This 8-bit register (0AH) contains the zero flag (Z),
carry flag (C), auxiliary carry flag (AC), overflow
flag (OV), power down flag (PD), watchdog time-
out flag (TO). It also records the status information
and controls the operation sequence.

With the exception of the TO and PD flags, bits
in the status register can be altered by instruc-
tions like most other registers. Any data writ-
ten into the status register will not change the

RAM mapping

HT48R50

11 31st July ’98

Labels Bits Function

C 0
C is set if the operation results in a carry during an addition operation or if a
borrow does not take place during a subtraction operation; otherwise C is cleared.
C is also affected by a rotate through carry instruction.

AC 1
AC is set if the operation results in a carry out of the low nibbles in addition or no
borrow from the high nibble into the low nibble in subtraction; otherwise AC is
cleared.

Z 2
Z is set if the result of an arithmetic or logic operation is zero; otherwise Z is
cleared.

OV 3
OV is set if the operation results in a carry into the highest-order bit but not a
carry out of the highest-order bit, or vice versa; otherwise OV is cleared.

PD 4
PD is cleared when either a system power-up or executing the “CLR WDT”
instruction. PD is set by executing the “HALT” instruction.

TO 5
TO is cleared by a system power-up or executing the “CLR WDT” or “HALT”
instructions. TO is set by a WDT time-out.

— 6 Undefined, read as “0”

— 7 Undefined, read as “0”

STATUS register

TO or PD flags. In addition, operations related
to the status register may give different results
from those intended. The TO and PD flags can
only be changed by system power up, WDT time-
out or executing the "CLR WDT" or "HALT"
instruction.

The Z, OV, AC and C flags generally reflect the
status of the latest operations.

In addition, on entering the interrupt sequence
or executing the subroutine call, the status reg-
ister will not be pushed onto the stack automat-
ically. If the contents of status are important
and if the subroutine can corrupt the status
register, precautions must be taken to save it
properly.

Interrupt

The HT48R50 provides an external interrupt
and internal timer/event counter interrupts.
The interrupt control register (INTC;0BH) con-
tains the interrupt control bits to set the en-
able/disable and the interrupt request flags.

Once an interrupt subroutine is serviced, all
other interrupts will be blocked (by clearing the
EMI bit). This scheme may prevent any further

interrupt nesting. Other interrupt requests
may happen during this interval but only the
interrupt request flag is recorded. If a certain
interrupt needs servicing within the service
routine, the EMI bit and the corresponding bit
of INTC may be set to allow interrupt nesting.
If the stack is full, the interrupt request will not
be acknowledged, even if the related interrupt
is enabled, until the SP is decremented. If im-
mediate service is desired, the stack must be
prevented from becoming full.

All these kinds of interrupt have a wake-up
capability. As an interrupt is serviced, a control
transfer occurs by pushing the program counter
onto the stack and then branching to subrou-
tines at specified location(s) in the program
memory. Only the program counter is pushed
onto the stack. If the contents of the register or
status register (STATUS) are altered by the
interrupt service program which corrupt the
desired control sequence, the contents must be
saved first.

External interrupts are triggered by a high to
low transition of INT and the related interrupt
request flag (EIF; bit 4 of INTC) will be set.
When the interrupt is enabled, and the stack is

HT48R50

12 31st July ’98

Register Bit No. Label Function

INTC
(0BH)

0 EMI
Controls the master (global) interrupt
(1= enabled; 0 =disabled)

1 EEI
Controls the external interrupt
(1= enabled; 0= disabled)

2 ET0I
Controls the timer/event counter 0 interrupt
(1= enabled; 0= disabled)

3 ET1I
Controls the timer/event counter 1 interrupt
(1= enabled; 0= disabled)

4 EIF
External interrupt request flag.
(1= active; 0= inactive)

5 T0F
Internal timer/event counter 0 request flag
(1= active; 0= inactive)

6 T1F
Internal timer/event counter 1 request flag
(1= active; 0= inactive)

7 — Unused bit, read as “0”

INTC register

not full and the external interrupt is active, a
subroutine call to location 04H will occur. The
interrupt request flag (EIF) and EMI bits will
be cleared to disable other interrupts.

The internal timer/event counter 0 interrupt is
initialized by setting the timer/event counter 0
interrupt request flag (T0F; bit 5 of INTC),
caused by a timer/event counter 0 overflow.
When the interrupt is enabled, and the stack is
not full and the T0F bit is set, a subroutine call
to location 08H will occur. The related interrupt
request flag (T0F) will be reset and the EMI bit
cleared to disable further interrupts.

The timer/event counter 1 interrupt is operated
in the same manner as the timer/event counter
0. The related interrupt control bits ET1I and
T1F of timer/event counter 1 are bit 3 and bit 6
of INTC respectively.

During the execution of an interrupt subroutine,
other interrupt acknowledgments are held until
the “RETI” instruction is executed or the EMI bit
and the related interrupt control bit are set to 1
(if the stack is not full). To return from the
interrupt subroutine, “RET” or “RETI” may be
invoked. RETI will set the EMI bit to enable an
interrupt service, but RET will not.

Interrupts occurring in the interval between
the rising edges of two consecutive T2 pulses,
will be serviced on the latter of the two T2
pulses, if the corresponding interrupts are en-
abled. In the case of simultaneous requests the
following table shows the priority that is ap-
plied. These can be masked by resetting the
EMI bit.

No. Interrupt Source Priority Vector

a External interrupt 1 04H

b
Timer/event
counter 0 overflow

2 08H

c
Timer/event
counter 1 overflow

3 0CH

The timer/event counter 0/1 interrupt request
flag (T0F/T1F), external interrupt request flag
(EIF), enable timer/event counter 0/1 bit
(ET0I/ET1I), enable external interrupt bit
(EEI) and enable master interrupt bit (EMI)
constitute an interrupt control register (INTC)
which is located at 0BH in the data memory.
EMI, EEI, ET0I, ET1I are used to control the
enabling/disabling of interrupts. These bits
prevent the requested interrupt being serviced.

HT48R50

13 31st July ’98

Once the interrupt request flags (T0F, T1F,
EIF) are set, they will remain in the INTC
register until the interrupts are serviced or
cleared by a software instruction.

It is recommended that a program doesn’t use
the “CALL subroutine” within the interrupt
subroutine. Interrupts often occur in an unpre-
dictable manner or need to be serviced immedi-
ately in some applications, if only one stack is left
and enabling the interrupt is not well controlled,
once the “CALL” operates in the interrupt subroutine
will damage the original control sequence.

Oscillator configuration

There are two oscillator circuits in the HT48R50.

Both are designed for system clocks; the RC
oscillator and the Crystal oscillator, which are
determined by the ROM code option. No matter
what oscillator type is selected, the signal pro-
vides the system clock. The HALT mode stops
the system oscillator and ignores an external
signal to conserve power.

