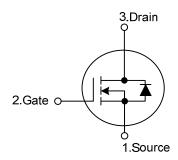

UNISONIC TECHNOLOGIES CO., LTD

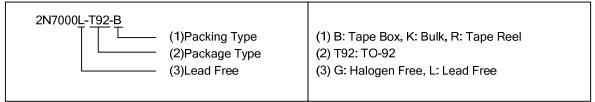
2N7000 Power MOSFET

N-CHANNEL ENHANCEMENT MODE


■ DESCRIPTION

The UTC **2N7000** has been designed to minimize on-state resistance while provide rugged, reliable, and fast switching performance. It can be used in most applications requiring up to 400mA DC and can deliver pulsed currents up to 2A. The product is particularly suited for low voltage, low current applications such as small servo motor control, power MOSFET gate drivers, and other switching applications

■ FEATURES


■ SYMBOL

■ ORDERING INFORMATION

Ordering Number		Daakaga	Pin Assignment			Dooking	
Lead Free	Halogen Free	Package	1	2	3	Packing	
2N7000L-T92-B	2N7000G-T92-B	TO-92	S	G	D	Tape Box	
2N7000L-T92-K	2N7000G-T92-K	TO-92	S	G	D	Bulk	
2N7000L-T92-R	2N7000G-T92-R	TO-92	S	G	D	Tape Reel	

Note: Pin Assignment: G: Gate D: Drain S: Source

^{*}High density cell design for low R_{DS(ON)}

^{*}Voltage controlled small signal switch

^{*}Rugged and reliable

^{*}High saturation current capability

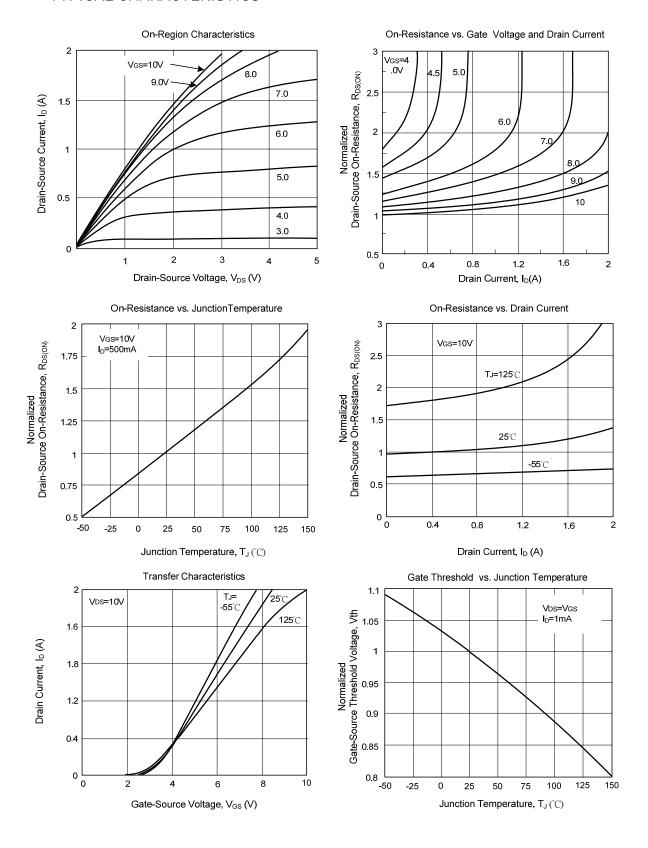
2N7000 Power MOSFET

■ ABSOLUTE MAXIMUM RATINGS (Ta=25°C)

PARAMETER		SYMBOL	RATINGS	UNIT
Drain-Source Voltage		V_{DSS}	60	V
Drain-Gate Voltage (R _{GS} ≤1MΩ)		V_{DGR}	60	V
Gate -Source Voltage	Continuous	V _{GS}	±20	V
Gate -Source voltage	Non Repetitive (tp<50μs) VGS	±40	V
Maximum Drain Current Continuous			115	mA
Maximum Diain Current	Pulsed	טי	H _D = ±40 115 800 400	mA
Maximum Power Dissipation		D-	400	mW
Derated above 25°C		PD	3.2	mW/°C
Operating and Storage Temperature		$T_{J,}T_{STG}$	-55 ~ + 150	°C

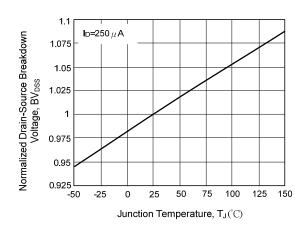
Note: Absolute maximum ratings are those values beyond which the device could be permanently damaged. Absolute maximum ratings are stress ratings only and functional device operation is not implied.