If an RC oscillator is used, an external resistor
between OSC1 and VDD is needed and the resis-
tance must range from 51kΩ to 1MΩ. The system
clock, divided by 4, is available on OSC2, which
can be used to synchronize external logic. The RC
oscillator provides the most cost effective solution.
However, the frequency of the oscillation may
vary with VDD, temperature and the chip itself
due to process variations. It is, therefore, not suit-
able for timing sensitive operations where accu-
rate oscillator frequency is desired.

If a crystal oscillator is used, a crystal across
OSC1 and OSC2 is needed to provide the feedback
and phase shift needed for oscillator, no other
external components are required. Instead of a

crystal, a resonator can also be connected be-
tween OSC1 and OSC2 to get a frequency refer-
ence, but two external capacitors in OSC1 and
OSC2 are required.

The WDT oscillator is a free running on-chip RC
oscillator, and no external components are re-
quired. Even if the system enters the power
down mode, the system clock is stopped, but the
WDT oscillator still works with a period of ap-
proximately 78 µs. The WDT oscillator can be
disabled by ROM code option to conserve power.

Watchdog timer – WDT

The WDT clock source is implemented by a
dedicated RC oscillator (WDT oscillator) or in-
struction clock (system clock divided by 4), de-
cided by ROM code option. This timer is
designed to prevent a software malfunction or
sequence jumping to an unknown location with
unpredictable results. The watchdog timer can
be disabled by a ROM code option. If the watch-
dog timer is disabled, all the executions related
to the WDT result in no operation.

Once the internal WDT oscillator (RC oscillator
with period 78µs normally) is selected, it is first
divided by 256 (8-stages) to get the nominal
time-out period of approximately 20 ms. This

System oscillator

Watchdog timer

HT48R50

14 31st July ’98

time-out period may vary with temperature,
VDD and process variations. By invoking the
WDT prescaler, longer time-out periods can be
realized. Writing data to WS2, WS1, WS0 (bit
2,1,0 of the WDTS) can give different time-out
periods. If WS2, WS1, WS0 are all equal to 1,
the division ratio is up to 1:128, and the maxi-
mum time-out period is 2.6 seconds.

If the WDT oscillator is disabled, the WDT
clock may still come from the instruction clock
and operate in the same manner except that in
the HALT state the WDT may stop counting
and lose it’s protecting purpose. In this situ-
ation the logic can only be restarted by external
logic. The high nibble and bit 3 of the WDTS
are reserved for user defined flags, which may
be used to indicate some specified status.

If the device operates in a noisy environment,
using the on-chip RC oscillator (WDT OSC) is
strongly recommended, since the HALT will stop
the system clock.

WS2 WS1 WS0 Division Ratio

0 0 0 1:1

0 0 1 1:2

0 1 0 1:4

0 1 1 1:8

1 0 0 1:16

1 0 1 1:32

1 1 0 1:64

1 1 1 1:128

WDTS register

The WDT overflow under normal operation will
initialize “chip reset” and set the status bit
“TO”. Whereas in the HALT mode, the overflow
will initialize a “warm reset” only the PC and SP
are reset to zero. To clear the contents of WDT
(including the WDT prescaler), three methods
are adopted; external reset (a low level to RES),
software instruction, or a “HALT” instruction.
The software instruction include “CLR WDT”
and the other set -“CLR WDT1” and “CLR
WDT2”. Of these two types of instruction, only
one can be active depending on the mask option
- “CLR WDT times selection option”. If the “CLR

WDT” is selected (i.e. CLRWDT times equal one),
any execution of the “CLR WDT” instruction
will clear the WDT. In case “CLR WDT1” and
“CLR WDT2” are chosen (i.e. CLRWDT times
equal two), these two instructions must be exe-
cuted to clear the WDT; otherwise, the WDT
may reset the chip because of the time-out.

Power down operation – HALT

The HALT mode is initialized by the “HALT”
instruction and results in the following...
• The system oscillator will turn off but the

WDT oscillator keeps running (if the WDT
oscillator is selected).

• The contents of the on–chip RAM and regis-
ters remain unchanged.

• WDT and WDT prescaler will be cleared and
recount again (if the WDT clock has come
from the WDT oscillator).

• All I/O ports maintain their original status.
• The PD flag is set and the TO flag is cleared

The system can leave the HALT mode by means
of an external reset, an interrupt, an external
falling edge signal on port A or a WDT overflow.
An external reset causes a device initialization
and the WDT overflow performs a “warm reset”.
Examining the TO and PD flags, the reason for
chip reset can be determined. The PD flag is
cleared when system power-up or executing the
“CLR WDT” instruction and is set when the
“HALT” instruction is executed. The TO flag is
set if the WDT time-out occurs, and causes a
wake-up that only resets the PC and SP, the
others maintain their original status.

The port A wake-up and interrupt methods can
be considered as a continuation of normal exe-
cution. Each bit in port A can be independently
selected to wake up the device by the ROM code
option. Awakening from an I/O port stimulus,
the program will resume execution of the next
instruction. If awakening from an interrupt,
two sequences may happen. If the related inter-
rupt is disabled or the interrupt is enabled but
the stack is full, the program will resume exe-
cution at the next instruction. If the interrupt is
enabled and the stack is not full, the regular
interrupt response takes place.

HT48R50

15 31st July ’98

Once a wake-up event occurs, and the system
clock comes from a crystal, it takes 1024 tSYS
(system clock period) to resume normal opera-
tion. In other words, the HT48R50 will insert a
dummy period after a wake-up. If the system
clock comes from an RC oscillator, it immediately
continue the operation. If the wake-up results
from an interrupt acknowledgment, the actual
interrupt subroutine execution will delay by one
more cycle. If the wake-up results in next instruc-
tion execution, this will be executed immediately
after the dummy period is finished.

To minimize power consumption, all I/O pins
should be carefully managed before entering
the HALT status.

Reset

There are three ways in which a reset can occur:
• RES reset during normal operation
• RES reset during HALT
• WDT time-out reset during normal operation

The WDT time-out during HALT is different
from other chip reset conditions, since it can
perform a “warm reset” that resets only the PC
and SP, leaving the other circuits in their origi-
nal state. Some registers remain unchanged
during any other reset conditions. Most regis-
ters are reset to the “initial condition” when the
reset conditions are met. By examining the PD
and TO flags, the program can distinguish be-
tween different “chip resets”.

TO PD RESET Conditions

0 0 RES reset during power-up

u u
RES reset during normal
operation

0 1 RES wake-up HALT

1 u
WDT time-out during normal
operation

1 1 WDT wake-up HALT

Note: “u” means “unchanged”

To guarantee that the system oscillator has started
and stabilized, the XST (System Start-up Timer)
can provide an extra-delay of 1024 system clock
pulses after system power up or awakes from a
HALT state.

When a system power up occurs, the SST delay is
added during the reset period. But when the reset
comes from the RES pin, the SST delay is disabled.
Any wake-up from HALT will enable the SST delay.

The functional unit chip reset status are shown
below.

PC 000H

Interrupt Disable

Prescaler Clear

WDT
Clear. After master reset,
WDT begins counting

Timer/event
counter (0/1)

Off

Input/output ports Input mode

SP
Points to the top of the
stack

Reset timing chart

Reset circuit

Reset configuration

HT48R50

16 31st July ’98

The state of the registers is summarized in the following table:

Register Reset
(power on)

WDT time-out
(normal

operation)

RES reset
(normal

operation)

RES reset
(HALT)

WDT time-
out (HALT)

TMR1 xxxx xxxx uuuu uuuu uuuu uuuu uuuu uuuu uuuu uuuu

TMR1C 00-0 1--- 00-0 1--- 00-0 1--- 00-0 1--- uu-u u---

TMR0H xxxx xxxx uuuu uuuu uuuu uuuu uuuu uuuu uuuu uuuu

TMR0L xxxx xxxx uuuu uuuu uuuu uuuu uuuu uuuu uuuu uuuu

TMR0C 00-0 1--- 00-0 1--- 00-0 1--- 00-0 1--- uu-u u---

PC 000H 000H 000H 000H 000H∗

MP0 xxxx xxxx uuuu uuuu uuuu uuuu uuuu uuuu uuuu uuuu

MP1 xxxx xxxx uuuu uuuu uuuu uuuu uuuu uuuu uuuu uuuu

ACC xxxx xxxx uuuu uuuu uuuu uuuu uuuu uuuu uuuu uuuu

TBLP xxxx xxxx uuuu uuuu uuuu uuuu uuuu uuuu uuuu uuuu

TBLH -xxx xxxx -uuu uuuu -uuu uuuu -uuu uuuu -uuu uuuu

STATUS --00 xxxx --1u uuuu --uu uuuu --01 uuuu --11 uuuu

INTC -000 0000 -000 0000 -000 0000 -000 0000 -uuu uuuu

WDTS 0000 0111 0000 0111 0000 0111 0000 0111 uuuu uuuu

PA 1111 1111 1111 1111 1111 1111 1111 1111 uuuu uuuu

PAC 1111 1111 1111 1111 1111 1111 1111 1111 uuuu uuuu

PB 1111 1111 1111 1111 1111 1111 1111 1111 uuuu uuuu

PBC 1111 1111 1111 1111 1111 1111 1111 1111 uuuu uuuu

PC 1111 1111 1111 1111 1111 1111 1111 1111 uuuu uuuu

PCC 1111 1111 1111 1111 1111 1111 1111 1111 uuuu uuuu

PD 1111 1111 1111 1111 1111 1111 1111 1111 uuuu uuuu

PDC 1111 1111 1111 1111 1111 1111 1111 1111 uuuu uuuu

Note: “∗” means “warm reset”
 “u” means “unchanged”
 “x” means “unknown”

HT48R50

17 31st July ’98

Timer/event counter

Two timer/event counters are implemented in
the HT48R50. The timer/event counters 0 and 1
contain 16-bit and 8-bit programmable count-up
counters respectively and the clock may come
from an external source or the system clock
divided by 4.

Using the internal instruction clock, there is
only one reference time-base. The external clock
input allows the user to count external events,
measure time intervals or pulse width, or gener-
ate an accurate time base.

There are three registers related to the
timer/event counter 0; TMR0H (0CH), TMR0L
(0DH), TMR0C (0EH). Writing TMR0L only
writes the data into a low byte buffer, and writ-
ing TMR0H will write the data and the contents
of the low byte buffer into the timer/event
counter 0 preload register (16-bit) simultane-
ously. The timer/event counter 0 preload regis-
ter is changed by writing TMR0H operations
and writing TMR0L will keep the timer/event
counter 0 preload register unchanged.

Reading TMR0H will also latch the TMR0L into
the low byte buffer to avoid the false timing
problem. Reading TMR0L returns the contents
of the low byte buffer. In other words, the low
byte of timer/event counter 0 can not be read
directly. It must read the TMR0H first to make

the low byte contents of timer/event counter 0
latched into the buffer.

There are two registers related to the timer/event
counter 1; TMR1 (10H), TMR1C (11H). Writing
TMR1 makes the starting value be placed in the
timer/event counter 1 preload register and read-
ing TMR1 gets the contents of the timer/event
counter 1.

The TMR0C is the timer/event counter 0 control
register, which defines the timer/event counter
0 options. The timer/event counter 1 has the
same options as the timer/event counter 0 and
is defined by TMR1C.

The timer/event counter control registers define
the operating mode, counting enable or disable
and active edge.

The TM0, TM1 bits define the operating mode.
The event count mode is used to count external
events, which means the clock source comes
from an external (TMR0/TMR1) pin. The timer
mode functions as a normal timer with the clock
source coming from the instruction clock. The
pulse width measurement mode can be used to
count the high or low level duration of the exter-
nal signal (TMR0/TMR1). The counting is based
on the instruction clock.

In the event count or timer mode, once the
timer/event counter starts counting, it will
count from the current contents in the

Label
(TMR0C/TMR1C) Bits Function

— 0~2 Unused bits, read as “0”

TE 3
To define the TMR0/TMR1 active edge of timer/event counter
(0=active on low to high; 1=active on high to low)

TON 4
To enable/disable timer counting
(0=disabled; 1=enabled)

—- 5 Unused bits, is read as “0”

TM0
TM1

6
7

To define the operating mode
01=Event count mode (external clock)
10=Timer mode (internal clock)
11=Pulse width measurement mode
00=Unused

TMR0C/TMR1C register

HT48R50

18 31st July ’98

timer/event counter to FFFFH (TMR0)/FFH
(TMR1). Once overflow occurs, the counter is
reloaded from the timer/event counter preload
register and generates the corresponding inter-
rupt request flag (T0F/T1F; bit 5/6 of INTC) at
the same time.

In pulse width measurement mode with the
TON and TE bits equal to one, once the
TMR0/TMR1 has received a transient from low
to high (or high to low; if the TE bit is 0) it will
start counting until the TMR0/TMR1 returns to
the original level and resets the TON. The meas-
ured result will remain in the timer/event
counter even if the activated transient occurs
again. In other words, only one cycle measure-
ments can be done. Until setting the TON, the
cycle measurement will function again as long as
it receives further transient pulse. Note that, in
this operating mode, the timer/event counter
starts counting not according to the logic level
but according to the transient edges. In the case
of counter overflows, the counter is reloaded
from the timer/event counter preload register
and issues the interrupt request just like the
other two modes.

To enable the counting operation, the timer ON
bit (TON; bit 4 of TMR0C/TMR1C) should be set
to 1. In the pulse width measurement mode, the
TON will be cleared automatically after the
measurement cycle is complete. But in the other
two modes the TON can only be reset by instruc-
tion. The overflow of the timer/event counter is
one of the wake-up sources. No matter what the
operation mode is, writing a 0 to ET0I/ET1I can
disable the corresponding interrupt service.

In the case of timer/event counter OFF condition,
writing data to the timer/event counter preload
register will also reload that data to timer/event
counter. But if the timer/event counter is turned
on, data written to the timer/event counter will
only be kept in the timer/event counter preload
register. The timer/event counter will still op-
erate until the overflow occurs.