■ THERMAL DATA

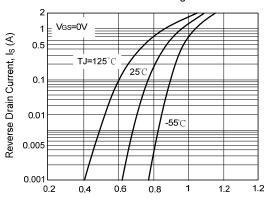

PARAMETER	SYMBOL	RATINGS	UNIT
Junction to Ambient	θ_{JA}	312.5	°C/W

■ ELECTRICAL CHARACTERISTICS (Ta =25°C, unless otherwise specified)

PARAMETER	SYMBOL	TEST CONDITIONS	MIN	TYP	MAX	UNIT	
OFF CHARACTERISTICS					_	_	
Drain-Source Breakdown Voltage	BV _{DSS}	V_{GS} =0 V , I_D =10 μ A	60			V	
Drain-Source Leakage Current	I _{DSS}	V _{DS} =60V, V _{GS} =0V T _J =125°C			1 0.5	μA	
Cata Dadiy laakaga Famyand						mA	
Gate-Body leakage, Forward	I _{GSSF}	V _{GS} =20V, V _{DS} =0V			100	nA	
Gate-Body leakage Reverse	I_{GSSR}	V _{GS} =-20V, V _{DS} =0V			-100	nA	
ON CHARACTERISTICS (Note)	1	1		T	1	1	
Gate Threshold Voltage	$V_{GS(TH)}$	$V_{DS} = V_{GS}$, $I_D = 250 \mu A$	1	2.1	2.5	V	
		V_{GS} =10V, I_D =500mA		1.2	7.5		
Static Drain-Source On-Resistance	R _{DS(ON)}	T _J =100°C	1.7	13.5	Ω		
		V_{GS} =5.0V, I_D =50mA		1.7	7.5	32	
		T _J =100°C		2.4	13.5		
Drain-Source On-Voltage	V _{DS(ON)}	$V_{GS} = 10V, I_D = 500mA$		0.6	3.75	V	
	V D3(ON)	V_{GS} = 5.0V, I_D =50mA		0.09	1.5		
On-State Drain Current	$I_{D(ON)}$	V_{GS} =10V, $V_{DS} \ge 2V_{DS(ON)}$	500	2700		mA	
DYNAMIC CHARACTERISTICS							
Input Capacitance	C _{ISS}			20	50	pF	
Output Capacitance	Coss	V_{DS} =25V, V_{GS} =0V, f=1.0MHz		11	25	pF	
Reverse Transfer Capacitance	C _{RSS}	1		4	5	pF	
Turn-On Time	t _{ON}	V_{DD} =30V, R_L =150 Ω , I_D =200mA, V_{GS} =10V, R_{GEN} =25 Ω			20	ns	
Turn-Off Time	t _{OFF}	V_{DD} =30V, R_L =150 Ω , I_D =200mA, V_{GS} =10V, R_{GEN} =25 Ω			20	ns	
DRAIN-SOURCE DIODE CHARACT	ERISTICS A	AND MAXIMUM RATINGS					
Drain-Source Diode Forward Voltage	V _{SD}	V _{GS} =0V, Is=115mA(Note)		0.88	1.5	V	
Maximum Continuous Drain-Source Diode Forward Current	Is				115	mA	
Maximum Pulsed Drain-Source Diode Forward Current	I _{SM}				0.8	Α	

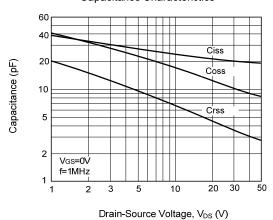

Note: Pulse Test: Pulse Width≤300µs, Duty Cycle≤2.0%

■ TYPICAL CHARACTERISTICS

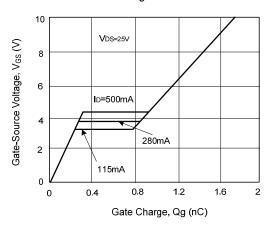


■ TYPICAL CHARACTERISTICS(Cont.)

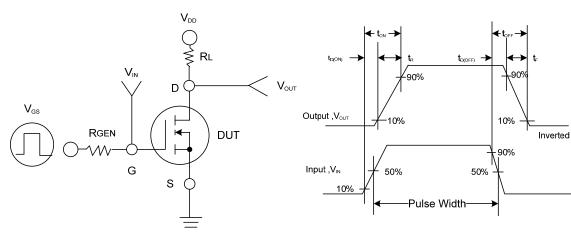
Breakdown Voltage vs. Junction Temperature

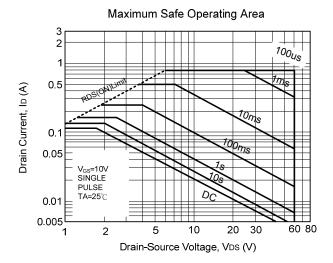


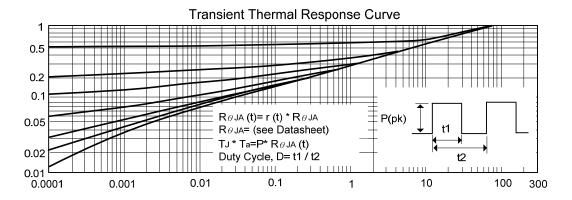
Reverse Drain Current vs. Body Diode Forward Voltage



Body Diode Forward Voltage, V_{SD} (V)


Capacitance Characteristics


Gate Charge Characteristics



Switching Waveforms

■ TYPICAL CHARACTERISTICS(Cont.)

UTC assumes no responsibility for equipment failures that result from using products at values that exceed, even momentarily, rated values (such as maximum ratings, operating condition ranges, or other parameters) listed in products specifications of any and all UTC products described or contained herein. UTC products are not designed for use in life support appliances, devices or systems where malfunction of these products can be reasonably expected to result in personal injury. Reproduction in whole or in part is prohibited without the prior written consent of the copyright owner. The information presented in this document does not form part of any quotation or contract, is believed to be accurate and reliable and may be changed without notice.