When the timer/event counter (reading
TMR0H/TMR1) is read, the clock will be
blocked to avoid errors. As this may results in
a counting error, this must be taken into con-
sideration by the programmer.

Timer/event counter 1

Timer/event counter 0

HT48R50

19 31st July ’98

Input/output ports

There are 32 bidirectional input/output lines in
the HT48R50, labeled from PA to PD, which are
mapped to the data memory of [12H], [14H],
[16H] and [18H] respectively. All these I/O ports
can be used for input and output operations. For
input operation, these ports are non-latching,
that is, the inputs must be ready at the T2 rising
edge of instruction “MOV A,[m]” (m=12H, 14H,
16H or 18H). For output operation, all data is
latched and remains unchanged until the out-
put latch is rewritten.

Each I/O line has it’s own control register (PAC,
PBC, PCC, PDC) to control the input/output
configuration. With this control register, CMOS
output or schmitt trigger input with pull-high
resistor structures can be reconfigured dynami-
cally (i.e., on-the-fly) under software control. To
function as an input, the corresponding latch of
the control register must write “1”. The pull-
high resistance will exhibit automatically. The

input source also depends on the control regis-
ter. If the control register bit is “1”, input will
read the pad state. If the control register bit is
“0”, the contents of the latches will move to the
internal bus. The latter is possible in “read-mod-
ify-write” instruction. For output function, CMOS
is the only configuration. These control registers
are mapped to locations 13H, 15H, 17H and 19H.

After a chip reset, these input/output lines re-
main at high levels. Each bit of these input/out-
put latches can be set or cleared by “SET [m].i”
and “CLR [m].i” (m=12H, 14H, 16H or 18H)
instructions.

Some instructions first input data and then follow
the output operations. For example, “SET [m].i”,
“CLR [m].i”, “CPL [m]”, “CPLA [m]” read the entire
port states into the CPU, execute the defined
operations (bit-operation), and then write the re-
sults back to the latches or the accumulator.

Each line of port A has the capability to wake-up
the device.

Input/output ports

HT48R50

20 31st July ’98

ROM code option

The following table shows seven kinds of ROM
option in the HT48R50. All the ROM code op-
tions must be defined to ensure proper system
functioning.

Items Option Description

1 OP [7:0]
OP0~OP7→PA0~PA7
Bit=0 Without wake up
Bit=1 With wake up

2 OP8
Bit=0 RC mode
Bit=1 Crystal mode

3 OP9
Bit=0 Two cycle CLRWDT
Bit=1 One cycle CLRWDT

4 OP10
This bit must be set as “0” by
default.

5 OP11
This bit must be set as “0” by
default.

6 OP12

Bit=0 RC clock for WDT
source
Bit=1 System clock for WDT
source

7 OP13
Bit=0 Enable WDT
Bit=1 Disable WDT

PROM programming and verification

The program memory used in the HT48R50 is
arranged into a 4K×15 bits program PROM and
a 1×14 bits option PROM. The program code
and option code are stored in the program
PROM and option PROM. The programming of
PROM can be summarized as follows:
• Power on
• Set VPP (RES) to 12.5V
• Set CS (PA5) to low

Let PA3~PA0 (AD3~AD0) be the address and
data bus and the PA4 (CLK) be the clock input.
The data on the AD3~AD0 pins will be clocked
into or out of the HT48R50 on the falling edge
of PA4 (CLK) for PROM programming and veri-
fication.

The address data contains the code address (12
bits) and two option bits. A complete write cycle
will contain four CLK cycles. The first cycle, bits
0~3 of the address are latched into the HT48R50.
The second and third cycles, bits 4~7 and bits 8~11
are latched respectively. The fourth cycle, bit 2 is
the TSEL option bit and bit 3 is the OSEL option
bit. Bit 3 in the third cycle and bits 0~1 in the
fourth cycle are undefined. If the TSEL is “1” and
the OSEL is “0”, the TEST memory will be read. If
the TSEL is “0” and the OSEL is “1”, the option
PROM will be accessed. If both the TSEL and
OSEL are “0”, the program PROM will be man-
aged.

The code data is 15-bit wide. A complete read/write
cycle contains four CLK cycles. In the first cycle,
bits 0~3 of the code data are accessed. In the
second and third, bits 4~7 and bits 8~11 are ac-
cessed respectively. In the fourth cycle, bits 12~14
are accessed. Bit 15 is undefined. During code
verification, reading will return the result “0”.

Select the TSEL and OSEL to program and
verify the program PROM and option PROM.
Use the R/W (PA6) to select the programming or
verification

The address is automatically incremented by
one after a code verification cycle. If the non-
successive address programming or verification
is accomplished, the automatic addressing in-
crement is disabled. For the non-successive ad-
dress programming and verification, the CS pin
must return to high level for a programming or
verification cycle, that is, if an non-successive
address is managed, the programming or verifi-
cation cycle must be interrupted and restarted
as well.

HT48R50

21 31st July ’98

The related pins of PROM programming and
verification are listed in the following table.

Pin
Name Function Description

PA0 AD0 Bit 0 of address/data bus

PA1 AD1 Bit 1 of address/data bus

PA2 AD2 Bit 2 of address/data bus

PA3 AD3 Bit 3 of address/data bus

PA4 CLK
Serial clock input for
address and data

PA5 CS Chip select, active low

PA6 R/W Read/write control input

RES VPP
Programming the power
supply

The timing charts of programming and verifica-
tion are as shown. There is a LOCK signal for
code protection. If the LOCK is “1”, reading code
will return the result “1”. However, if the LOCK
is “0”, the code protection is disabled and the
code can always be read until the LOCK is
programmed as “1”.

Successive verification

HT48R50

22 31st July ’98

Non-successive verification

HT48R50

23 31st July ’98

Code programming and verification

HT48R50

24 31st July ’98

Non-successive programming and verification

Code programming and verification

HT48R50

25 31st July ’98

Successive programming and verification

HT48R50

26 31st July ’98

Instruction Set Summary

Mnemonic Description Instruction
Cycle

Flag
Affected

Arithmetic

ADD A,[m]
ADDM A,[m]
ADD A,x
ADC A,[m]
ADCM A,[m]
SUB A,x
SUB A,[m]
SUBM A,[m]

SBC A,[m]
SBCM A,[m]

DAA [m]

Add data memory to ACC
Add ACC to data memory
Add immediate data to ACC
Add data memory to ACC with carry
Add ACC to register with carry
Subtract immediate data from ACC
Subtract data memory from ACC
Subtract data memory from ACC with result in data
memory
Subtract data memory from ACC with carry
Subtract data memory from ACC with carry and
result in data memory
Decimal adjust ACC for addition with result in data
memory

1
1(1)

1
1

1(1)

1
1

1(1)

1
1(1)

1(1)

Z,C,AC,OV
Z,C,AC,OV
Z,C,AC,OV
Z,C,AC,OV
Z,C,AC,OV
Z,C,AC,OV
Z,C,AC,OV
Z,C,AC,OV

Z,C,AC,OV
Z,C,AC,OV

C

Logic
Operation

AND A,[m]
OR A,[m]
XOR A,[m]
ANDM A,[m]
ORM A,[m]
XORM A,[m]
AND A,x
OR A,x
XOR A,x
CPL [m]
CPLA [m]

AND data memory to ACC
OR data memory to ACC
Exclusive-OR data memory to ACC
AND ACC to data memory
OR ACC to data memory
Exclusive-OR ACC to data memory
AND immediate data to ACC
OR immediate data to ACC
Exclusive-OR immediate data to ACC
Complement data memory
Complement data memory with result in ACC

1
1
1

1(1)

1(1)

1(1)

1
1
1

1(1)

1

Z
Z
Z
Z
Z
Z
Z
Z
Z
Z
Z

Increment &
Decrement

INCA [m]
INC [m]
DECA [m]
DEC [m]

Increment data memory with result in ACC
Increment data memory
Decrement data memory with result in ACC
Decrement data memory

1
1(1)

1
1(1)

Z
Z
Z
Z

HT48R50

27 31st July ’98

Mnemonic Description Instruction
Cycle

Flag
Affected

Rotate

RRA [m]
RR [m]
RRCA [m]

RRC [m]
RLA [m]
RL [m]
RLCA [m]

RLC [m]

Rotate data memory right with result in ACC
Rotate data memory right
Rotate data memory right through carry with result
in ACC
Rotate data memory right through carry
Rotate data memory left with result in ACC
Rotate data memory left
Rotate data memory left through carry with result in
ACC
Rotate data memory left through carry

1
1(1)

1

1(1)

1
1(1)

1

1(1)

None
None

C

C
None
None

C

C

Data Move

MOV A,[m]
MOV [m],A
MOV A,x

Move data memory to ACC
Move ACC to data memory
Move immediate data to ACC

1
1(1)

1

None
None
None

Bit Operation

CLR [m].i
SET [m].i

Clear bit of data memory
Set bit of data memory

1(1)

1(1)
None
None

Branch

JMP addr
SZ [m]
SZA [m]

SZ [m].i
SNZ [m].i
SIZ [m]
SDZ [m]
SIZA [m]

SDZA [m]

CALL addr
RET
RET A,x

RETI

Jump unconditional
Skip if data memory is zero
Skip if data memory is zero with data movement to
ACC
Skip if bit i of data memory is zero
Skip if bit i of data memory is not zero
Skip if increment data memory is zero
Skip if decrement data memory is zero
Skip if increment data memory is zero with result in
ACC
Skip if decrement data memory is zero with result in
ACC
Subroutine call
Return from subroutine
Return from subroutine and load immediate data to
ACC
Return from interrupt

2
1(2)

1(2)

1(2)

1(2)

1(3)

1(3)

1(2)

1(2)

2
2
2

2

None
None
None

None
None
None
None
None

None

None
None
None

None

HT48R50

28 31st July ’98

Mnemonic Description Instruction
Cycle

Flag
Affected

Table Read

TABRDC [m]

TABRDL [m]

Read ROM code (current page) to data memory and
TBLH
Read ROM code (last page) to data memory and
TBLH

2(1)

2(1)

None

None

Miscellaneous

NOP
CLR [m]
SET [m]
CLR WDT
CLR WDT1
CLR WDT2
SWAP [m]
SWAPA [m]
HALT

No operation
Clear data memory
Set data memory
Clear Watchdog timer
Pre-clear Watchdog timer
Pre-clear Watchdog timer
Swap nibbles of data memory
Swap nibbles of data memory with result in ACC
Enter power down mode

1
1(1)

1(1)

1
1
1

1(1)

1
1

None
None
None

TO,PD
TO(4),PD(4)

TO(4),PD(4)

None
None

TO,PD

Notes: x: 8 bits immediate data

m: 8 bits data memory address

A: accumulator

i: 0~7 number of bits

addr: 12 bits program memory address

√: Flag is affected

–: Flag is not affected
(1): If a loading to the PCL register occurs, the execution cycle of instructions will be
 delayed one more cycle (four system clocks).
(2): If a skipping to the next instruction occurs the execution cycle of instructions will be
 delayed one more cycle (four system clocks). Otherwise the original instruction cycle is
 unchanged.
(3): (1) and (2)

(4): The flags may be affected by the execution status. If the watchdog timer is cleared by
 executing the CLR WDT1 or CLR WDT2 instruction, the TO is set and the PD is cleared.
 Otherwise the TO and PD flags remain unchanged.

HT48R50

29 31st July ’98

Instruction Definition

ADC A,[m] Add data memory and carry to accumulator

Description The contents of the specified data memory, accumulator and the carry flag
are added simultaneously, leaving the result in the accumulator.

Operation ACC ← ACC+[m]+C

Affected flag(s)

TC2 TC1 TO PD OV Z AC C

– – – – √ √ √ √

ADCM A,[m] Add accumulator and carry to data memory

Description The contents of the specified data memory, accumulator and the carry flag
are added simultaneously, leaving the result in the specified data memory.

Operation [m] ← ACC+[m]+C

Affected flag(s)

TC2 TC1 TO PD OV Z AC C

– – – – √ √ √ √

ADD A,[m] Add data memory to accumulator

Description The contents of the specified data memory and the accumulator are added.
The result is stored in the accumulator.

Operation ACC ← ACC+[m]

Affected flag(s)

TC2 TC1 TO PD OV Z AC C

– – – – √ √ √ √

ADD A,x Add immediate data to accumulator

Description The contents of the accumulator and the specified data are added, leaving the
result in the accumulator.

Operation ACC ← ACC+x

Affected flag(s)

TC2 TC1 TO PD OV Z AC C

– – – – √ √ √ √

HT48R50

30 31st July ’98

ADDM A,[m] Add accumulator to data memory

Description The contents of the specified data memory and the accumulator are added.
The result is stored in the data memory.

Operation [m] ← ACC+[m]

Affected flag(s)

TC2 TC1 TO PD OV Z AC C

– – – – √ √ √ √

AND A,[m] Logical AND accumulator with data memory

Description Data in the accumulator and the specified data memory performs a bitwise
logical_AND operation. The result is stored in the accumulator.

Operation ACC ← ACC “AND” [m]

Affected flag(s)

TC2 TC1 TO PD OV Z AC C

– – – – – √ – –

AND A,x Logical AND immediate data to accumulator

Description Data in the accumulator and the specified data performs a bitwise logi-
cal_AND operation. The result is stored in the accumulator.

Operation ACC ← ACC “AND” x

Affected flag(s)

TC2 TC1 TO PD OV Z AC C

– – – – – √ – –

ANDM A,[m] Logical AND data memory with accumulator

Description Data in the specified data memory and the accumulator performs a bitwise
logical_AND operation. The result is stored in the data memory.

Operation [m] ← ACC “AND” [m]

Affected flag(s)

TC2 TC1 TO PD OV Z AC C

– – – – – √ – –

HT48R50

31 31st July ’98

CALL addr Subroutine call

Description The instruction unconditionally calls a subroutine located at the indicated
address. The program counter increments once to obtain the address of the
next instruction, and pushes this onto the stack. The indicated address is
then loaded. Program execution continues with the instruction at this ad-
dress.

Operation Stack ← PC+1
PC ← addr

Affected flag(s)

TC2 TC1 TO PD OV Z AC C

– – – – – – – –

CLR [m] Clear data memory

Description The contents of the specified data memory are cleared to zero.

Operation [m] ← 00H

Affected flag(s)

TC2 TC1 TO PD OV Z AC C

– – – – – – – –

CLR [m].i Clear bit of data memory

Description The bit i of the specified data memory is cleared to zero.

Operation [m].i ← 0

Affected flag(s)

TC2 TC1 TO PD OV Z AC C

– – – – – – – –

CLR WDT Clear watchdog timer

Description The WDT and the WDT Prescaler are cleared (re-counting from zero). The
power down bit (PD) and time-out bit (TO) are cleared.

Operation WDT and WDT Prescaler ← 00H
PD and TO ← 0

Affected flag(s)

TC2 TC1 TO PD OV Z AC C

– – 0 0 – – – –

HT48R50

32 31st July ’98

CLR WDT1 Preclear watchdog timer

Description The PD, TO flags, WDT and the WDT Prescaler are cleared (re-counting from
zero), if the other preclear WDT instruction had been executed. Only execu-
tion of this instruction without the other preclear instruction sets the indi-
cating flag which implies that this instruction was executed and the PD and
TO flags remain unchanged.

Operation WDT and WDT Prescaler ← 00H*
PD and TO ← 0*

Affected flag(s)

TC2 TC1 TO PD OV Z AC C

– – 0* 0* – – – –

CLR WDT2 Preclear watchdog timer

Description The PD, TO flags, WDT and the WDT Prescaler are cleared (re-counting from
zero), if the other preclear WDT instruction had been executed. Only execu-
tion of this instruction without the other preclear instruction sets the indi-
cating flag which implies this instruction was executed and the PD and TO
flags remain unchanged.

Operation WDT and WDT Prescaler ← 00H*
PD and TO ← 0*

Affected flag(s)

TC2 TC1 TO PD OV Z AC C

– – 0* 0* – – – –

CPL [m] Complement data memory

Description Each bit of the specified data memory is logically complemented (1’s comple-
ment). Bits which previously contain a one are changed to zero and vice-
versa.

Operation [m] ← [m]

Affected flag(s)

TC2 TC1 TO PD OV Z AC C

– – – – – √ – –

HT48R50

33 31st July ’98

CPLA [m] Complement data memory and place result in accumulator

Description Each bit of the specified data memory is logically complemented (1’s comple-
ment). Bits which previously contained a one are changed to zero and
vice-versa. The complemented result is stored in the accumulator and the
contents of the data memory remains unchanged.

Operation ACC ← [m]

Affected flag(s)

TC2 TC1 TO PD OV Z AC C

– – – – – √ – –

DAA [m] Decimal-Adjust accumulator for addition

Description The accumulator value is adjusted to the BCD (Binary Code Decimal) code.
The accumulator is divided into two nibbles. Each nibble is adjusted to the
BCD code and an internal carry (AC1) will be done if the low nibble of the
accumulator is greater than 9. The BCD adjustment is done by adding 6 to
the original value if the original value is greater than 9 or a carry (AC or C)
is set; otherwise the original value remains unchanged. The result is stored
in the data memory and only the carry flag (C) may be affected.

Operation If ACC.3~ACC.0 >9 or AC=1
then [m].3~[m].0 ← (ACC.3~ACC.0)+6, AC1=AC
else [m].3~[m].0 ← (ACC.3~ACC.0), AC1=0
and
If ACC.7~ACC.4 >9 or C=1
then [m].7~[m].4 ← ACC.7~ACC.4+6+AC1, C=1
else [m].7~[m].4 ← ACC.7~ACC.4+AC1, C=C

Affected flag(s)

TC2 TC1 TO PD OV Z AC C

– – – – – – – √

DEC [m] Decrement data memory

Description Data in the specified data memory is decremented by one.

Operation [m] ← [m]–1

Affected flag(s)

TC2 TC1 TO PD OV Z AC C

– – – – – √ – –

HT48R50

34 31st July ’98

DECA [m] Decrement data memory and place result in accumulator

Description Data in the specified data memory is decremented by one, leaving the result
in the accumulator. The contents of the data memory remain unchanged.

Operation ACC ← [m]–1

Affected flag(s)

TC2 TC1 TO PD OV Z AC C

– – – – – √ – –

HALT Enter power down mode

Description This instruction stops program execution and turns off the system clock. The
contents of the RAM and registers are retained. The WDT and prescaler are
cleared. The power down bit (PD) is set and the WDT time-out bit (TO) is
cleared.

Operation PC ← PC+1
PD ← 1
TO ← 0

Affected flag(s)

TC2 TC1 TO PD OV Z AC C

– – 0 1 – – – –

INC [m] Increment data memory

Description Data in the specified data memory is incremented by one.

Operation [m] ← [m]+1

Affected flag(s)

TC2 TC1 TO PD OV Z AC C

– – – – – √ – –

INCA [m] Increment data memory and place result in accumulator

Description Data in the specified data memory is incremented by one, leaving the result
in the accumulator. The contents of the data memory remain unchanged.

Operation ACC ← [m]+1

Affected flag(s)

TC2 TC1 TO PD OV Z AC C

– – – – – √ – –

HT48R50

35 31st July ’98

JMP addr Direct Jump

Description Bits 0~11 of the program counter are replaced with the directly–specified
address unconditionally, and control passed to this destination.

Operation PC ← addr

Affected flag(s)

TC2 TC1 TO PD OV Z AC C

– – – – – – – –

MOV A,[m] Move data memory to accumulator

Description The contents of the specified data memory is copied to the accumulator.

Operation ACC ← [m]

Affected flag(s)

TC2 TC1 TO PD OV Z AC C

– – – – – – – –

MOV A,x Move immediate data to accumulator

Description The 8–bit data specified by the code is loaded into the accumulator.

Operation ACC ← x

Affected flag(s)

TC2 TC1 TO PD OV Z AC C

– – – – – – – –

MOV [m],A Move accumulator to data memory

Description The contents of the accumulator is copied to the specified data memory (one
of the data memories).

Operation [m] ← ACC

Affected flag(s)

TC2 TC1 TO PD OV Z AC C

– – – – – – – –

NOP No operation

Description No operation is performed. Execution continues with the next instruction.

Operation PC ← PC+1

Affected flag(s)

TC2 TC1 TO PD OV Z AC C

– – – – – – – –

HT48R50

36 31st July ’98

OR A,[m] Logical OR accumulator with data memory

Description Data in the accumulator and the specified data memory (one of the data
memories) performs a bitwise logical_OR operation. The result is stored in
the accumulator.

Operation ACC ← ACC “OR” [m]

Affected flag(s)

TC2 TC1 TO PD OV Z AC C

– – – – – √ – –

OR A,x Logical OR immediate data to accumulator

Description Data in the accumulator and the specified data performs a bitwise logical_OR
operation. The result is stored in the accumulator.

Operation ACC ← ACC “OR” x

Affected flag(s)

TC2 TC1 TO PD OV Z AC C

– – – – – √ – –

ORM A,[m] Logical OR data memory with accumulator

Description Data in the data memory (one of the data memories) and the accumulator
performs a bitwise logical_OR operation. The result is stored in the data
memory.

Operation [m] ← ACC “OR” [m]

Affected flag(s)

TC2 TC1 TO PD OV Z AC C

– – – – – √ – –

RET Return from subroutine

Description The program counter is restored from the stack. This is a two-cycle instruc-
tion.

Operation PC ← Stack

Affected flag(s)

TC2 TC1 TO PD OV Z AC C

– – – – – – – –

HT48R50

37 31st July ’98

RET A,x Return and place immediate data in accumulator

Description The program counter is restored from the stack and the accumulator loaded
with the specified 8-bit immediate data.

Operation PC ← Stack
ACC ← x

Affected flag(s)

TC2 TC1 TO PD OV Z AC C

– – – – – – – –

RETI Return from interrupt

Description The program counter is restored from the stack, and interrupts enabled by
setting the EMI bit. EMI is the enable master (global) interrupt bit (bit 0;
register INTC).

Operation PC ← Stack
EMI ← 1

Affected flag(s)

TC2 TC1 TO PD OV Z AC C

– – – – – – – –

RL [m] Rotate data memory left

Description The contents of the specified data memory is rotated left one bit with bit 7
rotated into bit 0.

Operation [m].(i+1) ← [m].i; [m].i:bit i of the data memory (i=0-6)
[m].0 ← [m].7

Affected flag(s)

TC2 TC1 TO PD OV Z AC C

– – – – – – – –

RLA [m] Rotate data memory left-place result in accumulator

Description Data in the specified data memory is rotated left one bit with bit 7 rotated
into bit 0, leaving the rotated result in the accumulator. The contents of the
data memory remain unchanged.

Operation ACC.(i+1) ← [m].i; [m].i:bit i of the data memory (i=0-6)
ACC.0 ← [m].7

Affected flag(s)

TC2 TC1 TO PD OV Z AC C

– – – – – – – –

HT48R50

38 31st July ’98

RLC [m] Rotate data memory left through carry

Description The contents of the specified data memory and the carry flag are together
rotated left one bit. Bit 7 replaces the carry bit; the original carry flag is
rotated into the bit 0 position.

Operation [m].(i+1) ← [m].i; [m].i:bit i of the data memory (i=0-6)
[m].0 ← C
C ← [m].7

Affected flag(s)

TC2 TC1 TO PD OV Z AC C

– – – – – – – √

RLCA [m] Rotate left through carry and place result in accumulator

Description Data in the specified data memory and the carry flag are together rotated left
one bit. Bit 7 replaces the carry bit and the original carry flag is rotated into
bit 0 position. The rotated result is stored in the accumulator but the contents
of the data memory remain unchanged.

Operation ACC.(i+1) ← [m].i; [m].i:bit i of the data memory (i=0-6)
ACC.0 ← C
C ← [m].7

Affected flag(s)

TC2 TC1 TO PD OV Z AC C

– – – – – – – √

RR [m] Rotate data memory right

Description The contents of the specified data memory are rotated right one bit with bit
0 rotated to bit 7.

Operation [m].i ← [m].(i+1); [m].i:bit i of the data memory (i=0-6)
[m].7 ← [m].0

Affected flag(s)

TC2 TC1 TO PD OV Z AC C

– – – – – – – –

HT48R50

39 31st July ’98

RRA [m] Rotate right and place result in accumulator

Description Data in the specified data memory is rotated right one bit with bit 0 rotated
into bit 7, leaving the rotated result in the accumulator. The contents of the
data memory remain unchanged.

Operation ACC.(i) ← [m].(i+1); [m].i:bit i of the data memory (i=0-6)
ACC.7 ← [m].0

Affected flag(s)

TC2 TC1 TO PD OV Z AC C

– – – – – – – –

RRC [m] Rotate data memory right through carry

Description The contents of the specified data memory and the carry flag are together
rotated right one bit. Bit 0 replaces the carry bit; the original carry flag is
rotated into the bit 7 position.

Operation [m].i ← [m].(i+1); [m].i:bit i of the data memory (i=0-6)
[m].7 ← C
C ← [m].0

Affected flag(s)

TC2 TC1 TO PD OV Z AC C

– – – – – – – √

RRCA [m] Rotate right through carry and place result in accumulator

Description Data of the specified data memory and the carry flag are together rotated
right one bit. Bit 0 replaces the carry bit and the original carry flag is rotated
into the bit 7 position. The rotated result is stored in the accumulator. The
contents of the data memory remain unchanged.

Operation ACC.i ← [m].(i+1); [m].i:bit i of the data memory (i=0-6)
ACC.7 ← C
C ← [m].0

Affected flag(s)

TC2 TC1 TO PD OV Z AC C

– – – – – – – √

HT48R50

40 31st July ’98

SBC A,[m] Subtract data memory and carry from accumulator

Description The contents of the specified data memory and the complement of the carry
flag are together subtracted from the accumulator, leaving the result in the
accumulator.

Operation ACC ← ACC+[m]+C

Affected flag(s)

TC2 TC1 TO PD OV Z AC C

– – – – √ √ √ √

SBCM A,[m] Subtract data memory and carry from accumulator

Description The contents of the specified data memory and the complement of the carry
flag are together subtracted from the accumulator, leaving the result in the
data memory.

Operation [m] ← ACC+[m]+C

Affected flag(s)

TC2 TC1 TO PD OV Z AC C

– – – – √ √ √ √

SDZ [m] Skip if decrement data memory is zero

Description The contents of the specified data memory are decremented by one. If the
result is zero, the next instruction is skipped. If the result is zero, the
following instruction, fetched during the current instruction execution, is
discarded and a dummy cycle replaced to get the proper instruction (two
cycles). Otherwise proceed with the next instruction (one cycle).

Operation Skip if ([m]–1)=0, [m] ← ([m]–1)

Affected flag(s)

TC2 TC1 TO PD OV Z AC C

– – – – – – – –

SDZA [m] Decrement data memory-place result in ACC, skip if zero

Description The contents of the specified data memory are decremented by one. If the
result is zero, the next instruction is skipped. The result is stored in the
accumulator but the data memory remains unchanged. If the result is zero
,the following instruction, fetched during the current instruction execution,
is discarded and a dummy cycle is replaced to get the proper instruction (two
cycles). Otherwise proceed with the next instruction (one cycle).

Operation Skip if ([m]–1)=0, ACC ← ([m]–1)

Affected flag(s)

TC2 TC1 TO PD OV Z AC C

– – – – – – – –

HT48R50

41 31st July ’98

SET [m] Set data memory

Description Each bit of the specified data memory is set to one.

Operation [m] ← FFH

Affected flag(s)

TC2 TC1 TO PD OV Z AC C

– – – – – – – –

SET [m].i Set bit of data memory

Description Bit “i” of the specified data memory is set to one.

Operation [m].i ← 1

Affected flag(s)

TC2 TC1 TO PD OV Z AC C

– – – – – – – –

SIZ [m] Skip if increment data memory is zero

Description The contents of the specified data memory is incremented by one. If the result
is zero, the following instruction, fetched during the current instruction
execution, is discarded and a dummy cycle is replaced to get the proper
instruction (two cycles). Otherwise proceed with the next instruction (one
cycle).

Operation Skip if ([m]+1)=0, [m] ← ([m]+1)

Affected flag(s)

TC2 TC1 TO PD OV Z AC C

– – – – – – – –

SIZA [m] Increment data memory and place result in ACC, skip if zero

Description The contents of the specified data memory is incremented by one. If the result
is zero, the next instruction is skipped and the result stored in the accumu-
lator. The data memory remains unchanged. If the result is zero, the follow-
ing instruction, fetched during the current instruction execution, is discarded
and a dummy cycle replaced to get the proper instruction (two cycles).
Otherwise proceed with the next instruction (one cycle).

Operation Skip if ([m]+1)=0, ACC ← ([m]+1)

Affected flag(s)

TC2 TC1 TO PD OV Z AC C

– – – – – – – –

HT48R50

42 31st July ’98

SNZ [m].i Skip if bit “i” of the data memory is not zero

Description If bit “i” of the specified data memory is not zero, the next instruction is
skipped. If bit “i” of the data memory is not zero, the following instruction,
fetched during the current instruction execution, is discarded and a dummy
cycle is replaced to get the proper instruction (two cycles). Otherwise proceed
with the next instruction (one cycle).

Operation Skip if [m].i≠0

Affected flag(s)

TC2 TC1 TO PD OV Z AC C

– – – – – – – –

SUB A,[m] Subtract data memory from accumulator

Description The specified data memory is subtracted from the contents of the accumula-
tor, leaving the result in the accumulator.

Operation ACC ← ACC+[m]+1

Affected flag(s)

TC2 TC1 TO PD OV Z AC C

– – – – √ √ √ √

SUBM A,[m] Subtract data memory from accumulator

Description The specified data memory is subtracted from the contents of the accumula-
tor, leaving the result in the data memory.

Operation [m] ← ACC [m]+1

Affected flag(s)

TC2 TC1 TO PD OV Z AC C

– – – – √ √ √ √

SUB A,x Subtract immediate data from accumulator

Description The immediate data specified by the code is subtracted from the contents of
the accumulator, leaving the result in the accumulator.

Operation ACC ← ACC+x+1

Affected flag(s)

TC2 TC1 TO PD OV Z AC C

– – – – √ √ √ √

HT48R50

43 31st July ’98

SWAP [m] Swap nibbles within the data memory

Description The low-order and high-order nibbles of the specified data memory (one of
the data memory) are interchanged.

Operation [m].3~[m].0 ↔ [m].7~[m].4

Affected flag(s)

TC2 TC1 TO PD OV Z AC C

– – – – – – – –

SWAPA [m] Swap data memory and place result in accumulator

Description The low-order and high-order nibbles of the specified data memory are
interchanged, writing the result to the accumulator. The contents of the data
memory remain unchanged.

Operation ACC.3~ACC.0 ← [m].7~[m].4
ACC.7~ACC.4 ← [m].3~[m].0

Affected flag(s)

TC2 TC1 TO PD OV Z AC C

– – – – – – – –

SZ [m] Skip if data memory is zero

Description If the contents of the specified data memory is zero, the following instruction,
fetched during the current instruction execution, is discarded and a dummy
cycle is replaced to get the proper instruction (two cycles). Otherwise proceed
with the next instruction (one cycle).

Operation Skip if [m]=0

Affected flag(s)

TC2 TC1 TO PD OV Z AC C

– – – – – – – –

SZA [m] Move data memory to ACC, skip if zero

Description The contents of the specified data memory is copied to accumulator. If the
contents is zero, the following instruction, fetched during the current instruc-
tion execution, is discarded and a dummy cycle is replaced to get the proper
instruction (two cycles). Otherwise proceed with the next instruction (one
cycle).

Operation Skip if [m]=0, ACC ← [m]

Affected flag(s)

TC2 TC1 TO PD OV Z AC C

– – – – – – – –

HT48R50

44 31st July ’98

SZ [m].i Skip if bit “i” of the data memory is zero

Description If bit “i” of the specified data memory is zero, the following instruction,
fetched during the current instruction execution, is discarded and a dummy
cycle is replaced to get the proper instruction (two cycles). Otherwise proceed
with the next instruction (one cycle).

Operation Skip if [m].i=0

Affected flag(s)

TC2 TC1 TO PD OV Z AC C

– – – – – – – –

TABRDC [m] Move the ROM code (current page) to TBLH and data memory

Description The low byte of ROM code (current page) addressed by the table pointer
(TBLP) is moved to the specified data memory and the high byte transferred
to TBLH directly.

Operation [m] ← ROM code (low byte)
TBLH ← ROM code (high byte)

Affected flag(s)

TC2 TC1 TO PD OV Z AC C

– – – – – – – –

TABRDL [m] Move the ROM code (last page) to TBLH and data memory

Description The low byte of ROM code (last page) addressed by the table pointer (TBLP)
is moved to the data memory and the high byte transferred to TBLH directly.

Operation [m] ← ROM code (low byte)
TBLH ← ROM code (high byte)

Affected flag(s)

TC2 TC1 TO PD OV Z AC C

– – – – – – – –

XOR A,[m] Logical XOR accumulator with data memory

Description Data in the accumulator and the indicated data memory performs a bitwise
logical Exclusive_OR operation and the result is stored in the accumulator.

Operation ACC ← ACC “XOR” [m]

Affected flag(s)

TC2 TC1 TO PD OV Z AC C

– – – – – √ – –

HT48R50

45 31st July ’98

XORM A,[m] Logical XOR data memory with accumulator

Description Data in the indicated data memory and the accumulator perform a bitwise
logical Exclusive_OR operation. The result is stored in the data memory. The
zero flag is affected.

Operation [m] ← ACC “XOR” [m]

Affected flag(s)

TC2 TC1 TO PD OV Z AC C

– – – – – √ – –

XOR A,x Logical XOR immediate data to accumulator

Description Data in the the accumulator and the specified data perform a bitwise logical
Exclusive_OR operation. The result is stored in the accumulator. The zero
flag is affected.

Operation ACC ← ACC “XOR” x

Affected flag(s)

TC2 TC1 TO PD OV Z AC C

– – – – – √ – –

HT48R50

46 31st July ’98

	Features
	General Description
	Block Diagram
	Pin Assignment
	Pin Description
	Absolute Maximum Ratings*
	D.C. Characteristics
	A.C. Characteristics
	Application Circuits
	System Architecture
	Instruction Set Summary
	Instruction Definition

